Usando room en la Agenda

Descargar estos apuntes

® Caso de Estudio

Vamos a partir de nuestra Agenda de Contactos con navegacion y vamos a anadir a afiadir como
fuente de datos una BD local de SQLite a la que accederemos usando el ORM room

proporcionado por Jetpack Compose.

6 Solucién

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solucion de este caso de estudio del siguiente enlace: propuesta de solucion

Paso 1: Anadir dependencias y paquetes

1. Para usar room en nuestra aplicacion debemos afadir dependencias que se describen en los

apuntes de room del modulo.
2. Crearemos el paquete .data.room dentro del cual definiremos las clases que nos permitiran

acceder a la BD.

1/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/ejercicios/B_5_1_Room/0_Agenda_room.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/assets/codigo/ejercicio5_1/ejercicio0/0_AgendaRoom_recurso.zip

Paso 2: Definir la entidad Contacto

Dentro del paquete .data.room definiremos la entidad cContacto que sera la clase que represente
sus datos en la BD.

@Entity(tableName = "contactos")
data class ContactoEntity(
@PrimaryKey(autoGenerate = true)
@ColumnInfo(name = "id")
val id: Int,
@ColumnInfo(name = "nombre")
val nombre: String,
@ColumnInfo(name = "apellidos")
val apellidos: String,
@ColumnInfo(name = "telefono")
val telefono: String,
@ColumnInfo(name = "email")
val email: String,
@ColumnInfo(name = "foto", typeAffinity = ColumnInfo.BLOB)
val foto: String?,
@ColumnInfo(name = "categorias")
val categorias: String

Paso 3: Definir conversores de tipos

Fijate en el codigo anterior que la imagen del contacto, la gradaremos en la BD como un tipo
BLOB que es un array de bytes. Sin embargo, en la entidad contactoEntity la imagen la tenemos
como un String que sera una cadena en base64 tal y como la usamos en nuestro modelo. Para
ello debemos definir un conversor de tipos que nos permita convertir de un tipo a otro. Es por eso
que crearemos la clase RoomConverters dentro del paquete .data.room .

class RoomConverters {
@TypeConverter
fun toBlob(value: ByteArray?): String? = Base64.encodeToString(value, Base64.DEFAULT)

@TypeConverter
fun fromBlob(value: String?): ByteArray? = Base64.decode(value, Base64.DEFAULT)

2/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 4: Definir nuestro DAO sobre la entidad Contacto

Vamos a definir el DAO sobre la entidad ContactoEntity . Para ello crearemos la interfaz
ContactobDao dentro del paquete .data.room . En el, definiremos los métodos que nos permitiran
realizar las operaciones CRUD sobre dicha entidad.

Fijate que todos los métodos son suspend. De esta manera estamos indicando que son métodos
que se ejecutaran en un hilo secundario (Dispatchers.I0)y que por tanto no bloquearan el hilo
principal.

@Dao
interface ContactoDao {
@Insert

suspend fun insert(contacto : ContactoEntity)

@Delete
suspend fun delete(contacto : ContactoEntity)

@Update(onConflict = OnConflictStrategy.ABORT)
suspend fun update(contacto : ContactoEntity)

@Query("SELECT COUNT(*) FROM contactos™")

suspend fun count(): Int

@Query("SELECT * FROM contactos")
suspend fun get(): List<ContactoEntity>

@Query("SELECT * FROM contactos WHERE id = :id")
suspend fun get(id: Int): ContactoEntity

3/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 5: Definicion de la BD

Definimos la clase abstracta Agendabb que extiende de RoomDatabase Yy que nos permitira acceder
a la BD. En ella definiremos:

1. La anotacion @patabase que nos permitira indicar el nombre de la BD, la version y las

entidades que contiene.
2. La anoacién @TypeConverters que nos permitira indicar los conversores de tipos que

usaremos.
3. El método de clase getbatabase() que nos devolvera una instancia de la BD.
4. El método contactobao() que nos devolvera el DAO sobre la entidad ContactoEntity .

@Database(
entities = [ContactoEntity::class],
exportSchema = false,
version = 1
)
@TypeConverters(RoomConverters::class)
abstract class AgendaDb : RoomDatabase() {

abstract fun contactoDao(): ContactoDao

companion object {

fun getDatabase(context: Context) = Room.databaseBuilder(
context,
AgendaDb: :class.java, "agenda"

)

.allowMainThreadQueries()

.fallbackToDestructiveMigration()

.build()

4/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 6: Preparar para inyectar con Hilt los médulos

En el fichero AppModule.kt dentro del paquete .di definiremos como inyectar la BD
provideAgendaDatabase Y €l DAO provideContactobao €n nuestra aplicacion.

Fijate que la anotaciéon @ApplicationContext inyecta el contexto de la aplicacion. De esta manera
podra crear el fichero de la BD en el sistema de ficheros accesible por el contexto de la misma.

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

@Provides

@Singleton

fun provideAgendaDatabase(
@ApplicationContext context: Context

) : AgendaDb = AgendaDb.getDatabase(context)

@Provides
@Singleton
fun provideContactoDao(
db: AgendaDb
) : ContactoDao = db.contactoDao()

// En el proveedor del repositorio sustituimos DaoMock por el Dao
@Provides
@Singleton
fun provideContactoRepository(
contactoDao: ContactoDao

) : ContactoRepository = ContactoRepository(contactoDao)

5/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 7: Ahadir los conversores de ContactoEntity a Contacto
y viceversa

Necesitamos mapear las entidades de la BD a nuestro modelo y viceversa.

Lo normal es que sea inmediato pero no tiene que ser asi. Por ejemplo, si te fijas las categorias
dentro de nuestro ContactoEntity es de tipo string por lo cual la forma de guardarlas sera
seguramente el nombre de las mismas separador por comas "Amigos, Trabajo,Familia” , pero en
la clase contacto de nuestro modelo era un array de tipo enumerado EnumSet<Categorias> .

Es por esto que en RepositoryConverters.kt dentro del paquete .data definiremos los métodos
que nos permitiran convertir de un tipo a otro como hicimos a al principio con las clases de Mock y

el modelo.

6/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

7/9

fun

fun

fun

fun

EnumSet<Contacto.Categorias>.toCategoriakntity() =
joinToString(separator = ",") { it.name }
Contacto.toContactoEntity() = ContactoEntity(

id = id,

nombre = nombre,
apellidos = apellidos,
foto = foto,

email = correo,
telefono = telefono,

categorias = categorias.toCategoriaEntity()

String.toEnumSetCategorias(): EnumSet<Contacto.Categorias> {
val categorias = EnumSet.noneOf(Contacto.Categorias::class.java)
val textos = this.split(",")
textos.forEach { categoria ->
if (!categoria.isNullOrEmpty())
categorias.add(Contacto.Categorias.valueOf(categoria))

}

return categorias

ContactoEntity.toContacto() = Contacto(
id = id,

nombre = nombre,

apellidos = apellidos,

foto = foto,

correo = email,

telefono = telefono,

categorias = categorias.toEnumSetCategorias()

PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

Paso 8: Generando el nuevo repositorio

Vamos a reescribir el cddigo del repositorio ContactoRepository dentro del paquete .data . En el,
reescribiremos los métodos para usar contactobao.kt €n lugar de cContactosMock.kt .

2" Nota

En la gran mayoria de ejemplos de Internet este paso lo hacen combinando el Facade
Pattern con el Repository Pattern manteniendo asi ambos repositorios (Repository en el
fondo es una concrecion de Facade). Sin embargo, en nuestro ejemplo no lo vamos a hacer
asi, ya que supondria un mayor nivel de complejidad en la inyeccion de dependencias,
teniendo que definir nuestras propias anotaciones para saber que concrecion de la
abstraccion del repositorio vamos a inyectar en el ViewModel.

Basicamente la implementacion sera igual a la que teniamos con el DaoMock pero usando el Dao
de Room....

class ContactoRepository @Inject constructor(
private val dao: ContactoDao
) {
suspend fun get(): List<Contacto> = withContext(Dispatchers.IO0) {
dao.get().map { it.toContacto() }.toList()
}
suspend fun get(id: Int): Contacto = withContext(Dispatchers.IO0) {
val dato = dao.get(id)
dato!!.toContacto()

}

suspend fun insert(contacto: Contacto) = withContext(Dispatchers.IO0) {
dao.insert(contacto.toContactoEntity())

}

suspend fun update(contacto: Contacto) = withContext(Dispatchers.I0) {
dao.update(contacto.toContactoEntity())

}

suspend fun delete(id: Int) = withContext(Dispatchers.IO) {
dao.delete(dao.get(id))

8/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

https://refactoring.guru/es/design-patterns/facade
https://refactoring.guru/es/design-patterns/facade

Paso 10: Carga inicial de datos en la BD con los datos de
Mock

Vamos a cargar los datos de Mock en la BD. Para ello, en el fichero AgendaApplication.kt dentro
del paquete com.pmdm.agenda invalidaremos un método oncCreate() del ciclo de vida de la
aplicacion y que se ejecutara al iniciar la misma. En él, comprobaremos si la BD esta vacia y en
caso afirmativo cargaremos los datos de Mock en la BD.

@HiltAndroidApp

class AgendaApplication : Application() {
@Inject
lateinit var daoMock: ContactoDaoMock
@Inject

lateinit var daoEntity: ContactoDao

override fun onCreate() {

super.onCreate()

runBlocking {
if (daoEntity.count() == 0)
daoMock.get().forEach { daoEntity.insert(it.toContacto().toContactoEntity())

En la primera ejecucion creara la BD si no existe y cargara todos los datos. Recuerda que la DB se
encuentra en la ruta de nuestro dispositivo /data/data/com.pmdm.agenda/databases Y por tanto si
borramos su contenido o la vaciamos del todo se volvera a cargar.

9/9 PMDM 2° DAM Tema 5 Rev. 09/01/2025 IES Doctor Balmis

