
Usando room en la Agenda
Descargar estos apuntes

🎓 Caso de Estudio
Vamos a partir de nuestra Agenda de Contactos con navegación y vamos a añadir a añadir como
fuente de datos una BD local de SQLite a la que accederemos usando el ORM room
proporcionado por Jetpack Compose.

Paso 1: Añadir dependencias y paquetes
1. Para usar room en nuestra aplicación debemos añadir dependencias que se describen en los

apuntes de room del módulo.
2. Crearemos el paquete .data.room dentro del cual definiremos las clases que nos permitirán

acceder a la BD.

Solución

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solución de este caso de estudio del siguiente enlace: propuesta de solución



1/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/ejercicios/B_5_1_Room/0_Agenda_room.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/assets/codigo/ejercicio5_1/ejercicio0/0_AgendaRoom_recurso.zip

Paso 2: Definir la entidad Contacto
Dentro del paquete .data.room definiremos la entidad Contacto que será la clase que represente
sus datos en la BD.

Paso 3: Definir conversores de tipos
Fíjate en el código anterior que la imagen del contacto, la gradaremos en la BD como un tipo
 BLOB que es un array de bytes. Sin embargo, en la entidad ContactoEntity la imagen la tenemos
como un String que será una cadena en base64 tal y como la usamos en nuestro modelo. Para
ello debemos definir un conversor de tipos que nos permita convertir de un tipo a otro. Es por eso
que crearemos la clase RoomConverters dentro del paquete .data.room .

class RoomConverters {

 @TypeConverter

 fun toBlob(value: ByteArray?): String? = Base64.encodeToString(value, Base64.DEFAULT)

 @TypeConverter

 fun fromBlob(value: String?): ByteArray? = Base64.decode(value, Base64.DEFAULT)

}

@Entity(tableName = "contactos")

data class ContactoEntity(

 @PrimaryKey(autoGenerate = true)

 @ColumnInfo(name = "id")

 val id: Int,

 @ColumnInfo(name = "nombre")

 val nombre: String,

 @ColumnInfo(name = "apellidos")

 val apellidos: String,

 @ColumnInfo(name = "telefono")

 val telefono: String,

 @ColumnInfo(name = "email")

 val email: String,

 @ColumnInfo(name = "foto", typeAffinity = ColumnInfo.BLOB)

 val foto: String?,

 @ColumnInfo(name = "categorias")

 val categorias: String

)

14

2/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 4: Definir nuestro DAO sobre la entidad Contacto
Vamos a definir el DAO sobre la entidad ContactoEntity . Para ello crearemos la interfaz
 ContactoDao dentro del paquete .data.room . En el, definiremos los métodos que nos permitirán
realizar las operaciones CRUD sobre dicha entidad.

Fíjate que todos los métodos son suspend. De esta manera estamos indicando que son métodos
que se ejecutarán en un hilo secundario (Dispatchers.IO) y que por tanto no bloquearán el hilo
principal.

@Dao

interface ContactoDao {

 @Insert

 suspend fun insert(contacto : ContactoEntity)

 @Delete

 suspend fun delete(contacto : ContactoEntity)

 @Update(onConflict = OnConflictStrategy.ABORT)

 suspend fun update(contacto : ContactoEntity)

 @Query("SELECT COUNT(*) FROM contactos")

 suspend fun count(): Int

 @Query("SELECT * FROM contactos")

 suspend fun get(): List<ContactoEntity>

 @Query("SELECT * FROM contactos WHERE id = :id")

 suspend fun get(id: Int): ContactoEntity

}

3/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 5: Definición de la BD
Definimos la clase abstracta AgendaDb que extiende de RoomDatabase y que nos permitirá acceder
a la BD. En ella definiremos:

1. La anotación @Database que nos permitirá indicar el nombre de la BD, la versión y las
entidades que contiene.

2. La anoación @TypeConverters que nos permitirá indicar los conversores de tipos que
usaremos.

3. El método de clase getDatabase() que nos devolverá una instancia de la BD.
4. El método contactoDao() que nos devolverá el DAO sobre la entidad ContactoEntity .

@Database(

 entities = [ContactoEntity::class],

 exportSchema = false,

 version = 1

)

@TypeConverters(RoomConverters::class)

abstract class AgendaDb : RoomDatabase() {

 abstract fun contactoDao(): ContactoDao

 companion object {

 fun getDatabase(context: Context) = Room.databaseBuilder(

 context,

 AgendaDb::class.java, "agenda"

)

 .allowMainThreadQueries()

 .fallbackToDestructiveMigration()

 .build()

 }

}

4/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 6: Preparar para inyectar con Hilt los módulos
En el fichero AppModule.kt dentro del paquete .di definiremos como inyectar la BD
 provideAgendaDatabase y el DAO provideContactoDao en nuestra aplicación.

Fíjate que la anotación @ApplicationContext inyecta el contexto de la aplicación. De esta manera
podrá crear el fichero de la BD en el sistema de ficheros accesible por el contexto de la misma.

@Module

@InstallIn(SingletonComponent::class)

class AppModule {

 @Provides

 @Singleton

 fun provideAgendaDatabase(

 @ApplicationContext context: Context

) : AgendaDb = AgendaDb.getDatabase(context)

 @Provides

 @Singleton

 fun provideContactoDao(

 db: AgendaDb

) : ContactoDao = db.contactoDao()

 // En el proveedor del repositorio sustituimos DaoMock por el Dao

 @Provides

 @Singleton

 fun provideContactoRepository(

 contactoDao: ContactoDao

) : ContactoRepository = ContactoRepository(contactoDao)

}

8

17

21

5/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 7: Añadir los conversores de ContactoEntity a Contacto
y viceversa
Necesitamos mapear las entidades de la BD a nuestro modelo y viceversa.
Lo normal es que sea inmediato pero no tiene que ser así. Por ejemplo, si te fijas las categorias
dentro de nuestro ContactoEntity es de tipo string por lo cual la forma de guardarlas será
seguramente el nombre de las mismas separador por comas "Amigos,Trabajo,Familia" , pero en
la clase Contacto de nuestro modelo era un array de tipo enumerado EnumSet<Categorias> .

Es por esto que en RepositoryConverters.kt dentro del paquete .data definiremos los métodos
que nos permitirán convertir de un tipo a otro como hicimos a al principio con las clases de Mock y
el modelo.

6/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

fun EnumSet<Contacto.Categorias>.toCategoriaEntity() =

 joinToString(separator = ",") { it.name }

fun Contacto.toContactoEntity() = ContactoEntity(

 id = id,

 nombre = nombre,

 apellidos = apellidos,

 foto = foto,

 email = correo,

 telefono = telefono,

 categorias = categorias.toCategoriaEntity()

)

fun String.toEnumSetCategorias(): EnumSet<Contacto.Categorias> {

 val categorias = EnumSet.noneOf(Contacto.Categorias::class.java)

 val textos = this.split(",")

 textos.forEach { categoria ->

 if (!categoria.isNullOrEmpty())

 categorias.add(Contacto.Categorias.valueOf(categoria))

 }

 return categorias

}

fun ContactoEntity.toContacto() = Contacto(

 id = id,

 nombre = nombre,

 apellidos = apellidos,

 foto = foto,

 correo = email,

 telefono = telefono,

 categorias = categorias.toEnumSetCategorias()

)

7/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 8: Generando el nuevo repositorio
Vamos a reescribir el código del repositorio ContactoRepository dentro del paquete .data . En el,
reescribiremos los métodos para usar ContactoDao.kt en lugar de ContactosMock.kt .

Básicamente la implementación será igual a la que teníamos con el DaoMock pero usando el Dao
de Room....

class ContactoRepository @Inject constructor(

 private val dao: ContactoDao

) {

 suspend fun get(): List<Contacto> = withContext(Dispatchers.IO) {

 dao.get().map { it.toContacto() }.toList()

 }

 suspend fun get(id: Int): Contacto = withContext(Dispatchers.IO) {

 val dato = dao.get(id)

 dato!!.toContacto()

 }

 suspend fun insert(contacto: Contacto) = withContext(Dispatchers.IO) {

 dao.insert(contacto.toContactoEntity())

 }

 suspend fun update(contacto: Contacto) = withContext(Dispatchers.IO) {

 dao.update(contacto.toContactoEntity())

 }

 suspend fun delete(id: Int) = withContext(Dispatchers.IO) {

 dao.delete(dao.get(id))

 }

}

Nota

En la gran mayoría de ejemplos de Internet este paso lo hacen combinando el Facade
Pattern con el Repository Pattern manteniendo así ambos repositorios (Repository en el
fondo es una concreción de Facade). Sin embargo, en nuestro ejemplo no lo vamos a hacer
así, ya que supondría un mayor nivel de complejidad en la inyección de dependencias,
teniendo que definir nuestras propias anotaciones para saber que concreción de la
abstracción del repositorio vamos a inyectar en el ViewModel.



8/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

https://refactoring.guru/es/design-patterns/facade
https://refactoring.guru/es/design-patterns/facade

Paso 10: Carga inicial de datos en la BD con los datos de
Mock
Vamos a cargar los datos de Mock en la BD. Para ello, en el fichero AgendaApplication.kt dentro
del paquete com.pmdm.agenda invalidaremos un método onCreate() del ciclo de vida de la
aplicación y que se ejecutará al iniciar la misma. En él, comprobaremos si la BD está vacía y en
caso afirmativo cargaremos los datos de Mock en la BD.

@HiltAndroidApp

class AgendaApplication : Application() {

 @Inject

 lateinit var daoMock: ContactoDaoMock

 @Inject

 lateinit var daoEntity: ContactoDao

 override fun onCreate() {

 super.onCreate()

 runBlocking {

 if (daoEntity.count() == 0)

 daoMock.get().forEach { daoEntity.insert(it.toContacto().toContactoEntity())

 }

 }

}

En la primera ejecución creará la BD si no existe y cargará todos los datos. Recuerda que la DB se
encuentra en la ruta de nuestro dispositivo /data/data/com.pmdm.agenda/databases y por tanto si
borramos su contenido o la vaciamos del todo se volverá a cargar.

9/9 PMDM 2º DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

