Tema 5.1 - Room

Descargar estos apuntes pdf o html

indice

Introduccion

Dependencias

Componentes de Room

Anadiendo paquete room al proyecto
¥ Crear las entidades que definen nuestro modelo
¥ Definiendo relaciones entre Objetos
= Relaciones Uno a Muchos entre objetos
¥ Crear los Objetos de Acceso a la Base de Datos
= Métodos de conveniencia
¥ Métodos de busqueda
» Seleccién de un subconjunto de columnas
s Crear la Base de Datos Room y consumirla
¥ Instanciar la RoomDatabase para su posterior funcionamiento
» Preparando la Base de Datos y los DAOs con Hilt
= |nyectando los DAOs en los repositorios
= Cargando datos de prueba en la BD
» Ubicacion de la Base de Datos en el dispositivo
= |nspeccionando y depurando la BD con Database Inspector

1/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_1_room.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_1_room.html

Introduccion

¢ Persistencia local con Room
o Documentacion oficial: Save data in a local database using Room
o Documentacion oficial versiones libreria; Room

[e]

Video Tutorial (Inglés): Philipp Lackner

o

Video Tutorial (Castellano): Martin Kiperszmid

(o]

Video Tutorial (Castellano): AristiDevs

(e]

Video Tutorial (Castellano): Gibran Garcia

La plataforma Android proporciona dos herramientas principales para el almacenamiento y consulta
de datos estructurados: la base de datos SQLite y Content Providers.

2" Nota

Existen otras opciones de terceros como SQLDelight (SQLite) pero no estan tan integradas
Android Studio como Room. Aunque, es una opcién muy valida otros SO Kotlin Multipltaform.
Incluso si nos decidimos por usar Firestore, existe la posibilidad de usarlo de forma offline

Nosotros vamos a centrarnos en SQL.ite, aunque no entraremos ni en el disefio de BBDD
relacionales ni en el uso avanzado de la BBDD. Para conocer toda la funcionalidad de SQLite se
recomienda usar la documentacion oficial. El problema de trabajar directamente con esta APl es
que es un trabajo a bajo nivel que puede llevar a errores en tiempo de ejecucion.

Por este motivo Android Jetpack ha proporcionado ORM a modo de capa de abstraccién que facilita
enormemente el proceso de codificacion La biblioteca que nos va a permitir esta abstraccién y se
distribuye como Room.

Dependencias

Para poder usar la funcionalidad de Room y las anotaciones, deberemos afiadir una serie de
dependencias y plugins.

Al igual que sucedia con Hilt, en Room vamos a necesitar algun tipo de procesador de anotaciones.
Las primeras versiones usaban

KAPT, pero como con Hilt, Room ya esta migrado a KSP. Por tanto, si ya estamos usando Hilt no
necesitaremos anadir el plugin de KSP. No obstante vamos a recordar los pasos...

2/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room
https://developer.android.com/jetpack/androidx/releases/room
https://www.youtube.com/watch?v=bOd3wO0uFr8
https://www.youtube.com/watch?v=TKZRiq4GDuc
https://www.youtube.com/watch?v=lYBb4QedYH8
https://www.youtube.com/watch?v=Yu-Ty8T28ag
https://developer.android.com/training/data-storage/sqlite?hl=es
https://developer.android.com/training/data-storage/room
https://sqldelight.github.io/sqldelight/2.0.2/android_sqlite/
https://www.youtube.com/watch?v=nmKyP-uEUXs
https://firebase.google.com/docs/firestore/quickstart?hl=es-419#android
https://cloud.google.com/firestore/docs/manage-data/enable-offline?hl=es-419#kotlin+ktxandroid

En el catalogo de versiones 1lib.versions.toml deberemos comprobar que hemos definido tener:

[versions]
kotlin = "2.0.20"
ksp = "2.0.20-1.0.25"

room = "2.6.1"

[libraries]

androidx-room-ktx = { group = "androidx.room", name = "room-ktx", version.ref = "room" }
androidx-room-compiler = { group = "androidx.room", name = "room-compiler", version.ref = "room" }
[plugins]

devtools-ksp = { id = "com.google.devtools.ksp", version.ref = "ksp" }

En el build.gradle.kts raiz del proyecto afiadiremos el siguiente plugin:

plugins {
alias(libs.plugins.devtools.ksp) apply false

En el build.gradle.kts del médulo de la aplicacién (app) anadiremos:

plugins {
alias(libs.plugins.devtools.ksp)

dependencies {
implementation(libs.androidx.room.ktx)

ksp(libs.androidx.room.compiler)

La version de la libreria puede cambiar, pero puedes ver los ultimos releases de la misma en el

siguiente enlace: Room

Componentes de Room

Para trabajar con Room debemos familiarizarnos con su
arquitectura que esta compuesta por tres partes principales:

» Entity (Entities), seran las clases que definiran las entidades
de nuestra Base de datos, que corresponden con cada tabla

que la forman.

3/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/room

» DAOs (Data Access Obijects), en este caso seran las clases

Room Database

abstractas o interfaces donde estaran definidos los métodos
que nos permitiran la operatividad (insercion, consulta, etc)

Data Ac Objects
con cada una de las tablas de la Base de Datos.

back to db

 RoomDatabase (Room Database), contiene la Base de Datos

Get DAO
[‘ get/ st field values

y el acceso a esta, a la vez que une los dos anteriores

conceptos. ‘ Rest of The App ‘

Una vez que se creen estos tres elementos, la app podra acceder a los DAOs a través de las
instancias de Room Database que creemos, de forma mas estable que con el acceso directo a la API
de SQLite.

El uso de Room se hace a través de Anotaciones anadidas a las clases e interfaces, las principales
son:

e @Entity , indica que la clase a la que se atribuye debe ser tratada como una entidad.

e @Dao , debe de anadirse a las interfaces que queremos que sean nuestras Daos. Dentro de
estas interfaces se utilizan otras anotaciones que veremos mas adelante.

e (@Database , se afadira a las Room Database he indicara que es una Database, estas clases
deben ser abstractas y heredar de RoomDatabase.

Anadiendo paquete room al proyecto

Recuerda que en la distribucion de paquetes que se propuso a principio de curso. Dentro del paquete
.data vamos a crear un paquete por cada una de las fuentes de datos que tengamos. En este caso,
como vamos a usar Room, crearemos un paquete denominado .data.room Yy dentro del él vamos a

crear los componentes que hemos mencionado y que concretaremos a continuacion.

4/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

@ Coadigo de los ejemplos

Si te surge alguna duda o tienes dificultades para completar este tema. Puedes descargar el
proyecto con el codigo de mismo del siguiente enlace: Proyecto ejemplos

Crear las entidades que definen nuestro modelo

Para definir la persistencia con Room, utilizaremos lo que denominaremos ‘Code First', ‘Model First' o
'Entity First', es decir, primero definiremos las entidades que queremos persistir y sus relaciones.
Posteriormente, a partir de estas definiciones, se creara la base de datos.

Para ello pues, el primer paso a realizar sera el de crear las distintas tablas que tendra nuestra base
de datos. Cada tabla correspondera con una clase Entity etiquetada como @entity en la que
afiadiremos los campos correspondiente a la tabla. Vamos a usar un ejemplo sencillo para entender

el funcionamiento:

1. Por ejemplo, si queremos crear una tabla de clientes con |los campos dni, nombre Yy
apellidos . Crearemos una data class denominada ClienteEntity dentro del paquete
.data.room.ClienteEntity.kt .

A esta, le afadiremos a la anotacion @Entity la propiedad tableName con el nombre de la tabla:
@Entity(tableName = "idTabla") . Si no lo hiciéramos, la tabla tomaria el nombre de nuestra
entidad.

@Entity(tableName = "clientes")
data class ClienteEntity(

val dni: String,

val nombre: String,

val apellidos: String)

2. Deberemos decidir cual sera nuestra clave primaria para afadir la anotacion @primaryKey a la
propiedad que decidamos.

@Entity(tableName = "clientes")
data class ClienteEntity(
@PrimaryKey val dni: String,
val nombre: String,
val apellidos: String)

Si necesitaramos una clave primaria compuesta por mas de un campo, tendriamos que indicarlo
con la propiedad primaryKeys de la anotacion @Entity . De igual manera lo hariamos en el

5/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/defining-data
https://developer.android.com/training/data-storage/room/defining-data#composite-key
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/room_ejemplo_apuntes_recurso.zip

caso de necesitar una clave ajena, pero en este caso con la propiedad foreignKeys.
Por ejemplo, si tuvieramos otra tabla pedidos en la que relacionaramos el dni de la tabla
clientes con el dni ajeno de los registros de esta tabla, parentColumns se referiria al dni de

clientes mientras que dni_cliente en childColumns seria al de pedidos .

// Expresariamos que un pedidos define una clave ajena dni en clientes.
@Entity(tableName = "pedidos",
foreignKeys = arrayOf(
ForeignKey(
entity = ClienteEntity::class,
parentColumns = arrayOf("dni"),
// Nombre de la columna en la tabla pedidos
childColumns = arrayOf("dni_cliente"),
onDelete = CASCADE)

)
data class PedidoEntity(...)

No obstante, mas adelante veremos como definir relaciones entre objetos en lugar de tablas.
Ademas, ten en cuenta que la definicidn correcta de indices nos va a proporcionar mucha
velocidad.

3. Es muy buena practica usar la etiqueta @columninfo para que futuras modificaciones en la
BD no afecten a mis entidades. Esta propiedad sirve para personalizar la columna de la base
de datos del atributo asociado. Podemos indicar, entre otras cosas, un nombre para la columna
diferente al del atributo. Esto nos permite hacer mas independiente la app de la BD. Ademas nos
permite pasar del camelCasing que el como tendremos los nombres de propiedades
compuestos en Kotlin a snake_casing que es el convenio estandar en las bases de datos. Por
ejemplo, la clave ajena anterior de pedidos seria ...

@ColumnInfo(name = "dni_cliente")

val dniCliente: String,

En nuestro ejemplo, al final la Entity quedaria de la siguiente manera:

@Entity(tableName = "clientes")
data class ClienteEntity(

@PrimaryKey
@ColumnInfo(name = "dni")
val dni: String,
@ColumnInfo(name = "nombre")

val nombre: String,
@ColumnInfo(name = "apellidos")

val apellidos: String)

6/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/room/ForeignKey

4. Es posible que, a veces, quieras expresar una entidad o un objeto de datos como un solo
elemento integral en la logica de la base de datos, incluso si el objeto contiene varios campos.
En esas situaciones, puedes usar la anotacion @Embedded para representar un objeto cuyos
subcampos quieras desglosar en una tabla. Luego, puedes buscar los campos integrados tal
como lo harias con otras columnas individuales. A este tipo de objetos, los denominaremos
'objetos incorporados'

Podemos hacer una analogia entre los 'objetos incorporados' con los que definimos en las
BDOR (Bases de Datos Bbjeto-Relacionales de Oracle o PostgreSQL)
Por ejemplo, la clase clienteEntity puede incluir un campo de tipo Direccion , que representa
una composicion de propiedades llamadas calle, ciudad, pais Y codigoPostal . Para
almacenar las columnas compuestas por separado en la tabla, incluye un campo Direccion
en la clase cClienteEntity con anotaciones @Embedded , cOmo se muestra en el siguiente
fragmento de codigo:
data class Direccion(

val calle: String?,

val ciudad: String?,

val pais: String?,

@ColumnInfo(name = "codigo_postal")

val codigoPostal: String?

@Entity(tableName = "clientes")
data class ClienteEntity(

@PrimaryKey
@ColumnInfo(name = "dni")
val dni: String,
@ColumnInfo(name = "nombre™)

val nombre: String,

@ColumnInfo(name = "apellidos")

val apellidos: String,

// Marcamos como embebe @Embedded el campo a descomponer en la tabla

@Embedded val direccion: Direccion?

Del cédigo anterior, la tabla que representa un objeto ClienteEntity contendra columnas con

los siguientes nombres:

dni nombre apellidos calle ciudad pais codigo_postal

5. A veces, necesitas que la app almacene un tipo de datos personalizado en una sola columna de
base de datos. Para admitir tipos personalizados, debes proporcionar convertidores de tipo, que
son métodos que indican a Room cdmo convertir tipos personalizados en tipos conocidos que

7/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

8/18

Room pueda tratar. Para identificar los conversores de tipo, puedes usar la anotaciéon
@TypeConverter .

Supongamos que necesitas conservar instancias del tipo Localbate definido en
org.jetbrains.kotlinx:kotlinx-datetime para saber la fecha en que se hizo un pedido. Pero la
base de datos para guardar fechas lo hace mediante un 1Int que representa el TIMESTAMP.
Definiremos primero una clase denominada RoomConverters dentro del paquete .data.room con
todos los métodos convertidores. Ojo, no importa el nombre del método, sino su signatura
(parametro de entrada y de salida). Por ejemplo para fecha podria ser:

// Estamos presuponiendo que nuestras fechas nunca son nulas.
class RoomConverters {
@TypeConverter
fun fromTimestamp(value: Int): LocalDate {
return LocalDate.fromEpochDays(value)

@TypeConverter
fun dateToTimestamp(date: LocalDate): Int {
return date.toEpochDays()

¢) Importante

Cuando definamos la BD ya veremos como indicarle que aplique todas las conversiones

definidas.

Ahora ya podemos definir nuestra clase pedidoEntity dentro del paquete .data.room ...

PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

@Entity(tableName = "pedidos",
foreignKeys = arrayOf(
ForeignKey(
entity = ClienteEntity::class,
parentColumns = arrayOf("dni"),
childColumns = arrayOf("dni_cliente"),
onDelete = CASCADE)

)
data class PedidoEntity(

// El id sera autogenerado insertando un ©.

@PrimaryKey (autoGenerate = true)

@ColumnInfo(name = "id")
val id: Int,
@ColumnInfo(name = "dni_cliente")

val dniCliente: Int,

// Indicamos que siempre debe tener una fecha.
// Esta en la DB se guardara como un Int.
@NonNull

@ColumnInfo(name = "fecha")

val fecha: LocalDate

9/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Definiendo relaciones entre Objetos

Usando los 'objetos incorporados' podremos hacerlo de forma sencilla.

Relaciones Uno a Muchos entre objetos

Supongamos que queremos definir un nuevo objeto a recuparar que no es una entidad en la BD,
pero quiero que contenga un cliente con todos sus pedidos. De forma analoga a los que
tenemos en las entidades de JPA.

Deberemos definir la clase que exprese la relacidon y que se completara ‘mapeara’ automaticamente

cuando la usemos en nuestro DAO.

data class ClienteConPedidos(

@Embedded val cliente: ClienteEntity,

@Relation(
parentColumn = "dni",
entityColumn = "dni_cliente"

)
val pedidos: List<PedidoEntity>

Mas adelante, veremos su utilidad y que hay formas mas 'simples' de hacerlo.

6 Informacion

Puedes saber mas sobre como definir otros tipos de relaciones entre objetos con room en el

siguiente enlace

10/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/relationships

Crear los Objetos de Acceso a la Base de Datos

Los DAO seran elementos de tipo Interfaz, en los cuales incluiremos los métodos necesarios de
acceso y gestion a las entidades de la Base de Datos. En tiempo de compilacion, Room generara
automaticamente la implementaciones de DAOs que hayamos definido.

Es buena practica, definir un DAO por cada entidad que tengamos, y en este definir las
funcionalidades asociadas a esta entidad.

Para que una interfaz sea gestionada como DAO, habra que afadir la anotacién @pao , siguiendo
nuestro ejemplo tendriamos:

@Dao

interface ClienteDao

{

Para poder operar con la funcionalidad de Room, se necesitara hacer las llamadas fuera del hilo
principal ya que las instancias de RoomDatabase son costosas en cuanto a tiempo, por lo que sera
necesario lanzar estas llamadas mediante corrutinas. La manera recomendada es la de crear los
métodos de la interfaces DAO como métodos de suspension.

Dentro de un DAO podemos crear dos tipos distintos de métodos, de conveniencia y de busqueda.

11/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/accessing-data

Métodos de conveniencia

Estos métodos nos permiten realizar las operaciones basicas de insercidon, modificacion y
eliminacién de registros en la BD sin tener que escribir ningun tipo de cédigo SQL. A estos métodos
se le pasa la entidad sobre la que se quiera trabajar y es la propia libreria Room la encargada de
crear la sentencia SQL usando la clave primaria para la identificacion del registro sobre el que se
quiere operar. Deberan ir precedidos por las anotaciones @Insert, @Delete o @Update
dependiendo de la necesidad. Por ejemplo, en nuestro caso, para la entidad cClienteEntity
crearemos ClienteDao €N Su mismo paquete de la siguiente manera...

@Dao

interface ClienteDao {
@Insert(onConflict = OnConflictStrategy.REPLACE)
suspend fun insert(cliente : ClienteEntity)

@Delete
suspend fun delete(cliente : ClienteEntity)

@Update
suspend fun update(cliente : ClienteEntity)

// Si no pasamos la entidad y lo que tenemos

// es la PK deberemos hacer una consulta con @Query
// pasando la PK como parametro.

@Query("DELETE FROM clientes WHERE dni = :dni")
suspend fun deleteByDni(dni: String)

Como se puede ver en el anterior cédigo, es una manera muy sencilla de realizar las operaciones
basicas usando las anotaciones correspondientes y pasando como parametro al método la Entidad
sobre la que queremos operar. En el caso de la insercion podemos ver que se puede utilizar la
propiedad onConflict para indicar si queremos reemplazar el elemento existente por el nuevo en

caso de que coincida la clave primaria (en este caso el dni).

12/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Métodos de busqueda

Estos métodos seran los que crearemos para realizar consultas sobre la BD y tendran que ir
precedidos por la anotacién @Query. Esta anotacién permite que se afiada como parametro una
cadena con la sentencia SQL para la consulta. Por ejemplo, podemos completar nuestro DAO de la

siguiente manera....

@Dao
interface ClienteDao {

// ... aqui van los métodos de conveniencia CRUD

@Query("SELECT * FROM clientes")
suspend fun get(): List<ClienteEntity>

@Query("SELECT * FROM clientes WHERE dni IN (:dni)")
suspend fun getFromDni(dni : String): ClienteEntity

@Query("SELECT COUNT(*) FROM clientes")

suspend fun count(): Int

Los dos primeros métodos de nuestro DAO, son dos métodos de consulta, el primero devuelve una
lista de Clientes mientras que el segundo devuelve un solo cliente. Como ya hemos visto, Room
permite pasar un parametro o una lista de parametros dentro de la propia consulta siempre que lo
precedamos con : Yy que coincida en nombre con el parametro que le llega al método.

Seleccion de un subconjunto de columnas

En muchas ocasiones no sera necesaria toda la informacién de la tabla, sino que solo necesitaremos
recuperar algunas de las columnas a modo de DTO. Aunque se puede recuperar toda la informacié y
posteriormente realizar un filtrado de esta, para ahorrar recursos es interesante consultar solamente
los campos que se necesitan. Para ello, necesitaremos crear un objeto del tipo de columnas que
queramos devolver, esto se podra hacer usando una data class nueva para esos datos:

data class NombreApellidosDTO(
@ColumnInfo(name = "nombre")
val nombre: String,
@ColumnInfo(name = "apellidos")
val apellidos: String

13/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Y solamente se tendra que indicar en el Dao que el método correspondiente devolvera los datos de
este tipo:

@Query ("SELECT nombre, apellidos FROM clientes")
suspend fun getNombreApellido(): List<NombreApellidosDTO>

Por ejemplo, si quisiéramos recuperar el mapeo de la clase ClienteConPedidos que definimos en la
relacion uno a muchos entre objetos. Deberiamos marcar el método con anotaciéon @Transaction ,

pues en su interior hay una anotacién @Relation que se debera completar antes de devolver la
instancia del objetos.

@Transaction

// Fijate que no indicamos la relacion en la consulta ya esta definida
// en el objeto a recuperar.

@Query("SELECT * FROM clientes")

// Fijate que devuelve una lista de objetos ClienteConPedidos

suspend fun getPedidos(): List<ClienteConPedidos>

Sin embargo si la relacion ya la definimos al definir las entidades podemos hacerlo mediante un

JOIN sin necesidad de definir el objeto clienteConPedidos ni ningun tipo de DTO de la siguiente
manera.

@Query("SELECT * FROM clientes JOIN pedidos ON clientes.dni = pedidos.dni_cliente")
suspend fun obtenerClientesConPedidos(): Map<ClienteEntity, List<PedidoEntity>>

Fijate que en este caso, el método devuelve un map en el que la clave es un clienteEntity Y €l
valor todos los PedidoEntity asociados a este.

14/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Crear la Base de Datos Room y consumirla

El dltimo elemento que quedaria por crear seria la RoomDatabase. Este elemento es el que se
encargara de crear la base de datos a partir de las entidades definidas y las operaciones que se
realizaran sobre estas a partir de los DAOs de nuestra app. Por tanto, es el elemento que enlaza a
los dos anteriores. Para ello crearemos una clase abstracta que debera de heredar de RoomDatabase
y a la que etiquetaremos con la anotacion @patabase con las propiedades version y entities. La
primera propiedad especificara la version de la BD, mientras que en entities indicaremos la entidad o

entidades asociadas a esta.

@Database(
entities = [ClienteEntity::class, PedidoEntity::class],

version = 1

@TypeConverters(RoomConverters::class)
abstract class TiendaDB: RoomDatabase() {

abstract fun clienteDao() : ClienteDao
abstract fun pedidoDao() : PedidoDao

Instanciar la RoomDatabase para su posterior
funcionamiento

Una vez creados todos los componentes necesarios para el funcionamiento de Room Database,
deberemos poder crear una instancias de la misma. Para ello, podemos definir un método de clase
denominado fun getDatabase(context: Context) que usaremos posteriormente para que Hilt sepa
crear una instancia del mismo e inyectarlo al obtener el DAO como veremos mas adelante.

15/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room#database

@Database(

entities = [ClienteEntity::class, PedidoEntity::class],
version = 1

)

@TypeConverters(RoomConverters::class)
abstract class TiendaDB: RoomDatabase() {
abstract fun clienteDao() : ClienteDao

abstract fun pedidoDao() : PedidoDao

companion object {
fun getDatabase(
context: Context
) = Room.databaseBuilder(
context,

TiendaDB::class.java, "tienda"

)

.allowMainThreadQueries()
.fallbackToDestructiveMigration()
.build()

Si te fijas Room.databaseBuilder precisa del contexto de la aplicacion para poder crear el fichero
tienda que contendra la BD.

Preparando la Base de Datos y los DAOs con Hilt

En el fichero appModule.kt dentro del paquete .di prepararemos la inyeccion de dependencias de
la siguiente manera:

1. Para inyectar la BD definimos provideTiendaDatabase que llama al método estatico
TiendaDB.getDatabase(context) para instanciarla. Fijate que el contexto de la aplicacion se
inyecta usando la anotacion @ApplicationContext de Hilt.

@Provides

@Singleton

fun provideTiendaDatabase(
@ApplicationContext context: Context

): TiendaDB = TiendaDB.getDatabase(context)

2. Para inyectar los DAOs, definimos provideClienteDao Y providePedidoDao que inyectan los
DAOs de la BD. Fijate que se inyecta la BD y se llama a los métodos abstractos que devuelven
los DAOs.

16/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

@Provides
@Singleton
fun provideClienteDao(
tiendaDB: TiendaDB
): ClienteDao = tiendaDB.clienteDao()

@Provides
@Singleton
fun providePedidoDao(
tiendaDB: TiendaDB
): PedidoDao = tiendaDB.pedidoDao()

Inyectando los DAOs en los repositorios

Para inyectar los DAOs en los repositorios, deberemos afnadirlos como propiedades privadas en los
constructores de estos. Por ejemplo, en el caso del repositorio de ClienteRepository deberemos
afadir el DAO de clienteDao como parametro del constructor.

class ClienteRepository @Inject constructor(

private val clienteDao: ClienteDao

) A

¢) Importante

Recuerda que, tal y como hicimos a principio de curso con las clases de prueba. Deberemos
definir los métodos de extensidon que transformen un ClienteEntity en un objeto Cliente del
modelo para su uso en el ViewModel y viceversa.

Cargando datos de prueba en la BD

Este proceso se puede realizar de diferentes maneras, pero una forma de hacerlo de manera
centralizada es en el momento de carga de la aplicacion, por ejemplo invalidando el método
onCreate de la clase TiendaAplication que recordemos hereda de Application .

Fijate que a través de la anotacion @inject Hilt sera capaz de crear una instancia de clientebao Yy
por ende de TiendaDB en la propiedad daoClientes la primera vez que se use al ejecutar el método
onCreate para cargar los datos de prueba.

17/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

@HiltAndroidApp
class TiendaAplication: Application() {

@Inject
lateinit var daoClientes: ClienteDao

override fun onCreate() {

super.onCreate()

runBlocking {
if (daoClientes.count() == 0) {
daoClientes.insert(
ClienteEntity("12345678A", "Juan", "Pérez"))
daoClientes.insert(
ClienteEntity("87654321B", "Maria", "Garcia"))

Ubicacion de la Base de Datos en el dispositivo

Si abrimos el Device Explorer de Android Studio, podremos ver que

. Pixelza |V]
se ha creado un fichero tienda en la ruta | Wldata)
data/data/<nombre_paquete>/databases . Este fichero es la base de | M[data] _
= m[com.pmdm.tienda]
datos que hemos creado y que se ha guardado en el dispositivo. 7 M[databases]
tienda
Podremos ver su contenido si la copiamos con cualquier herramienta F tienda-shm
tienda-wal

de gestion de bases de datos SQLite como DBeaver.

Aunque hay formas de mantener versiones de la BD y migrar de una a otra. La opcion mas sencilla
es ante un cambio en alguna de las entidades seria eliminar la BD y volver a crearla. Para ello,
podemos usar la propiedad fallbackToDestructiveMigration() en el método databaseBuilder que
hemos usado para crear la BD o simplmente borrarla usando el Device Explorer y volver a ejecutar
la app.

Inspeccionando y depurando la BD con Database
Inspector

Existe la posibilidad de probar las consultas e inspeccionar la base de datos en tiempo de ejecucion.
Para ello, la herramienta de Android Studio Database Inspector.

18/18 PMDM 2° DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/migrating-db-versions
https://developer.android.com/studio/inspect/database

