Tema 5.2 - Retrofit

Descargar estos apuntes pdf o html

indice

¥ Introduccion
¥ ;Qué es JSON?
= Tipos de datos en JSON
¥ Definicion de un Servidor Rest rapido para pruebas
= Creando la Base de Datos con phpMyAdmin
¥ Consumo de un Servicio Rest desde Android
= Configuracion del proyecto
¥ Crear los servicios con Retrofit
= Definiendo los tipos a serializar a JSON
= Definiendo las peticiones para consumo del 'endpoint'
= Preparando los objetos de Retrofit con Hilt
= Implementaciones de la gestién del 'consumo' de nuestro endpoint
¥ Usando nuestra implementacion del servicio en el patron Repository
= Acceder a la APl iniciando una sesién en el servidor

1/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_2_retrofit.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_2_retrofit.html

Introduccion

o Persistencia remota consumiendo un API Rest con Retrofit2
o Pagina oficial libreria: Retrofit
o Guia usuario: Gson

o

Video Tutorial (Castellano): Martin Kiperszmid

e}

Video Tutorial Interceptores (Castellano): Martin Kiperszmid

o

Video Tutorial (Castellano): DevExperto

[e}

Video Tutorial (Castellano): AristiDevs

En la gran mayoria de aplicaciones moviles, se necesita acceder a datos que no estan en el dispositivo, sino que estan en un
servidor remoto. Para ello se utilizan que permiten el acceso a los datos a través de internet. Estos servicios pueden ser APl Rest,
GraphQL, WebSockets, gRPC, etc. En este tema nos centraremos en los servicios AP| Rest, que son los mas utilizados.

Los Servicios web REST, utilizan el protocolo HTTP para intercambiar informacion entre el cliente y el servidor. Nosotros en el curso

vamos a utilizar una arquitectura similar a la siguiente:

I If you like PlantUML you may support us!

Of=i0)

hitp://plantuml.com/patreon

PlantUML 1.2025.4

This version of PlantUML is 212 days old, so you should
consider upgrading from https://plantuml.com/download

[From string (line 4)]

@startuml

linclude https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Container.puml
' convert it with additional command line argument -DRELATIVE_INCLUDE="relative/absolute" to use locally
lif %variable_exists("RELATIVE_INCLUDE")

linclude ./C4_Context.puml

... (skipping 13482 lines)

00008FFFFFD0000000000000000000000000000014000000
0000122F621000100000010011000001000010006C000000
0000000F40009FFC20ACFFC8FFA006FFF16FFF54FFF80000
0000000F4006E21BB0OAE22FC13F23F51302309C08C100000
0000000F400B9004F0AA00D700F47D0000168BE08C000000
0000000F400C8004F0A900D700F48C0000EC7AE08C000000
0000000F4009C008D0A900D700F45F1004F109E08C000000
0000000F4001EDBF50A900D700F40CEBE2FCCEE04FB60000
000000061000166200430052006100574026515004720000
00
00

}

ldefine DEV2_TOMCAT_LINE_WORDMARK(_alias) ENTITY(rectangle,black,tomcat_line_wordmark,_alias,DEV2 TOMCAT_LINE_WORDMARK)
ldefine DEV2_TOMCAT_LINE_WORDMARK(_alias, _label) ENTITY(rectangle,black,tomcat_line_wordmark,_label, _alias,DEV2 TOMCAT ...
!define DEV2_TOMCAT_LINE_WORDMARK(_alias, _label, _shape) ENTITY(_shape,black,tomcat_line_wordmark,_label, _alias,DEV2 T ...
ldefine DEV2_TOMCAT_LINE_WORDMARK(_alias, _label, _shape, _color) ENTITY(_shape,_color,tomcat_line_wordmark,_label, _ali ...
skinparam folderBackgroundColor<<DEV2 TOMCAT_LINE_WORDMARK>> White

linclude <tupadr3/devicons2/mysql>
i E]

Donde tenemos una aplicaciéon Android que se comunica con un servidor web que tiene un API Rest, que a su vez se comunica con

I If you like PlantUML you may support us!
hitp:// plantuml.com/patreon

OO0

una base de datos MySQL. En este tema nos centraremos en consumo de dicho API Rest desde la aplicacion Android utilizando una

2/28 PMDM 2° DAM Tema 5.2 - retrofit ~ Rev. 09/01/2025 IES Doctor Balmis

https://square.github.io/retrofit/
https://github.com/google/gson/blob/main/UserGuide.md
https://www.youtube.com/watch?v=MRzcCnkZQlA
https://www.youtube.com/watch?v=MQdhmAaVmeA
https://www.youtube.com/watch?v=2_DnhfQrwXQ
https://www.youtube.com/watch?v=L3pM5YuxYp4

libreria llamada Retrofit2.

0 Informacioén

Uno de los inconvenientes de Retrofit2 es que al funcionar sobre la libreria de Java OkHttp, no es compatible con la
programacion multiplataforma. Disponemos de una alternativa muy potente y extendida denominada Ktor Client que ademas
es una muy buena documentacién dispone de una monton de videos de la comunidad explicando su uso en Android.
Existen incluso librerias como Kotrfit que imitan el funcionamiento de Retrofit2 pero utilizando Ktor Client por debajo y asi

facilitar la migracion.

El formato de los datos que se intercambian entre el cliente y el servidor es muy importante. En este tema nos centraremos en el
formato JSON.

. Qué es JSON?

Aunque seguramente ya lo has visto en el médulo de Acceso a Datos. Vamos ha realizar un resumen rapido sobre dicho formato a

modo de recordatorio.

JSON (Javascript Object Notation) es un formato ligero de intercambio de datos entre clientes y servidores, basado en la sintaxis de
Javascript para representar estructuras en forma organizada. Es un formato en texto plano independiente de todo lenguaje de

programacion, es mas, soporta el intercambio de datos en gran variedad de lenguajes

Tipos de datos en JSON

Similar a la estructuracion de datos primitivos y complejos en los lenguajes de programacion, JSON establece varios tipos de datos:
cadenas , nuimeros , booleanos , arrays Yy objetos . El propdsito es crear objetos que contengan varios atributos compuestos como
pares clave valor. Donde la clave es un nombre que identifique el uso del valor que lo acomparia. Veamos un ejemplo:

{
"id": 101,
"nombre": "Carlos",
"estaActivo": true,
"notas": [2.3, 4.3, 5.0]
¥

La anterior estructura es un objeto JSON compuesto por los datos de un estudiante. Los objetos JSON contienen sus atributos entre
llaves {3}, al igual que un bloque de codigo en Javascript, donde cada atributo debe ir separado por coma , para diferenciar cada

par.

La sintaxis de los pares debe contener dos puntos : para dividir la clave del valor. El nombre del par debe tratarse como cadena y

afiadirle comillas dobles.
Si te fijas en nuestro ejemplo, este trae un ejemplo de cada tipo de dato:

e id es de tipo entero, ya que contiene un numero que representa el codigo del estudiante.
e nombre es un string. Usa comillas dobles para definirlas.
e estaActivo es un tipo booleano que representa si el estudiante se encuentra en la institucién educativa o no. Usa las palabras

reservadas true y false para declarar el valor.
e notas es un arreglo de nimeros reales. El conjunto de sus elementos debes incluirlos dentro de corchetes [] y separarlos por

coma.

La idea es crear un mecanismo que permita recibir la informacién que contiene la base de datos externa en formato JSON hacia la
aplicacion. Con ello se parseara cada elemento y sera interpretado en forma de objeto Kotlin para integrar correctamente el aspecto

en la interfaz de usuario.

3/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

https://square.github.io/okhttp/
https://ktor.io/docs/client-create-multiplatform-application.html
https://www.youtube.com/watch?v=n_NzI6vUR-k
https://foso.github.io/Ktorfit/

Para realizar este proceso podemos utilizar diferentes librerias para la serializacion y deserializacién de objetos JSON. En este tema
nos centraremos en la libreria de Google Gson, aunque Retrofit2 es agnostico a la forma de serializar y también nos permite utilizar
otras librerias como Jackson, Moshi, etc.

4/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Definicion de un Servidor Rest rapido para pruebas

@ Coadigo de los ejemplos

Si te surge alguna duda o tienes dificultades para completar este tema. Puedes descargar el proyecto con el cdédigo de mismo

del siguiente enlace: Proyecto ejemplos

Una forma rapida de definir una API Rest rapido para probar desde Android, es mediante la libreria de PHP proporcionada en el

modulo de Acceso a datos apiRest-PHP-Session.zip.

Por si no la has visto en el médulo de Acceso a Datos, vamos a realizar un resumen rapido sobre el uso

dicha libreria...
c: v
. , , 7 M[SERVIDORES]
Debes instalar un servidor web Apache con PHP y MySQL. En el médulo de Acceso a Datos se ha Lli[xampp]
utilizado xampp. En la carpeta xampp\htdocs , 0 en la carpeta publica de tu servidor web, debes fg;‘;‘;‘;ﬂda]
descomprimir el fichero apiRest-PHP-Session.zip y renombrar su contenido por ejemplo por la BD que ih{inC]
.ntaccess
quieras utilizar. Supongamos que queremos crear el servicio de AP| Rest para la Agenda que hemos ido apirest_variables.php
index.php

creando durante el curso. En este caso renombraremos la carpeta apiRest-PHP-Session por agenda como

se aprecia a la derecha agenda .

La configuracién de nuestro API consta de dos archivos:

1. .htaccess En este archivo se configuran las reglas de acceso, y solo deberemos modificar la linea RewriteBase para indicar la
ruta de acceso a la carpeta de nuestro API. En nuestro caso cambiaremosel valos de la cadena "/apirest-session/" por
"/agenda/" .

RewriteEngine On

RewriteBase "/apirest-session/"

RewriteEngine On
RewriteBase "/agenda/"

5/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/apiRest-PHP-Session_recurso.zip
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/0_AgendaRetrofit_recurso.zip

2. apirest_variables.php , en este archivo se definen los datos de conexion a la base de datos. se indican las tablas que tiene esta
y el nombre del identificador de cada una de ellas.

<?php

// CONFIGURACION BASE DE DATOS MYSQL

$servername = "127.0.0.1";
$username = "root";
$password = "";

// BASE DE DATOS
$dbname = "agenda";

// ACCESO USUARIOS (si estd vacio funciona sin usuarios)
$usuarios = array();

// $usuarios["juanjo"]="_IesBalmisl";

// $usuarios["xusa"]="_IesBalmis2";

// $usuarios["pepe"]="_IesBalmis3";
// TABLAS Y SU CLAVE

$tablas = array();
$tablas["contactos"]="id";

El resto de archivos del ApiREst no tendran que modificarse, ya que esta construida de forma genérica con las necesidades mas
comunes para estos casos.

6/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Creando la Base de Datos con phpMyAdmin

Para crear la base de datos con phpMyAdmin , deberemos crear una base de datos y para ello pudes bajarte el siguiente recurso en él
encontrara el archivo agenda_mysql_datos.sql que contiene el script de creacion de la base de datos, incluyendo las imagenes de

ejemplo en formato blob (base64).

G} localhost/|

M 7 Servidor- 127.0.01 » @ Base de datos: agenda » [Tabla: contactos

amlenEe [E Examinar | 34 Estructura [SQL | 4 Buscar ¥t Insertar | = Exportar [& Importar = Privilegios 4 Operaci

Reciente Favoritas
« Mostrando filas 0 - 5 (total de 6, La consulta tardé 0,0003 segundos.)

- e
[o Nueva SELECT * FROM ~contactos’
=H_1| agenda
{7 Nueva [Perfilando [Editar en linea] [Editar] [Explicar SQL] [Crear cédigo PHP] [Actualizar]
[+ contactos

[F] bdempresa [Mostrar todo | Numero de filas: | 25 Filtrar filas: | Buscar en esta tabla Ordenar segln la clave: | Ninguna ~
s
T_.__J information_schema

Opciones exira
+H 1 mysql
B3 o ach
| hag b = —— + id nombre apellidos telefono email foto
+- 4 phpmyadmin . . .))) .
| [0 7 Editar % Copiar @ Borrar 1 Xusa Garcia Benavente 654654654 xusa@iesdoctorbalmis.com IVBORwOKGgoAAAA
*Hal test - .

[0 47 Editar #& Copiar @ Borrar 2 Jose Balmaseda del Alamo 876876876 pepe@iesdoctorbalmis.com iVBORwOKGgoAAAA

[0 g7 Editar 3¢ Copiar @ Borrar 3 Juan José Guarinos Huesca 987987987 juanjo@iesdoctorbalmis.com IVBORwOKGgoAAAA

Para acceder a phpMyAdmin debes ir a la url http://localhost/phpmyadmin/ y ejercutar agenda_mysql_datos.sql en la pestafna SQL.
Tras hacerlo, te debe aparecer la base de datos agenda con la tabla contactos como se muestra en la imagen de ejemplo.

Puedes probar que el API esta funcionando correctamente, abriendo un navegador y accediendo a la url http://localhost/agenda/ .

Si todo ha ido bien, deberias ver una pagina como la siguiente:

7128 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/agenda_mysql_recurso.zip

8/28

API REST en PHP

ESPECIFICACION DE INTERFAZ

Tabla Clave Campos
nombre
apellidos
. telefono
contactos | 1d .
email
foto
categorias
Metodo Query String Descripcion
GET Muestra las especificaciones del APT Rest
GET
PUT d Muestra en formato HTML todos los datos implicados en la llamada al API
POST atos Rest incluidos los recibidos.
DELETE
GET 'tabla Muestra los datos de todos los registros de tabla
GET ‘tabla/count Muestra el nimero de registros de tabla
,) Muestra los datos del registro cuva clave de Ia tabla es igual a valor,
GET tabla/valor teniendo en cuenta el campo clave de las variables definidas
CET e e Muestn_i los datos de los registros de la tabla cuyo campe sea mayor o igual
que el valor
GET ftabla/campo/Thastr=valor !\-f[uestr‘:& los datos de los registros de la tabla cuyo campo sea mener o 1gual
que el valor
CET ‘tabla/campo/? Muestra los datos de los registros de la tabla cuyo campo sea mayor o igual
desde=valor]l &hasta=valor2 que el valorl v menor o 1zual que el valor2
Elimina el regiztro cuva clave de la tabla ez izual a valor, teniendo en cuenta
DELETE | /tabla/valor el campo clave de las variables definidas
PUT fablarval Actualiza el registro cuya clave de la tabla es igual a valor, teniendo en
avatar cuenta el campo clave de las variables definidas
POST ‘tabla Inserta en tabla un registro nuevo con los datos recibidos
PMDM 2° DAM Tema 5.2 - retrofit ~ Rev. 09/01/2025 IES Doctor Balmis

Consumo de un Servicio Rest desde Android

Como ya hemos comentado, existen diferentes librerias que nos permitirian consumir los servicios desde la App de Android, pero
dada su facilidad vamos a utilizar las librerias: Retrofit2 y Gson.

Retrofit |la utilizaremos para hacer peticiones http y procesar las respuestas del API Rest, mientras que con Gson transformaremos
los datos de JSON a los propios que utilice la aplicacion.

Configuracién del proyecto
Para poder utilizar Retrofit y Gson en nuestro proyecto, deberemos afiadir:

En el catalogo de versiones 1ib.versions.toml deberemos comprobar que hemos definido tener:

[versions]
retorfit = "2.11.0"
okhttp3 = "4.12.0"

[libraries]
com-squareup-retrofit2-converter-gson = {
group = "com.squareup.retrofit2", name = "converter-gson", version.ref = "retorfit"
}
com-squareup-retrofit2-retrofit = {
group = "com.squareup.retrofit2", name = "retrofit", version.ref = "retorfit"
}
com-squareup-okhttp3-okhttp-bom = {
group = "com.squareup.okhttp3", name = "okhttp-bom", version.ref = "okhttp3"
}
com-squareup-okhttp3-okhttp = {
group = "com.squareup.okhttp3", name = "okhttp"
}
com-squareup-okhttp3-logging-interceptor = {
group = "com.squareup.okhttp3", name = "logging-interceptor"

Acuérdate de escribir en una sola linea la definicion de las librerias.

En el fichero build.gradle.kts del modulo de la aplicacion:

dependencies {

implementation(libs.com.squareup.retrofit2.converter.gson)
implementation(libs.com.squareup.retrofit2.retrofit)
implementation(platform(libs.com.squareup.okhttp3.okhttp.bom))
implementation(libs.com.squareup.okhttp3.okhttp)

implementation(libs.com.squareup.okhttp3.logging.interceptor)

En el archivo AndroidManifest.xml deberemos afiadir el permiso de acceso a internet para que el servicio pueda acceder al API.

9/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

<manifest ...>

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
<application ...>
<!-- Permitir trafico http en lugar de https -->

android:usesCleartextTraffic="true"

</application>

</manifest>

10/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Crear los servicios con Retrofit

En la paquete data crearemos un nuevo paquete llamado data.services donde definiremos los API de cara uno de nuestro
‘endpoint'.

Definiendo los tipos a serializar a JSON

Para cada una de las clases que se van a transferir en las peticiones crearemos un fichero <Tipo>Api.kt .

1. Definiremos la clase contactoApi que sera la que se utilizara para transferir los datos de los contactos entre el servidor y la
aplicacion. Fijate que los atributos de la clase tienen que tener el mismo nombre que los campos que se devuelven en el JSON
del API Rest. Si quisiéramos cambiar el nombre de alguna propiedad, deberemos utilizar la anotacion @serializedName justo
antes de la propiedad para indicar el nombre que tiene en el JSON. Puedes obtener mas informacion sobre trasformaciones de
en la documentacion de la libreria.

// ContactoApi.kt
data class ContactoApi(
val id: Int,
@SerializedName(value = "nombre")
val nombre: String,
val apellidos: String,
val telefono: String,
val email: String,
val foto: String?,

val categorias: String

2. La libreria de PHP que estamos usando, en la peticiones de tipo POST, PUT y DELETE, nos devuelve una respuesta en JSON
con campos de informacion sobre la peticion, por tanto, deberemos definir un objetos para su deserializacion.

// RespuestaApi.kt

data class RespuestaApi (
val respuesta : Int,
val metodo: String? = null,
val tabla: String? = null,
val mensaje: String? = null,
val sqlQuery: String? = null,
val sqlError: String? = null

3. Por ultimo, las peticion http://localhost/agenda/contactos/count devuelve un nimero de contactos en un JSON especial, por lo
que deberemos definir un objeto para su deserializacion.
// TotalRegistrosApi.kt
data class TotalRegistrosApi(
@SerializedName("tabla")
val tabla: String,

@SerializedName("total_registros™)
val totalRegistros: Int

Definiendo las peticiones para consumo del 'endpoint'

Para cada una de las peticiones que se vayan a realizar al API Rest, crearemos una interfaz con el nombre de la clase del API, en
nuestro caso contactoApi Y le afadiremos el sufijo service . Pot tanto, vamos a definir un interface llamado contactoservice .

Definiremos pues la signatura de cada uno delos métodos que se van a utilizar para realizar las peticiones Para ello utilizaremos
diferentes anotaciones para indicar el tipo de peticion, la url del API Rest, el tipo de datos que se envia y el tipo de datos que se
recibe.

11/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

https://github.com/google/gson/blob/main/UserGuide.md
http://localhost/agenda/contactos/count

Por ejemplo, para la peticion http://localhost/agenda/contactos que devuelve un listado de contactos, deberemos afiadir...

interface ContactoService {
@GET("contactos")
@Headers("Accept: application/json", "Content-Type: application/json")

suspend fun contactos(): Response<List<ContactoApi>>

1. La anotacién @GET con la url contactos que completaria la URL base al definir el objeto de Retrofit que sera
http://localhost/agenda/ .

2. La anotacion @Headers que incluira en la cabecera de la peticion HTTP los valores Accept y Content-Type para indicar que se
envia y se espera recibir JSON en el body.

3. Por ultimo, definiremos la signatura del método que sera de suspension suspend Yy devolvera un objeto de tipo Response que
contendra una lista de objetos de tipo contactoApi ya deserializados si la respuesta es correcta.

En el caso de que la respuesta en el body no sea un objeto del tipo ContactoApi como el caso de la peticidn
http://localhost/agenda/contactos/count que devuelve un objeto del tipo TotalRegistrosApi , Response ira parametrizado con este

tipo para la correcta deserializacion.

interface ContactoService {
M coo

@GET("contactos/count™)
@Headers("Accept: application/json", "Content-Type: application/json")

suspend fun count(): Response<TotalRegistrosApi>

Podremos poner también el valor de un parametro en la URL con la anotacion @path , asi como serializar en el 'body' de la peticion
un objeto con @Body . Por ejemplo, para la peticion @put a nuestro Api con PHP tenemos que indicar el id del contacto a actualizar
http://localhost/agenda/contactos/1 y en el cuerpo de la peticion el objeto contactoApi con los datos a actualizar. Fijate ademas
que la respuesta que parametrizamos en el objeto Response es del tipo RespuestaApi que definimos anteriormente. Nuestro
prototipo de método update quedaria de la siguiente manera...

interface ContactoService {
1] coo
@PUT("contactos/{id}")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun update(@Path("id") id: Int, @Body ¢ : ContactoApi): Response<RespuestaApi>

También podemos establecer parametros en el QUERYSTRING de la URL con la anotacién @Query . Por ejemplo, para la peticion
http://localhost/agenda/contactos/id/?desde=3&hasta=5 que devuelve un listado de contactos con id entre 3 y 5. Nuestro
prototipo de método contactosDesdeHasta quedaria de la siguiente manera...

interface ContactoService {
L Soc
@GET("contactos/id/")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun contactosDesdeHasta(
@Query("desde") desde: Int,
@Query("hasta") hasta: Int
): Response<List<ContactoApi>>

Con lo visto ya podemos definir el resto de métodos HTTP que necesitemos para nuestro AP| Rest. En nuestro caso, nos quedan por
definir los siguientes los siguientes ...

12/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

interface ContactoService {
/] ...
@GET("contactos/{id}")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun contacto(@Path("id") id: Int): Response<ContactoApi>

@POST("contactos")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun insert(@Body c : ContactoApi): Response<RespuestaApi>

@DELETE("contactos/{id}")

@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun delete(@Path("id") id: Int): Response<RespuestaApi>

13/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Preparando los objetos de Retrofit con Hilt
En el fichero .di/AppModule.kt deberemos definir como crear los objetos a inyectar de Retrofit.

1. Primero definimos como crear el objeto okHttpclient , para ello usaremos okHttpClient.Builder() . En este caso le afiadiremos
un interceptor o (‘hook’) para poder depurar, a través de Logcat de Android Studio, el contenido de las peticiones y respuestas
HTTP que se realizan. Fijate que el nivel de log que le hemos indicado es HEADERS , esto es porque no queremos que se muestre
la cabecera sin el cuerpo de la peticion. Ademas, le hemos indicado un tiempo de espera ('TIMEOUT') de 10 segundos para las
peticiones después de los cuales se cancelara la peticidon y se producira una excepcion de tipo SocketTimeoutException .

@Provides

@Singleton

fun provideOkHttpClient() : OkHttpClient {
val loggingInterceptor = HttpLoggingInterceptor()
loggingInterceptor.level = HttplLoggingInterceptor.Level.HEADERS

val timeout = 10L

return OkHttpClient.Builder()
.addInterceptor(loggingInterceptor)
.connectTimeout(timeout, TimeUnit.SECONDS)
.readTimeout (timeout, TimeUnit.SECONDS)
.writeTimeout(timeout, TimeUnit.SECONDS)
.build()

14/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

2. Ahora definiremos el objeto Retrofit que es el que usaremos realmente para realizar las peticiones HTTP y procesar las
respuestas del APl Rest. Al mismo le pasaremos:

o El objeto okHttpClient que hemos creado anteriormente y que le llega a través de la inyeccion.

e La url base del API Rest, en nuestro caso http://10.0.2.2/agenda/ . Fijate que la direccion no es localhost O 127.0.0.1
ya que, cémo estamos accediendo desde el dispositivo emulador para él el 1localhost es el propio dispositivo Android
emulado y no el equipo donde esta el servidor web. AVD (Android Virtual Device) proporciona una direccion IP especial

10.0.2.2 que nos permite acceder al equipo donde esta el servidor web.
@Provides
@Singleton
fun provideRetrofit(
okHttpClient: OkHttpClient
) : Retrofit = Retrofit.Builder()
.client(okHttpClient)
.baseUrl("http://10.0.2.2/agenda/")

.addConverterFactory(GsonConverterFactory.create())
.build()

3. Por ultimo, indicaremos a Hilt como instanciar el o los objetos de <enpoint>Service que es el que realmente utilizaremos
para realizar las peticiones al APl Rest. Para ello le pasaremos el objeto Retrofit que hemos creado anteriormente y que le
llega a través de la inyeccion. En nuestro caso solo vamos a definir como instanciar un objeto que implemente la interfaz
ContactoService que utilizaremos para realizar las peticiones al API Rest de la Agenda que esl Unico 'endpoint' definido.

@Provides

@Singleton

fun provideContactoService(
retrofit: Retrofit

) : ContactoService = retrofit.create(ContactoService::class.java)

15/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Implementaciones de la gestion del '‘consumo’ de nuestro endpoint

Aunque este paso intermedio no es de todo necesario y no lo vamos a ver en muchos ejemplos de uso de Retrofit. Si que es
recomendable para gestionar correctamente los errores y los logs de depuracion que se puedan producir al consumir nuestro
API Rest y simplificar el codigo de uso de uso de Retrofit en nuestro patrén Repository.

Primero definiremos la clase ApiServicesException que sera la que utilizaremos para lanzar las excepciones que se produzcan al
consumir el APl Rest.

class ApiServicesException(mensaje: String) : Exception(mensaje)

Posteriormente, definiremos para ello una clase denominada ContactoServiceImplementation a la que le inyectaremos una instancia
de contactoService que es la que realmente utilizaremos para realizar las peticiones al AP| Rest.

Veamos la anatomia de uso de Retrofit para obtener la lista de contactos del API Rest en esta clase comentado paso por paso...

@Singleton
class ContactoServiceImplementation @Inject constructor(
private val contactoService: ContactoService
) {
// Propiedad privada cte. donde definimos el tag para los logs
// de depuracién de las peticiones.
private val logTag: String = "OkHttp"
suspend fun get(): List<ContactoApi> {
val mensajeError = "No se han podido obtener los contactos"
try {
// Obtenemos la respuesta HTTP Response<List<ContactoApi>>
val response = contactoService.contactos()
if (response.isSuccessful) {
Log.d(logTag, response.toString())
// Si la respuesta tiene un estatus 2xx (200, 201, 202, etc.)
// Obtenemos con response.body los datos List<ContactoApi>
// ya deserializados de JSON contenidos en el cuerpo de la misma.
// Si no hay datos porque el resultado de la serializacidn
// es null o el cuerpo estaba vacio. Entonces, lanzamos un
// error indicando que no hay datos.
val dato = response.body()
return dato ?: throw ApiServicesException("No hay datos")
} else {
// sino entonces la respuesta HTTP tiene un estatus de error y por
// tanto obtendré el mensaje de error del body de la respuesta
// y lanzaremos un error genérico, enviando al al mismo tiempo el
// mensaje generado al Log.
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cdédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
¥
} catch (e: Exception) {
// Si ha habido algun error al deserializar el JSON
// o también si ha habido algln error al realizar la peticién por
// ejemplo por falta de conexidn a internet, o se ha
// producido un TIMEOUT, etc.
Log.e(logTag, "Error: ${e.localizedMessage}")
throw ApiServicesException(mensajeError)

// ... resto de la implementacidén de las llamadas al Servicio Rest

Siguiendo el esquema anterior, obtener un contacto por ID quedaria...

16/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

suspend fun get(id: Int): ContactoApi {
val mensajeError = "No se han podido obtener el contacto con id = $id"
try {
val response = contactoService.contacto(id)
if (response.isSuccessful) {
Log.d(logTag, response.toString())
val dato = response.body()
return dato ?: throw ApiServicesException("No hay datos")
} else {
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cdédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
}
} catch (e: Exception) {
Log.e(logTag, "Error: ${e.localizedMessage}")

throw ApiServicesException(mensajeError)

Para insertar un contacto en el API Rest tendremos ...

suspend fun insert(contacto: ContactoApi) {
val mensajeError ="No se ha podido ahadir el contacto"
try {
val response = contactoService.insert(contacto)
if (response.isSuccessful) {
Log.d(logTag, response.toString())
// Aqui response.body() es un objeto de tipo RespuestaApi
// que simplemente logeamos si no es null.
Log.d(logTag, response.body()?.toString() ?: "No hay respuesta")
} else {
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
}
} catch (e: Exception) {
Log.e(logTag, "Error: ${e.localizedMessage}")

throw ApiServicesException(mensajeError)

Para actualizar un contacto en el API Rest tendremos ...

suspend fun update(contacto: ContactoApi) {
val mensajeError = "No se ha podido actualizar el contacto"
try {
// En este método el API de PHP espera recibir el id del contacto
// que también lo podemos obtener del objeto contacto que le pasamos
val response = contactoService.update(contacto.id, contacto)
if (response.isSuccessful) {
Log.d(logTag, response.toString())
Log.d(logTag, response.body()?.toString() ?: "No hay respuesta")
} else {
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
}
} catch (e: Exception) {
Log.e(logTag, "Error: ${e.localizedMessage}")

throw ApiServicesException(mensajeError)

17/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Para borrar un contacto en el API Rest tendremos ...

suspend fun delete(id: Int) {
val mensajeError = "No se ha podido borrar el contacto"
try {
val response = contactoService.delete(id)
if (response.isSuccessful) {
Log.d(logTag, response.toString())
Log.d(logTag, response.body()?.toString() ?: "No hay respuesta")
} else {
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
}
} catch (e: Exception) {
Log.e(logTag, "Error: ${e.localizedMessage}")
throw ApiServicesException(mensajeError)

18/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Usando nuestra implementacién del servicio en el patréon Repository

Al igual que sucedia con las anteriores fuentes como los objetos Mock de prueba o las entidades de room. Deberemos definir en
RepositoryConverters.kt las funciones de extension para convertir los objetos de tipo contactoApi en objetos de tipo contacto Y

viceversa.

fun Contacto.toContactoApi() = ContactoApi(...)
fun ContactoApi.toContacto() = Contacto(...)

Por ultimo, en el fichero contactoRepository.kt deberemos inyectar la implementacion de nuestro servicio

ContactoServiceImplementation y utilizarlo en las funciones de nuestro patron Repository.

¢) Impoatante

Cualquier error que se produzca ya lo resolveremos en el ViewModel como sucedia con room.

class ContactoRepository @Inject constructor(
private val contactoService: ContactoServiceImplementation
) A
suspend fun get(): List<Contacto> = withContext(Dispatchers.I0) {
contactoService.get().map { it.toContacto() }
}
suspend fun get(id: Int): Contacto = withContext(Dispatchers.IO) {

contactoService.get(id).toContacto()

}

suspend fun insert(contacto: Contacto) = withContext(Dispatchers.IO) {
contactoService.insert(contacto.toContactoApi())

}

suspend fun update(contacto: Contacto) = withContext(Dispatchers.IO) {
contactoService.update(contacto.toContactoApi())

}
suspend fun delete(id: Int) = withContext(Dispatchers.IO) {

contactoService.delete(id)

19/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Acceder a la API iniciando una sesion en el servidor

Si queremos incrementar la seguridad del acceso a nuestra APIRest, podemos iniciar una sesion en el servidor con determinadas
credenciales. Tran enviar la peticion de 'login', capturaremos la 'cookie' que nos devuelve con el id de la sesion y usaremos esta
misma cookie para poder acceder al resto de funcionalidades del APIRest. Para habilitar la autenticacion a traves del uso de
sesiones en nuestro APIRest con PHP, volveremos a editar el archivo apirest_variables.php y descomentaremos las siguientes
lineas donde definimos los usuarios y sus contrasefas.

<?php

$usuarios = array();

$usuarios["juanjo"]="_IesBalmisl";
$usuarios["xusa"]="_IesBalmis2";
$usuarios["pepe"]="_IesBalmis3";

Tras ello, entremos donde entremos a nuestro APl en http://localhost/agenda/ nos pedira que iniciemos sesién con un usuario y
contrasefa indicandonos como debemos hacerlo con la siguiente pantalla...

API REST en PHP

ESPECIFICACION DE INTERFAZ

Usuarios | Password
juanjo _TesBalmis1
xusa _TesBalmis2
pepe _TesBalmis3
Método | Query String Descripcion
GET /Tusu={usuario}&pass={contrasefia} | Login
GET ?Nogout Logout
GET [Tuser Datos del usurio conectado
GET /datos Datos de la SESION almacenados en el servidor

20/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Si nos fijamos en la ayuda para autenticarnos necesitamos enviar una peticion GeT a la url
http://localhost/agenda/?usu=<usuario>&pass=<password> . Por tanto, deberemos definir un nuevo servicio en nuestro APIRest
llamado AutenticacionService en el paquete .data.services.autenticacion que nos permita realizar esta peticion y la de cerrar la

sesidon como minimo.

interface AutenticacionService {
@GET(".")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun login(
@Query("usu") usuario : String,

@Query("pass") password : String): Response<RespuestaAutenticacionApi>

@GET(".")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun logout(

@Query("logout") usuario : String = ""): Response<RespuestaAutenticacionApi>

En ambos casos la respuesta del APIRest sera un objeto del tipo RespuestaAutenticacionApi que definiremos como...

data class RespuestaAutenticacionApi(
val mensaje : String,

val usuario : String

y que nos devolvera un mensaje de error o de éxito y el usuario que ha iniciado la sesion o null si no se ha podido iniciar la sesion.

A la hora de realizar la implementacién de este servicio de login...

--> GET http://10.0.2.2/agenda/?usu=juanjo&pass=_IesBalmisl
Accept: application/json

Content-Type: application/json

--> END GET

deberemos tener en cuenta que en la cabecera de la respuesta del APIRest se nos devuelve una cookie con el id de la sesién
que deberemos almacenar del alguin modo para poder acceder al resto de funcionalidades del APIRest. En nuestro caso el valor de
esa cookie se encuentra en la cabecera Set-Cookie Yy es PHPSESSID=obqu9co5rghgdocspngs4nlv5o . Sin tener en cuenta que podrian

llegar otras cookies en en esta misma cabecera.

<-- 200 OK http://10.0.2.2/agenda/?usu=juanjo&pass=_IesBalmisl (18ms)
Date:

Server: Apache/2.4.56 (Win64) OpenSSL/1.1.1t PHP/8.2.4
X-Powered-By: PHP/8.2.4

Set-Cookie: PHPSESSID=obqu9co5rghgdocspnqgs4nlv5o; path=/
Expires: Fecha de expiracién de la Cookie

Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache

Content-Length: 59

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: application/json; charset=utf-8

<-- END HTTP

Para ello, podemos definir una propiedad estatica publica en |a clase AutenticacionServiceImplementation que almacenara la
cookie de la sesion.

21/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class AutenticacionServiceImplementation @Inject constructor(
private val autenticacionService: AutenticacionService

) A
private val logTag: String = "OkHttp"

companion object {

var cookie: String? = null

suspend fun login(
userName : String,
password : String
): RespuestaAutenticacionApi {
val mensajeError = "Error al loguear a $userName"
try {
val response = autenticacionService.login(
usuario = userName,
password = password
)
if (response.isSuccessful) {
Log.d(logTag, response.toString())
val dato = response.body()
cookie = response.headers().get("Set-Cookie™)
return dato ?: throw ApiServicesException("No hay datos")
} else {

}
} catch (e: Exception) {...}

22/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Esta cookie la utilizaremos en el resto de peticiones que realicemos al APIRest. Para ello, deberemos afiadir la cabecera Cookie en
las peticiones que realicemos al APIRest. Por ejemplo, para la peticion http://localhost/agenda/contactos que devuelve un listado

de contactos la peticion HTTP deberia ser...

--> GET http://10.0.2.2/agenda/contactos

Accept: application/json

Content-Type: application/json

Cookie: PHPSESSID=obqu9co5rghgdocspngs4nlv5o; path=/
--> END GET

Para ello, deberiamos modificar la interfaz contactoService y afadir la cabecera Cookie en las peticiones que realicemos al

APIRest. Por ejemplo, para la peticion GET a esa ruta sera ...

@GET("contactos")
@Headers("Accept: application/json", "Content-Type: application/json")
suspend fun contactos(@Header("Cookie") cookie : String): Response<List<ContactoApi>>

Fijate que hemos afiadido la anotacion @Header para indicar que el valor de la cabecera Cookie se obtendra del parametro cookie
que le pasamos al método y por tanto deberemos afiadirlo en la llamada al método que haciamos desde el

ContactoServiceImplementation .

El problema de esto es que, como hemos mencionado, deberemos hacer lo mismo en todas las peticiones de todos servicios a
‘endpoints' que hayamos definido y pasarlo en todas las llamadas a los métodos de los servicios en las implementaciones de los

mismos.

Para evitar hacer esto, podemos definir un interceptor o (‘hook’) que se ejecutara antes de realizar la peticion y que afadira la

cabecera cookie a la peticiéon. Para ello, podemos seguir los siguientes pasos:

1. En el paquete services vamos a crear un nuevo paquete llamado services.interceptors donde definiremos el interceptor que
se encargara de guardar la cookie de la sesion y el de afiadirla a las peticiones que se realicen al APIRest.

2. En el paquete services.interceptors definiremos una clase llamada AlmacenDeCookies guardara en un Hashset las cookies
que se vayan recibiendo en las respuestas del APIRest. Hilts nos permitira inyectar un objeto unico esta clase en los

interceptores que definamos.

@Singleton

class AlmacenDeCookies @Inject constructor() {
private var cookies: HashSet<String>? = null
fun getCookies(): HashSet<String>? = cookies
fun setCookies(cookies: HashSet<String>) {

this.cookies = cookies

3. En el paquete services.interceptors definiremos una clase llamada ReciveCookiesInterceptor que implementara el interfaz
Interceptor y se encargara de preprocesar cualquier respuesta del servidor y guardar las cookies recibidas en la
cabecera Set-Cookie , incluida la de la sesion, en el objeto AlmacenDeCookies invalidando el método intercept .

23/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class ReciveCookiesInterceptor(
// Inyectamos el objeto AlmacenDeCookies
private val almacenDeCookies: AlmacenDeCookies

) : Interceptor {

override fun intercept(chain: Interceptor.Chain): Response {
// Procesamos la respuesta actual

val originalResponse = chain.proceed(chain.request())

// Extraemos de ella las cookies de la cabecera Set-Cookie
if (originalResponse.headers("Set-Cookie").isNotEmpty()) {
val cookies = HashSet<String>()
for (header in originalResponse.headers("Set-Cookie™")) {
cookies.add(header)
}
almacenDeCookies.setCookies(cookies)
}
// Devolvemos la respuesta original

return originalResponse

24/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

4. En el paquete services.interceptors definiremos una clase llamada EnviaCookiesInterceptor que implementara el interfaz
Interceptor Yy se encargara de preprocesar cualquier peticion al servidor y anaidir las cookies guardadas en el objeto
AlmacenDeCookies a la cabecera cookie de la peticion, incluida la de la sesion.

class EnviaCookiesInterceptor(
// Inyectamos el objeto AlmacenDeCookies
private val almacenDeCookies: AlmacenDeCookies
) : Interceptor {

override fun intercept(chain: Interceptor.Chain): Response {

// Builder con el contenido de la peticion original

val builder = chain.request().newBuilder()

val cookies = almacenDeCookies.getCookies()

if (cookies != null) {

for (cookie in cookies) {

// Anadimos las cookies a la cabecera Cookie de 1la
// peticion en el builder

builder.addHeader("Cookie", cookie)

¥

// Procesamos la peticion con las cookies anadidas

return chain.proceed(builder.build())

25/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

5. Redefinimos provideokHttpClient inyectando el objeto AlmacenDeCookies Yy afiadiendo los interceptores que hemos definido en
el builder de nuestro cliente.

@Provides

@Singleton

fun provideOkHttpClient(
almacenDeCookies: AlmacenDeCookies

) : OkHttpClient {
val loggingInterceptor = HttplLoggingInterceptor()
loggingInterceptor.level = HttplLoggingInterceptor.Level.HEADERS

val timeout = 10L

return OkHttpClient.Builder()
.addInterceptor(EnviaCookiesInterceptor(almacenDeCookies))
.addInterceptor(ReciveCookiesInterceptor(almacenDeCookies))
// El orden de los interceptores es importante si
// quiero ver la informacidén de las cookies en el log.
.addInterceptor(loggingInterceptor)
.connectTimeout(timeout, TimeUnit.SECONDS)
.readTimeout(timeout, TimeUnit.SECONDS)
.writeTimeout(timeout, TimeUnit.SECONDS)
.build()

Tras esto .data/services/autenticacion/AutenticacionService.kt quedard igual que antes, pero su implementacion en

.data/services/autenticacion/AutenticacionServiceImplementation.kt ya no necesitara quedarse con la cookie de la sesion...

26/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class AutenticacionServiceImplementation @Inject constructor(
private val autenticacionService: AutenticacionService

) {
private val logTag: String = "OkHttp"

suspend fun login(
userName : String,
password : String
): RespuestaAutenticacionApi {
val mensajeError = "Error al loguear a $userName"
try {
val response = autenticacionService.login(
usuario = userName,
password = password
)
if (response.isSuccessful) {
Log.d(logTag, response.toString())
val dato = response.body()
return dato ?: throw ApiServicesException("No hay datos")
} else {
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
}
} catch (e: Exception) {
Log.e(logTag, "Error: ${e.localizedMessage}")
throw ApiServicesException(mensajeError)

suspend fun logout(): RespuestaAutenticacionApi {
val mensajeError = "Error al cerrar sesion"
try {
val response = autenticacionService.logout()
if (response.isSuccessful) {
Log.d(logTag, response.toString())
val dato = response.body()
return dato ?: throw ApiServicesException("No hay datos")
} else {
val body = response.errorBody()?.string()
Log.e(logTag, "$mensajeError (cdédigo ${response.code()}): $this\n${body}")
throw ApiServicesException(mensajeError)
}
} catch (e: Exception) {
Log.e(logTag, "Error: ${e.localizedMessage}")

throw ApiServicesException(mensajeError)

Ademas, tras hacer login, ya podremos seguir usando nuestro APIRest como lo haciamos anteriormente pero sin tener que afadir la
cabecera cookie en las peticiones que realicemos al APIRest.

Una posible implementacion de ./data/AutenticacionRepository.kt que use la implementacion de nuestro servicio podria ser...

27/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class AutenticacionRepository @Inject constructor(

private val autenticacionService: AutenticacionServiceImplementation

) o
suspend fun login(
userName: String,
password: String
): Boolean = withContext(Dispatchers.I0) {
autenticacionService.login(
userName = userName,
password = password
).usuario.isNotEmpty()
¥
suspend fun logout(): Unit = withContext(Dispatchers.IO) {
autenticacionService.logout()
}
}

@ Codigo de los ejemplos

En el siguiente enlace puedes deacargar un proyecto ejemplo con la implementacion que acabamos de describir del uso de
APIRest en PHP para autenticarnos con la agenda. Para ello, le hemos afiadido una pantalla mas donde realizar dicha

autenticacion: Proyecto ejemplo

28/28 PMDM 2° DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/0_AgendaRetrofit_son_sesiones_recurso.zip

