
Tema 5.2 - Retrofit
Descargar estos apuntes pdf o html

Índice
Introducción

¿Qué es JSON?
Tipos de datos en JSON

Definición de un Servidor Rest rápido para pruebas
Creando la Base de Datos con phpMyAdmin

Consumo de un Servicio Rest desde Android
Configuración del proyecto
Crear los servicios con Retrofit

Definiendo los tipos a serializar a JSON
Definiendo las peticiones para consumo del 'endpoint'

Preparando los objetos de Retrofit con Hilt
Implementaciones de la gestión del 'consumo' de nuestro endpoint
Usando nuestra implementación del servicio en el patrón Repository

Acceder a la API iniciando una sesión en el servidor

1/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_2_retrofit.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_2_retrofit.html

Introducción
Persistencia remota consumiendo un API Rest con Retrofit2

Página oficial librería: Retrofit
Guía usuario: Gson
Video Tutorial (Castellano): Martin Kiperszmid
Video Tutorial Interceptores (Castellano): Martin Kiperszmid
Video Tutorial (Castellano): DevExperto
Video Tutorial (Castellano): AristiDevs

En la gran mayoría de aplicaciones móviles, se necesita acceder a datos que no están en el dispositivo, sino que están en un
servidor remoto. Para ello se utilizan que permiten el acceso a los datos a través de internet. Estos servicios pueden ser API Rest,
GraphQL, WebSockets, gRPC, etc. En este tema nos centraremos en los servicios API Rest, que son los más utilizados.

Los Servicios web REST, utilizan el protocolo HTTP para intercambiar información entre el cliente y el servidor. Nosotros en el curso
vamos a utilizar una arquitectura similar a la siguiente:

PlantUML 1.2025.4

This version of PlantUML is 212 days old, so you should
consider upgrading from https://plantuml.com/download

[From string (line 4)]

@startuml

!include https://raw.githubusercontent.com/plantuml-stdlib/C4-PlantUML/master/C4_Container.puml
' convert it with additional command line argument -DRELATIVE_INCLUDE="relative/absolute" to use locally
!if %variable_exists("RELATIVE_INCLUDE")
!include ./C4_Context.puml

...

... (skipping 13482 lines)

...
00008FFFFFD0000000000000000000000000000014000000
0000122F621000100000010011000001000010006C000000
0000000F40009FFC20ACFFC8FFA006FFF16FFF54FFF80000
0000000F4006E21BB0AE22FC13F23F51302309C08C100000
0000000F400B9004F0AA00D700F47D0000168BE08C000000
0000000F400C8004F0A900D700F48C0000EC7AE08C000000
0000000F4009C008D0A900D700F45F1004F109E08C000000
0000000F4001EDBF50A900D700F40CEBE2FCCEE04FB60000
000000061000166200430052006100574026515004720000
00
00
}

!define DEV2_TOMCAT_LINE_WORDMARK(_alias) ENTITY(rectangle,black,tomcat_line_wordmark,_alias,DEV2 TOMCAT_LINE_WORDMARK)
!define DEV2_TOMCAT_LINE_WORDMARK(_alias, _label) ENTITY(rectangle,black,tomcat_line_wordmark,_label, _alias,DEV2 TOMCAT ...
!define DEV2_TOMCAT_LINE_WORDMARK(_alias, _label, _shape) ENTITY(_shape,black,tomcat_line_wordmark,_label, _alias,DEV2 T ...
!define DEV2_TOMCAT_LINE_WORDMARK(_alias, _label, _shape, _color) ENTITY(_shape,_color,tomcat_line_wordmark,_label, _ali ...
skinparam folderBackgroundColor<<DEV2 TOMCAT_LINE_WORDMARK>> White

!include <tupadr3/devicons2/mysql>
cannot include java.io.IOException: Stream closed

Donde tenemos una aplicación Android que se comunica con un servidor web que tiene un API Rest, que a su vez se comunica con
una base de datos MySQL. En este tema nos centraremos en consumo de dicho API Rest desde la aplicación Android utilizando una

2/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

https://square.github.io/retrofit/
https://github.com/google/gson/blob/main/UserGuide.md
https://www.youtube.com/watch?v=MRzcCnkZQlA
https://www.youtube.com/watch?v=MQdhmAaVmeA
https://www.youtube.com/watch?v=2_DnhfQrwXQ
https://www.youtube.com/watch?v=L3pM5YuxYp4

librería llamada Retrofit2.

El formato de los datos que se intercambian entre el cliente y el servidor es muy importante. En este tema nos centraremos en el
formato JSON.

¿Qué es JSON?
Aunque seguramente ya lo has visto en el módulo de Acceso a Datos. Vamos ha realizar un resumen rápido sobre dicho formato a
modo de recordatorio.

JSON (Javascript Object Notation) es un formato ligero de intercambio de datos entre clientes y servidores, basado en la sintaxis de
Javascript para representar estructuras en forma organizada. Es un formato en texto plano independiente de todo lenguaje de
programación, es más, soporta el intercambio de datos en gran variedad de lenguajes

Tipos de datos en JSON

Similar a la estructuración de datos primitivos y complejos en los lenguajes de programación, JSON establece varios tipos de datos:
 cadenas , números , booleanos , arrays y objetos . El propósito es crear objetos que contengan varios atributos compuestos como
pares clave valor. Donde la clave es un nombre que identifique el uso del valor que lo acompaña. Veamos un ejemplo:

{

 "id": 101,

 "nombre": "Carlos",

 "estaActivo": true,

 "notas": [2.3, 4.3, 5.0]

}

La anterior estructura es un objeto JSON compuesto por los datos de un estudiante. Los objetos JSON contienen sus atributos entre
llaves {} , al igual que un bloque de código en Javascript, donde cada atributo debe ir separado por coma , para diferenciar cada
par.

La sintaxis de los pares debe contener dos puntos : para dividir la clave del valor. El nombre del par debe tratarse como cadena y
añadirle comillas dobles.

Si te fijas en nuestro ejemplo, este trae un ejemplo de cada tipo de dato:

 id es de tipo entero, ya que contiene un número que representa el código del estudiante.
 nombre es un string. Usa comillas dobles para definirlas.
 estaActivo es un tipo booleano que representa si el estudiante se encuentra en la institución educativa o no. Usa las palabras
reservadas true y false para declarar el valor.
 notas es un arreglo de números reales. El conjunto de sus elementos debes incluirlos dentro de corchetes [] y separarlos por
coma.

La idea es crear un mecanismo que permita recibir la información que contiene la base de datos externa en formato JSON hacia la
aplicación. Con ello se parseará cada elemento y será interpretado en forma de objeto Kotlin para integrar correctamente el aspecto
en la interfaz de usuario.

Información

Uno de los inconvenientes de Retrofit2 es que al funcionar sobre la librería de Java OkHttp, no es compatible con la
programación multiplataforma. Disponemos de una alternativa muy potente y extendida denominada Ktor Client que además
es una muy buena documentación dispone de una montón de vídeos de la comunidad explicando su uso en Android.
Existen incluso librerías como Kotrfit que imitan el funcionamiento de Retrofit2 pero utilizando Ktor Client por debajo y así
facilitar la migración.



3/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

https://square.github.io/okhttp/
https://ktor.io/docs/client-create-multiplatform-application.html
https://www.youtube.com/watch?v=n_NzI6vUR-k
https://foso.github.io/Ktorfit/

Para realizar este proceso podemos utilizar diferentes librerías para la serialización y deserialización de objetos JSON. En este tema
nos centraremos en la librería de Google Gson, aunque Retrofit2 es agnóstico a la forma de serializar y también nos permite utilizar
otras librerías como Jackson, Moshi, etc.

4/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Definición de un Servidor Rest rápido para pruebas

Una forma rápida de definir una API Rest rápido para probar desde Android, es mediante la librería de PHP proporcionada en el
módulo de Acceso a datos apiRest-PHP-Session.zip.

Por si no la has visto en el módulo de Acceso a Datos, vamos a realizar un resumen rápido sobre el uso
dicha librería...

Debes instalar un servidor web Apache con PHP y MySQL. En el módulo de Acceso a Datos se ha
utilizado xampp. En la carpeta xampp\htdocs , o en la carpeta pública de tu servidor web, debes
descomprimir el fichero apiRest-PHP-Session.zip y renombrar su contenido por ejemplo por la BD que
quieras utilizar. Supongamos que queremos crear el servicio de API Rest para la Agenda que hemos ido
creando durante el curso. En este caso renombraremos la carpeta apiRest-PHP-Session por agenda como
se aprecia a la derecha agenda .

C:
[SERVIDORES]

[xampp]
[htdocs]
[agenda]

[inc]
.htaccess
apirest_variables.php
index.php

La configuración de nuestro API consta de dos archivos:

1. .htaccess En este archivo se configuran las reglas de acceso, y solo deberemos modificar la línea RewriteBase para indicar la
ruta de acceso a la carpeta de nuestro API. En nuestro caso cambiaremosel valos de la cadena "/apirest-session/" por
 "/agenda/" .

Código de los ejemplos

Si te surge alguna duda o tienes dificultades para completar este tema. Puedes descargar el proyecto con el código de mismo
del siguiente enlace: Proyecto ejemplos



RewriteEngine On

RewriteBase "/apirest-session/"

...

RewriteEngine On

RewriteBase "/agenda/"

...

2

6

5/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/apiRest-PHP-Session_recurso.zip
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/0_AgendaRetrofit_recurso.zip

2. apirest_variables.php , en este archivo se definen los datos de conexión a la base de datos. se indican las tablas que tiene esta
y el nombre del identificador de cada una de ellas.

<?php

 // CONFIGURACIÓN BASE DE DATOS MYSQL

 $servername = "127.0.0.1";

 $username = "root";

 $password = "";

 // BASE DE DATOS

 $dbname = "agenda";

 // ACCESO USUARIOS (si está vacío funciona sin usuarios)

 $usuarios = array();

 // $usuarios["juanjo"]="_IesBalmis1";

 // $usuarios["xusa"]="_IesBalmis2";

 // $usuarios["pepe"]="_IesBalmis3";

 // TABLAS Y SU CLAVE

 $tablas = array();

 $tablas["contactos"]="id";

El resto de archivos del ApiREst no tendrán que modificarse, ya que está construida de forma genérica con las necesidades más
comunes para estos casos.

6/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Creando la Base de Datos con phpMyAdmin
Para crear la base de datos con phpMyAdmin , deberemos crear una base de datos y para ello pudes bajarte el siguiente recurso en él
encontrará el archivo agenda_mysql_datos.sql que contiene el script de creación de la base de datos, incluyendo las imágenes de
ejemplo en formato blob (base64).

Para acceder a phpMyAdmin debes ir a la url http://localhost/phpmyadmin/ y ejercutar agenda_mysql_datos.sql en la pestaña SQL.
Tras hacerlo, te debe aparecer la base de datos agenda con la tabla contactos como se muestra en la imagen de ejemplo.

Puedes probar que el API está funcionando correctamente, abriendo un navegador y accediendo a la url http://localhost/agenda/ .
Si todo ha ido bien, deberías ver una página como la siguiente:

7/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/agenda_mysql_recurso.zip

8/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Consumo de un Servicio Rest desde Android
Como ya hemos comentado, existen diferentes librerías que nos permitirían consumir los servicios desde la App de Android, pero
dada su facilidad vamos a utilizar las librerías: Retrofit2 y Gson.

Retrofit la utilizaremos para hacer peticiones http y procesar las respuestas del API Rest, mientras que con Gson transformaremos
los datos de JSON a los propios que utilice la aplicación.

Configuración del proyecto
Para poder utilizar Retrofit y Gson en nuestro proyecto, deberemos añadir:

En el catálogo de versiones lib.versions.toml deberemos comprobar que hemos definido tener:

[versions]

retorfit = "2.11.0"

okhttp3 = "4.12.0"

[libraries]

com-squareup-retrofit2-converter-gson = {

 group = "com.squareup.retrofit2", name = "converter-gson", version.ref = "retorfit"

}

com-squareup-retrofit2-retrofit = {

 group = "com.squareup.retrofit2", name = "retrofit", version.ref = "retorfit"

}

com-squareup-okhttp3-okhttp-bom = {

 group = "com.squareup.okhttp3", name = "okhttp-bom", version.ref = "okhttp3"

}

com-squareup-okhttp3-okhttp = {

 group = "com.squareup.okhttp3", name = "okhttp"

}

com-squareup-okhttp3-logging-interceptor = {

 group = "com.squareup.okhttp3", name = "logging-interceptor"

}

Acuérdate de escribir en una sola línea la definición de las librerías.

En el fichero build.gradle.kts del módulo de la aplicación:

dependencies {

 ...

 implementation(libs.com.squareup.retrofit2.converter.gson)

 implementation(libs.com.squareup.retrofit2.retrofit)

 implementation(platform(libs.com.squareup.okhttp3.okhttp.bom))

 implementation(libs.com.squareup.okhttp3.okhttp)

 implementation(libs.com.squareup.okhttp3.logging.interceptor)

}

En el archivo AndroidManifest.xml deberemos añadir el permiso de acceso a internet para que el servicio pueda acceder al API.

9/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

<manifest ...>

 ...

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

 ...

 <application ...>

 <!-- Permitir tráfico http en lugar de https -->

 android:usesCleartextTraffic="true"

 ...

 </application>

</manifest>

3

5

9

10/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Crear los servicios con Retrofit
En la paquete data crearemos un nuevo paquete llamado data.services donde definiremos los API de cara uno de nuestro
'endpoint'.

Definiendo los tipos a serializar a JSON

Para cada una de las clases que se van a transferir en las peticiones crearemos un fichero <Tipo>Api.kt .

1. Definiremos la clase ContactoApi que será la que se utilizará para transferir los datos de los contactos entre el servidor y la
aplicación. Fíjate que los atributos de la clase tienen que tener el mismo nombre que los campos que se devuelven en el JSON
del API Rest. Si quisiéramos cambiar el nombre de alguna propiedad, deberemos utilizar la anotación @SerializedName justo
antes de la propiedad para indicar el nombre que tiene en el JSON. Puedes obtener más información sobre trasformaciones de
en la documentación de la librería.

2. La librería de PHP que estamos usando, en la peticiones de tipo POST, PUT y DELETE, nos devuelve una respuesta en JSON
con campos de información sobre la petición, por tanto, deberemos definir un objetos para su deserialización.

// RespuestaApi.kt

data class RespuestaApi (

 val respuesta : Int,

 val metodo: String? = null,

 val tabla: String? = null,

 val mensaje: String? = null,

 val sqlQuery: String? = null,

 val sqlError: String? = null

)

3. Por último, las petición http://localhost/agenda/contactos/count devuelve un número de contactos en un JSON especial, por lo
que deberemos definir un objeto para su deserialización.

// TotalRegistrosApi.kt

data class TotalRegistrosApi(

 @SerializedName("tabla")

 val tabla: String,

 @SerializedName("total_registros")

 val totalRegistros: Int

)

Definiendo las peticiones para consumo del 'endpoint'

Para cada una de las peticiones que se vayan a realizar al API Rest, crearemos una interfaz con el nombre de la clase del API, en
nuestro caso ContactoApi y le añadiremos el sufijo Service . Pot tanto, vamos a definir un interface llamado ContactoService .

Definiremos pues la signatura de cada uno delos métodos que se van a utilizar para realizar las peticiones Para ello utilizaremos
diferentes anotaciones para indicar el tipo de petición, la url del API Rest, el tipo de datos que se envía y el tipo de datos que se
recibe.

// ContactoApi.kt

data class ContactoApi(

 val id: Int,

 @SerializedName(value = "nombre")

 val nombre: String,

 val apellidos: String,

 val telefono: String,

 val email: String,

 val foto: String?,

 val categorias: String

)

4

11/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

https://github.com/google/gson/blob/main/UserGuide.md
http://localhost/agenda/contactos/count

Por ejemplo, para la petición http://localhost/agenda/contactos que devuelve un listado de contactos, deberemos añadir...

interface ContactoService {

 @GET("contactos")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun contactos(): Response<List<ContactoApi>>

}

1. La anotación @GET con la url contactos que completaría la URL base al definir el objeto de Retrofit que será
 http://localhost/agenda/ .

2. La anotación @Headers que incluirá en la cabecera de la petición HTTP los valores Accept y Content-Type para indicar que se
envía y se espera recibir JSON en el body.

3. Por último, definiremos la signatura del método que será de suspensión suspend y devolverá un objeto de tipo Response que
contendrá una lista de objetos de tipo ContactoApi ya deserializados si la respuesta es correcta.

En el caso de que la respuesta en el body no sea un objeto del tipo ContactoApi como el caso de la petición
 http://localhost/agenda/contactos/count que devuelve un objeto del tipo TotalRegistrosApi , Response irá parametrizado con este
tipo para la correcta deserialización.

interface ContactoService {

 // ...

 @GET("contactos/count")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun count(): Response<TotalRegistrosApi>

}

Podremos poner también el valor de un parámetro en la URL con la anotación @Path , así como serializar en el 'body' de la petición
un objeto con @Body . Por ejemplo, para la petición @PUT a nuestro Api con PHP tenemos que indicar el id del contacto a actualizar
 http://localhost/agenda/contactos/1 y en el cuerpo de la petición el objeto ContactoApi con los datos a actualizar. Fíjate además
que la respuesta que parametrizamos en el objeto Response es del tipo RespuestaApi que definimos anteriormente. Nuestro
prototipo de método update quedaría de la siguiente manera...

interface ContactoService {

 // ...

 @PUT("contactos/{id}")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun update(@Path("id") id: Int, @Body c : ContactoApi): Response<RespuestaApi>

}

También podemos establecer parámetros en el QUERYSTRING de la URL con la anotación @Query . Por ejemplo, para la petición
 http://localhost/agenda/contactos/id/?desde=3&hasta=5 que devuelve un listado de contactos con id entre 3 y 5. Nuestro
prototipo de método contactosDesdeHasta quedaría de la siguiente manera...

interface ContactoService {

 // ...

 @GET("contactos/id/")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun contactosDesdeHasta(

 @Query("desde") desde: Int,

 @Query("hasta") hasta: Int

): Response<List<ContactoApi>>

Con lo visto ya podemos definir el resto de métodos HTTP que necesitemos para nuestro API Rest. En nuestro caso, nos quedan por
definir los siguientes los siguientes ...

12/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

interface ContactoService {

 // ...

 @GET("contactos/{id}")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun contacto(@Path("id") id: Int): Response<ContactoApi>

 @POST("contactos")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun insert(@Body c : ContactoApi): Response<RespuestaApi>

 @DELETE("contactos/{id}")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun delete(@Path("id") id: Int): Response<RespuestaApi>

}

13/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Preparando los objetos de Retrofit con Hilt
En el fichero .di/AppModule.kt deberemos definir como crear los objetos a inyectar de Retrofit.

1. Primero definimos como crear el objeto OkHttpClient , para ello usaremos OkHttpClient.Builder() . En este caso le añadiremos
un interceptor o ('hook') para poder depurar, a través de Logcat de Android Studio, el contenido de las peticiones y respuestas
HTTP que se realizan. Fíjate que el nivel de log que le hemos indicado es HEADERS , esto es porque no queremos que se muestre
la cabecera sin el cuerpo de la petición. Además, le hemos indicado un tiempo de espera ('TIMEOUT') de 10 segundos para las
peticiones después de los cuales se cancelará la petición y se producirá una excepción de tipo SocketTimeoutException .

@Provides

@Singleton

fun provideOkHttpClient() : OkHttpClient {

 val loggingInterceptor = HttpLoggingInterceptor()

 loggingInterceptor.level = HttpLoggingInterceptor.Level.HEADERS

 val timeout = 10L

 return OkHttpClient.Builder()

 .addInterceptor(loggingInterceptor)

 .connectTimeout(timeout, TimeUnit.SECONDS)

 .readTimeout(timeout, TimeUnit.SECONDS)

 .writeTimeout(timeout, TimeUnit.SECONDS)

 .build()

}

14/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

2. Ahora definiremos el objeto Retrofit que es el que usaremos realmente para realizar las peticiones HTTP y procesar las
respuestas del API Rest. Al mismo le pasaremos:

El objeto OkHttpClient que hemos creado anteriormente y que le llega a través de la inyección.
La url base del API Rest, en nuestro caso http://10.0.2.2/agenda/ . Fíjate que la dirección no es localhost o 127.0.0.1
ya que, cómo estamos accediendo desde el dispositivo emulador para él el localhost es el propio dispositivo Android
emulado y no el equipo donde está el servidor web. AVD (Android Virtual Device) proporciona una dirección IP especial
 10.0.2.2 que nos permite acceder al equipo donde está el servidor web.

@Provides

@Singleton

fun provideRetrofit(

 okHttpClient: OkHttpClient

) : Retrofit = Retrofit.Builder()

 .client(okHttpClient)

 .baseUrl("http://10.0.2.2/agenda/")

 .addConverterFactory(GsonConverterFactory.create())

 .build()

3. Por último, indicaremos a Hilt como instanciar el o los objetos de <enpoint>Service que es el que realmente utilizaremos
para realizar las peticiones al API Rest. Para ello le pasaremos el objeto Retrofit que hemos creado anteriormente y que le
llega a través de la inyección. En nuestro caso solo vamos a definir como instanciar un objeto que implemente la interfaz
 ContactoService que utilizaremos para realizar las peticiones al API Rest de la Agenda que esl único 'endpoint' definido.

@Provides

@Singleton

fun provideContactoService(

 retrofit: Retrofit

) : ContactoService = retrofit.create(ContactoService::class.java)

15/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Implementaciones de la gestión del 'consumo' de nuestro endpoint
Aunque este paso intermedio no es de todo necesario y no lo vamos a ver en muchos ejemplos de uso de Retrofit. Si que es
recomendable para gestionar correctamente los errores y los logs de depuración que se puedan producir al consumir nuestro
API Rest y simplificar el código de uso de uso de Retrofit en nuestro patrón Repository.

Primero definiremos la clase ApiServicesException que será la que utilizaremos para lanzar las excepciones que se produzcan al
consumir el API Rest.

class ApiServicesException(mensaje: String) : Exception(mensaje)

Posteriormente, definiremos para ello una clase denominada ContactoServiceImplementation a la que le inyectaremos una instancia
de ContactoService que es la que realmente utilizaremos para realizar las peticiones al API Rest.

Veamos la anatomía de uso de Retrofit para obtener la lista de contactos del API Rest en esta clase comentado paso por paso...

Siguiendo el esquema anterior, obtener un contacto por ID quedaría...

@Singleton

class ContactoServiceImplementation @Inject constructor(

 private val contactoService: ContactoService

) {

 // Propiedad privada cte. donde definimos el tag para los logs

 // de depuración de las peticiones.

 private val logTag: String = "OkHttp"

 suspend fun get(): List<ContactoApi> {

 val mensajeError = "No se han podido obtener los contactos"

 try {

 // Obtenemos la respuesta HTTP Response<List<ContactoApi>>

 val response = contactoService.contactos()

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 // Si la respuesta tiene un estatus 2xx (200, 201, 202, etc.)

 // Obtenemos con response.body los datos List<ContactoApi>

 // ya deserializados de JSON contenidos en el cuerpo de la misma.

 // Si no hay datos porque el resultado de la serialización

 // es null o el cuerpo estaba vacío. Entonces, lanzamos un

 // error indicando que no hay datos.

 val dato = response.body()

 return dato ?: throw ApiServicesException("No hay datos")

 } else {

 // sino entonces la respuesta HTTP tiene un estatus de error y por

 // tanto obtendré el mensaje de error del body de la respuesta

 // y lanzaremos un error genérico, enviando al al mismo tiempo el

 // mensaje generado al Log.

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 // Si ha habido algún error al deserializar el JSON

 // o también si ha habido algún error al realizar la petición por

 // ejemplo por falta de conexión a internet, o se ha

 // producido un TIMEOUT, etc.

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

 }

 // ... resto de la implementación de las llamadas al Servicio Rest

}

5

6

11

15

20

24

27

33

36

16/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Para insertar un contacto en el API Rest tendremos ...

Para actualizar un contacto en el API Rest tendremos ...

suspend fun get(id: Int): ContactoApi {

 val mensajeError = "No se han podido obtener el contacto con id = $id"

 try {

 val response = contactoService.contacto(id)

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 val dato = response.body()

 return dato ?: throw ApiServicesException("No hay datos")

 } else {

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

}

4

8

suspend fun insert(contacto: ContactoApi) {

 val mensajeError ="No se ha podido añadir el contacto"

 try {

 val response = contactoService.insert(contacto)

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 // Aquí response.body() es un objeto de tipo RespuestaApi

 // que simplemente logeamos si no es null.

 Log.d(logTag, response.body()?.toString() ?: "No hay respuesta")

 } else {

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

}

4

7

9

suspend fun update(contacto: ContactoApi) {

 val mensajeError = "No se ha podido actualizar el contacto"

 try {

 // En este método el API de PHP espera recibir el id del contacto

 // que también lo podemos obtener del objeto contacto que le pasamos

 val response = contactoService.update(contacto.id, contacto)

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 Log.d(logTag, response.body()?.toString() ?: "No hay respuesta")

 } else {

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

}

4

6

17/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Para borrar un contacto en el API Rest tendremos ...

suspend fun delete(id: Int) {

 val mensajeError = "No se ha podido borrar el contacto"

 try {

 val response = contactoService.delete(id)

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 Log.d(logTag, response.body()?.toString() ?: "No hay respuesta")

 } else {

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

}

18/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Usando nuestra implementación del servicio en el patrón Repository
Al igual que sucedía con las anteriores fuentes como los objetos Mock de prueba o las entidades de room. Deberemos definir en
 RepositoryConverters.kt las funciones de extensión para convertir los objetos de tipo ContactoApi en objetos de tipo Contacto y
viceversa.

fun Contacto.toContactoApi() = ContactoApi(...)

fun ContactoApi.toContacto() = Contacto(...)

Por último, en el fichero ContactoRepository.kt deberemos inyectar la implementación de nuestro servicio
 ContactoServiceImplementation y utilizarlo en las funciones de nuestro patrón Repository.

class ContactoRepository @Inject constructor(

 private val contactoService: ContactoServiceImplementation

) {

 suspend fun get(): List<Contacto> = withContext(Dispatchers.IO) {

 contactoService.get().map { it.toContacto() }

 }

 suspend fun get(id: Int): Contacto = withContext(Dispatchers.IO) {

 contactoService.get(id).toContacto()

 }

 suspend fun insert(contacto: Contacto) = withContext(Dispatchers.IO) {

 contactoService.insert(contacto.toContactoApi())

 }

 suspend fun update(contacto: Contacto) = withContext(Dispatchers.IO) {

 contactoService.update(contacto.toContactoApi())

 }

 suspend fun delete(id: Int) = withContext(Dispatchers.IO) {

 contactoService.delete(id)

 }

}

Impoatante

Cualquier error que se produzca ya lo resolveremos en el ViewModel como sucedía con room.



19/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Acceder a la API iniciando una sesión en el servidor

Si queremos incrementar la seguridad del acceso a nuestra APIRest, podemos iniciar una sesión en el servidor con determinadas
credenciales. Tran enviar la petición de 'login', capturaremos la 'cookie' que nos devuelve con el id de la sesión y usaremos esta
misma cookie para poder acceder al resto de funcionalidades del APIRest. Para habilitar la autenticación a traves del uso de
sesiones en nuestro APIRest con PHP, volveremos a editar el archivo apirest_variables.php y descomentaremos las siguientes
líneas donde definimos los usuarios y sus contraseñas.

Tras ello, entremos donde entremos a nuestro API en http://localhost/agenda/ nos pedirá que iniciemos sesión con un usuario y
contraseña indicándonos como debemos hacerlo con la siguiente pantalla...

<?php

 ...

 // ACCESO USUARIOS (si está vacío funciona sin usuarios)

 $usuarios = array();

 $usuarios["juanjo"]="_IesBalmis1";

 $usuarios["xusa"]="_IesBalmis2";

 $usuarios["pepe"]="_IesBalmis3";

 ...

6

8

20/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Si nos fijamos en la ayuda para autenticarnos necesitamos enviar una petición GET a la url
 http://localhost/agenda/?usu=<usuario>&pass=<password> . Por tanto, deberemos definir un nuevo servicio en nuestro APIRest
llamado AutenticacionService en el paquete .data.services.autenticacion que nos permita realizar esta petición y la de cerrar la
sesión como mínimo.

interface AutenticacionService {

 @GET(".")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun login(

 @Query("usu") usuario : String,

 @Query("pass") password : String): Response<RespuestaAutenticacionApi>

 @GET(".")

 @Headers("Accept: application/json", "Content-Type: application/json")

 suspend fun logout(

 @Query("logout") usuario : String = ""): Response<RespuestaAutenticacionApi>

}

En ambos casos la respuesta del APIRest será un objeto del tipo RespuestaAutenticacionApi que definiremos como...

data class RespuestaAutenticacionApi(

 val mensaje : String,

 val usuario : String

)

y que nos devolverá un mensaje de error o de éxito y el usuario que ha iniciado la sesión o null si no se ha podido iniciar la sesión.

A la hora de realizar la implementación de este servicio de login...

deberemos tener en cuenta que en la cabecera de la respuesta del APIRest se nos devuelve una cookie con el id de la sesión
que deberemos almacenar del algún modo para poder acceder al resto de funcionalidades del APIRest. En nuestro caso el valor de
esa cookie se encuentra en la cabecera Set-Cookie y es PHPSESSID=obqu9co5rqhgdocspnqs4nlv5o . Sin tener en cuenta que podrían
llegar otras cookies en en esta misma cabecera.

Para ello, podemos definir una propiedad estática pública en la clase AutenticacionServiceImplementation que almacenará la
cookie de la sesión.

--> GET http://10.0.2.2/agenda/?usu=juanjo&pass=_IesBalmis1

Accept: application/json

Content-Type: application/json

--> END GET

1

<-- 200 OK http://10.0.2.2/agenda/?usu=juanjo&pass=_IesBalmis1 (18ms)

Date: ...

Server: Apache/2.4.56 (Win64) OpenSSL/1.1.1t PHP/8.2.4

X-Powered-By: PHP/8.2.4

Set-Cookie: PHPSESSID=obqu9co5rqhgdocspnqs4nlv5o; path=/

Expires: Fecha de expiración de la Cookie

Cache-Control: no-store, no-cache, must-revalidate

Pragma: no-cache

Content-Length: 59

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: application/json; charset=utf-8

<-- END HTTP

5

6

21/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class AutenticacionServiceImplementation @Inject constructor(

 private val autenticacionService: AutenticacionService

) {

 private val logTag: String = "OkHttp"

 companion object {

 var cookie: String? = null

 }

 suspend fun login(

 userName : String,

 password : String

): RespuestaAutenticacionApi {

 val mensajeError = "Error al loguear a $userName"

 try {

 val response = autenticacionService.login(

 usuario = userName,

 password = password

)

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 val dato = response.body()

 cookie = response.headers().get("Set-Cookie")

 return dato ?: throw ApiServicesException("No hay datos")

 } else {

 ...

 }

 } catch (e: Exception) {...}

 }

}

6

8

22

22/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

Esta cookie la utilizaremos en el resto de peticiones que realicemos al APIRest. Para ello, deberemos añadir la cabecera Cookie en
las peticiones que realicemos al APIRest. Por ejemplo, para la petición http://localhost/agenda/contactos que devuelve un listado
de contactos la petición HTTP debería ser...

Para ello, deberíamos modificar la interfaz ContactoService y añadir la cabecera Cookie en las peticiones que realicemos al
APIRest. Por ejemplo, para la petición GET a esa ruta será ...

@GET("contactos")

@Headers("Accept: application/json", "Content-Type: application/json")

suspend fun contactos(@Header("Cookie") cookie : String): Response<List<ContactoApi>>

Fíjate que hemos añadido la anotación @Header para indicar que el valor de la cabecera Cookie se obtendrá del parámetro cookie
que le pasamos al método y por tanto deberemos añadirlo en la llamada al método que hacíamos desde el
 ContactoServiceImplementation .

El problema de esto es que, como hemos mencionado, deberemos hacer lo mismo en todas las peticiones de todos servicios a
'endpoints' que hayamos definido y pasarlo en todas las llamadas a los métodos de los servicios en las implementaciones de los
mismos.

Para evitar hacer esto, podemos definir un interceptor o ('hook') que se ejecutará antes de realizar la petición y que añadirá la
cabecera Cookie a la petición. Para ello, podemos seguir los siguientes pasos:

1. En el paquete services vamos a crear un nuevo paquete llamado services.interceptors donde definiremos el interceptor que
se encargará de guardar la cookie de la sesión y el de añadirla a las peticiones que se realicen al APIRest.

2. En el paquete services.interceptors definiremos una clase llamada AlmacenDeCookies guardará en un HashSet las cookies
que se vayan recibiendo en las respuestas del APIRest. Hilts nos permitirá inyectar un objeto único esta clase en los
interceptores que definamos.

@Singleton

class AlmacenDeCookies @Inject constructor() {

 private var cookies: HashSet<String>? = null

 fun getCookies(): HashSet<String>? = cookies

 fun setCookies(cookies: HashSet<String>) {

 this.cookies = cookies

 }

}

3. En el paquete services.interceptors definiremos una clase llamada ReciveCookiesInterceptor que implementará el interfaz
 Interceptor y se encargará de preprocesar cualquier respuesta del servidor y guardar las cookies recibidas en la
cabecera Set-Cookie , incluida la de la sesión, en el objeto AlmacenDeCookies invalidando el método intercept .

--> GET http://10.0.2.2/agenda/contactos

Accept: application/json

Content-Type: application/json

Cookie: PHPSESSID=obqu9co5rqhgdocspnqs4nlv5o; path=/

--> END GET

4

23/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class ReciveCookiesInterceptor(

 // Inyectamos el objeto AlmacenDeCookies

 private val almacenDeCookies: AlmacenDeCookies

) : Interceptor {

 override fun intercept(chain: Interceptor.Chain): Response {

 // Procesamos la respuesta actual

 val originalResponse = chain.proceed(chain.request())

 // Extraemos de ella las cookies de la cabecera Set-Cookie

 if (originalResponse.headers("Set-Cookie").isNotEmpty()) {

 val cookies = HashSet<String>()

 for (header in originalResponse.headers("Set-Cookie")) {

 cookies.add(header)

 }

 almacenDeCookies.setCookies(cookies)

 }

 // Devolvemos la respuesta original

 return originalResponse

 }

}

24/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

4. En el paquete services.interceptors definiremos una clase llamada EnviaCookiesInterceptor que implementará el interfaz
 Interceptor y se encargará de preprocesar cualquier petición al servidor y añañdir las cookies guardadas en el objeto
 AlmacenDeCookies a la cabecera Cookie de la petición, incluida la de la sesión.

class EnviaCookiesInterceptor(

 // Inyectamos el objeto AlmacenDeCookies

 private val almacenDeCookies: AlmacenDeCookies

) : Interceptor {

 override fun intercept(chain: Interceptor.Chain): Response {

 // Builder con el contenido de la peticion original

 val builder = chain.request().newBuilder()

 val cookies = almacenDeCookies.getCookies()

 if (cookies != null) {

 for (cookie in cookies) {

 // Añadimos las cookies a la cabecera Cookie de la

 // peticion en el builder

 builder.addHeader("Cookie", cookie)

 }

 }

 // Procesamos la peticion con las cookies añadidas

 return chain.proceed(builder.build())

 }

}

25/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

5. Redefinimos provideOkHttpClient inyectando el objeto AlmacenDeCookies y añadiendo los interceptores que hemos definido en
el builder de nuestro cliente.

Tras esto .data/services/autenticacion/AutenticacionService.kt quedará iguál que antes, pero su implementación en
 .data/services/autenticacion/AutenticacionServiceImplementation.kt ya no necesitará quedarse con la cookie de la sesión...

@Provides

@Singleton

fun provideOkHttpClient(

 almacenDeCookies: AlmacenDeCookies

) : OkHttpClient {

 val loggingInterceptor = HttpLoggingInterceptor()

 loggingInterceptor.level = HttpLoggingInterceptor.Level.HEADERS

 val timeout = 10L

 return OkHttpClient.Builder()

 .addInterceptor(EnviaCookiesInterceptor(almacenDeCookies))

 .addInterceptor(ReciveCookiesInterceptor(almacenDeCookies))

 // El orden de los interceptores es importante si

 // quiero ver la información de las cookies en el log.

 .addInterceptor(loggingInterceptor)

 .connectTimeout(timeout, TimeUnit.SECONDS)

 .readTimeout(timeout, TimeUnit.SECONDS)

 .writeTimeout(timeout, TimeUnit.SECONDS)

 .build()

}

4

11

15

26/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class AutenticacionServiceImplementation @Inject constructor(

 private val autenticacionService: AutenticacionService

) {

 private val logTag: String = "OkHttp"

 suspend fun login(

 userName : String,

 password : String

): RespuestaAutenticacionApi {

 val mensajeError = "Error al loguear a $userName"

 try {

 val response = autenticacionService.login(

 usuario = userName,

 password = password

)

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 val dato = response.body()

 return dato ?: throw ApiServicesException("No hay datos")

 } else {

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

 }

 suspend fun logout(): RespuestaAutenticacionApi {

 val mensajeError = "Error al cerrar sesión"

 try {

 val response = autenticacionService.logout()

 if (response.isSuccessful) {

 Log.d(logTag, response.toString())

 val dato = response.body()

 return dato ?: throw ApiServicesException("No hay datos")

 } else {

 val body = response.errorBody()?.string()

 Log.e(logTag, "$mensajeError (código ${response.code()}): $this\n${body}")

 throw ApiServicesException(mensajeError)

 }

 } catch (e: Exception) {

 Log.e(logTag, "Error: ${e.localizedMessage}")

 throw ApiServicesException(mensajeError)

 }

 }

}

Además, tras hacer login, ya podremos seguir usándo nuestro APIRest como lo hacíamos anteriormente pero sin tener que añadir la
cabecera Cookie en las peticiones que realicemos al APIRest.

Una posible implementación de ./data/AutenticacionRepository.kt que use la implementación de nuestro servicio podría ser...

27/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

class AutenticacionRepository @Inject constructor(

 private val autenticacionService: AutenticacionServiceImplementation

) {

 suspend fun login(

 userName: String,

 password: String

): Boolean = withContext(Dispatchers.IO) {

 autenticacionService.login(

 userName = userName,

 password = password

).usuario.isNotEmpty()

 }

 suspend fun logout(): Unit = withContext(Dispatchers.IO) {

 autenticacionService.logout()

 }

}

Código de los ejemplos

En el siguiente enlace puedes deacargar un proyecto ejemplo con la implementación que acabamos de describir del uso de
APIRest en PHP para autenticarnos con la agenda. Para ello, le hemos añadido una pantalla más donde realizar dicha
autenticación: Proyecto ejemplo



28/28 PMDM 2º DAM Tema 5.2 - retrofit Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/0_AgendaRetrofit_son_sesiones_recurso.zip

