
Tema 5.1 - Room
Descargar estos apuntes pdf o html

Índice
Introducción
Dependencias
Componentes de Room
Añadiendo paquete room al proyecto
Crear las entidades que definen nuestro modelo

Definiendo relaciones entre Objetos
Relaciones Uno a Muchos entre objetos

Crear los Objetos de Acceso a la Base de Datos
Métodos de conveniencia
Métodos de búsqueda

Selección de un subconjunto de columnas
Crear la Base de Datos Room y consumirla
Instanciar la RoomDatabase para su posterior funcionamiento

Preparando la Base de Datos y los DAOs con Hilt
Inyectando los DAOs en los repositorios
Cargando datos de prueba en la BD

Ubicación de la Base de Datos en el dispositivo
Inspeccionando y depurando la BD con Database Inspector

1/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_1_room.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/Tema_5_1_room.html

Introducción
Persistencia local con Room

Documentación oficial: Save data in a local database using Room
Documentación oficial versiones librería: Room
Video Tutorial (Inglés): Philipp Lackner
Video Tutorial (Castellano): Martin Kiperszmid
Video Tutorial (Castellano): AristiDevs
Video Tutorial (Castellano): Gibrán García

La plataforma Android proporciona dos herramientas principales para el almacenamiento y consulta
de datos estructurados: la base de datos SQLite y Content Providers.

Nosotros vamos a centrarnos en SQLite, aunque no entraremos ni en el diseño de BBDD
relacionales ni en el uso avanzado de la BBDD. Para conocer toda la funcionalidad de SQLite se
recomienda usar la documentación oficial. El problema de trabajar directamente con esta API es
que es un trabajo a bajo nivel que puede llevar a errores en tiempo de ejecución.

Por este motivo Android Jetpack ha proporcionado ORM a modo de capa de abstracción que facilita
enormemente el proceso de codificación La biblioteca que nos va a permitir esta abstracción y se
distribuye como Room.

Dependencias
Para poder usar la funcionalidad de Room y las anotaciones, deberemos añadir una serie de
dependencias y plugins.

Al igual que sucedía con Hilt, en Room vamos a necesitar algún tipo de procesador de anotaciones.
Las primeras versiones usaban
KAPT, pero como con Hilt, Room ya está migrado a KSP. Por tanto, si ya estamos usando Hilt no
necesitaremos añadir el plugin de KSP. No obstante vamos a recordar los pasos...

Nota

Existen otras opciones de terceros como SQLDelight (SQLite) pero no están tan integradas
Android Studio como Room. Aunque, es una opción muy válida otros SO Kotlin Multipltaform.
Incluso si nos decidimos por usar Firestore, existe la posibilidad de usarlo de forma offline



2/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room
https://developer.android.com/jetpack/androidx/releases/room
https://www.youtube.com/watch?v=bOd3wO0uFr8
https://www.youtube.com/watch?v=TKZRiq4GDuc
https://www.youtube.com/watch?v=lYBb4QedYH8
https://www.youtube.com/watch?v=Yu-Ty8T28ag
https://developer.android.com/training/data-storage/sqlite?hl=es
https://developer.android.com/training/data-storage/room
https://sqldelight.github.io/sqldelight/2.0.2/android_sqlite/
https://www.youtube.com/watch?v=nmKyP-uEUXs
https://firebase.google.com/docs/firestore/quickstart?hl=es-419#android
https://cloud.google.com/firestore/docs/manage-data/enable-offline?hl=es-419#kotlin+ktxandroid

En el catálogo de versiones lib.versions.toml deberemos comprobar que hemos definido tener:

[versions]

kotlin = "2.0.20"

ksp = "2.0.20-1.0.25"

room = "2.6.1"

[libraries]

androidx-room-ktx = { group = "androidx.room", name = "room-ktx", version.ref = "room" }

androidx-room-compiler = { group = "androidx.room", name = "room-compiler", version.ref = "room" }

[plugins]

devtools-ksp = { id = "com.google.devtools.ksp", version.ref = "ksp" }

En el build.gradle.kts raíz del proyecto añadiremos el siguiente plugin:

plugins {

 alias(libs.plugins.devtools.ksp) apply false

}

En el build.gradle.kts del módulo de la aplicación (app) añadiremos:

plugins {

 alias(libs.plugins.devtools.ksp)

}

...

dependencies {

 implementation(libs.androidx.room.ktx)

 ksp(libs.androidx.room.compiler)

}

La versión de la librería puede cambiar, pero puedes ver los últimos releases de la misma en el
siguiente enlace: Room

Componentes de Room
Para trabajar con Room debemos familiarizarnos con su
arquitectura que está compuesta por tres partes principales:

Entity (Entities), serán las clases que definirán las entidades
de nuestra Base de datos, que corresponden con cada tabla
que la forman.

3/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/room

DAOs (Data Access Objects), en este caso serán las clases
abstractas o interfaces donde estarán definidos los métodos
que nos permitirán la operatividad (inserción, consulta, etc)
con cada una de las tablas de la Base de Datos.
RoomDatabase (Room Database), contiene la Base de Datos
y el acceso a esta, a la vez que une los dos anteriores
conceptos.

Una vez que se creen estos tres elementos, la app podrá acceder a los DAOs a través de las
instancias de Room Database que creemos, de forma más estable que con el acceso directo a la API
de SQLite.

El uso de Room se hace a través de Anotaciones añadidas a las clases e interfaces, las principales
son:

 @Entity , indica que la clase a la que se atribuye debe ser tratada como una entidad.
 @Dao , debe de añadirse a las interfaces que queremos que sean nuestras Daos. Dentro de
estas interfaces se utilizan otras anotaciones que veremos más adelante.
 @Database , se añadirá a las Room Database he indicará que es una Database, estas clases
deben ser abstractas y heredar de RoomDatabase.

Añadiendo paquete room al proyecto
Recuerda que en la distribución de paquetes que se propuso a principio de curso. Dentro del paquete
 .data vamos a crear un paquete por cada una de las fuentes de datos que tengamos. En este caso,
como vamos a usar Room, crearemos un paquete denominado .data.room y dentro del él vamos a
crear los componentes que hemos mencionado y que concretaremos a continuación.

4/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Crear las entidades que definen nuestro modelo
Para definir la persistencia con Room, utilizaremos lo que denominaremos 'Code First', 'Model First' o
'Entity First', es decir, primero definiremos las entidades que queremos persistir y sus relaciones.
Posteriormente, a partir de estas definiciones, se creará la base de datos.

Para ello pues, el primer paso a realizar será el de crear las distintas tablas que tendrá nuestra base
de datos. Cada tabla corresponderá con una clase Entity etiquetada como @Entity en la que
añadiremos los campos correspondiente a la tabla. Vamos a usar un ejemplo sencillo para entender
el funcionamiento:

1. Por ejemplo, si queremos crear una tabla de clientes con los campos dni , nombre y
 apellidos . Crearemos una data class denominada ClienteEntity dentro del paquete
 .data.room.ClienteEntity.kt .
A esta, le añadiremos a la anotación @Entity la propiedad tableName con el nombre de la tabla:
 @Entity(tableName = "idTabla") . Si no lo hiciéramos, la tabla tomaría el nombre de nuestra
entidad.

2. Deberemos decidir cual será nuestra clave primaria para añadir la anotación @PrimaryKey a la
propiedad que decidamos.

Si necesitáramos una clave primaria compuesta por más de un campo, tendríamos que indicarlo
con la propiedad primaryKeys de la anotación @Entity . De igual manera lo haríamos en el

Código de los ejemplos

Si te surge alguna duda o tienes dificultades para completar este tema. Puedes descargar el
proyecto con el código de mismo del siguiente enlace: Proyecto ejemplos



@Entity(tableName = "clientes")

data class ClienteEntity(

 val dni: String,

 val nombre: String,

 val apellidos: String)

1

@Entity(tableName = "clientes")

data class ClienteEntity(

 @PrimaryKey val dni: String,

 val nombre: String,

 val apellidos: String)

3

5/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/defining-data
https://developer.android.com/training/data-storage/room/defining-data#composite-key
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B5_Acceso_a_Datos/room_ejemplo_apuntes_recurso.zip

caso de necesitar una clave ajena, pero en este caso con la propiedad foreignKeys.
Por ejemplo, si tuviéramos otra tabla pedidos en la que relacionáramos el dni de la tabla
 clientes con el dni ajeno de los registros de esta tabla, parentColumns se referiría al dni de
 clientes mientras que dni_cliente en childColumns sería al de pedidos .

No obstante, más adelante veremos como definir relaciones entre objetos en lugar de tablas.
Además, ten en cuenta que la definición correcta de índices nos va a proporcionar mucha
velocidad.

3. Es muy buena práctica usar la etiqueta @ColumnInfo para que futuras modificaciones en la
BD no afecten a mis entidades. Esta propiedad sirve para personalizar la columna de la base
de datos del atributo asociado. Podemos indicar, entre otras cosas, un nombre para la columna
diferente al del atributo. Esto nos permite hacer más independiente la app de la BD. Además nos
permite pasar del camelCasing que el como tendremos los nombres de propiedades
compuestos en Kotlin a snake_casing que es el convenio estándar en las bases de datos. Por
ejemplo, la clave ajena anterior de pedidos sería ...

 @ColumnInfo(name = "dni_cliente")

 val dniCliente: String,

En nuestro ejemplo, al final la Entity quedaría de la siguiente manera:

@Entity(tableName = "clientes")

data class ClienteEntity(

 @PrimaryKey

 @ColumnInfo(name = "dni")

 val dni: String,

 @ColumnInfo(name = "nombre")

 val nombre: String,

 @ColumnInfo(name = "apellidos")

 val apellidos: String)

// Expresaríamos que un pedidos define una clave ajena dni en clientes.

@Entity(tableName = "pedidos",

 foreignKeys = arrayOf(

 ForeignKey(

 entity = ClienteEntity::class,

 parentColumns = arrayOf("dni"),

 // Nombre de la columna en la tabla pedidos

 childColumns = arrayOf("dni_cliente"),

 onDelete = CASCADE)

)

)

data class PedidoEntity(...)

7

8

6/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/room/ForeignKey

4. Es posible que, a veces, quieras expresar una entidad o un objeto de datos como un solo
elemento integral en la lógica de la base de datos, incluso si el objeto contiene varios campos.
En esas situaciones, puedes usar la anotación @Embedded para representar un objeto cuyos
subcampos quieras desglosar en una tabla. Luego, puedes buscar los campos integrados tal
como lo harías con otras columnas individuales. A este tipo de objetos, los denominaremos
'objetos incorporados'
Podemos hacer una analogía entre los 'objetos incorporados' con los que definimos en las
BDOR (Bases de Datos Bbjeto-Relacionales de Oracle o PostgreSQL)
Por ejemplo, la clase ClienteEntity puede incluir un campo de tipo Direccion , que representa
una composición de propiedades llamadas calle , ciudad , pais y codigoPostal . Para
almacenar las columnas compuestas por separado en la tabla, incluye un campo Direccion
en la clase ClienteEntity con anotaciones @Embedded , como se muestra en el siguiente
fragmento de código:

data class Direccion(

 val calle: String?,

 val ciudad: String?,

 val pais: String?,

 @ColumnInfo(name = "codigo_postal")

 val codigoPostal: String?

)

@Entity(tableName = "clientes")

data class ClienteEntity(

 @PrimaryKey

 @ColumnInfo(name = "dni")

 val dni: String,

 @ColumnInfo(name = "nombre")

 val nombre: String,

 @ColumnInfo(name = "apellidos")

 val apellidos: String,

 // Marcamos como embebe @Embedded el campo a descomponer en la tabla

 @Embedded val direccion: Direccion?

)

Del código anterior, la tabla que representa un objeto ClienteEntity contendrá columnas con
los siguientes nombres:

dni nombre apellidos calle ciudad pais codigo_postal

5. A veces, necesitas que la app almacene un tipo de datos personalizado en una sola columna de
base de datos. Para admitir tipos personalizados, debes proporcionar convertidores de tipo, que
son métodos que indican a Room cómo convertir tipos personalizados en tipos conocidos que

7/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Room pueda tratar. Para identificar los conversores de tipo, puedes usar la anotación
 @TypeConverter .
Supongamos que necesitas conservar instancias del tipo LocalDate definido en
 org.jetbrains.kotlinx:kotlinx-datetime para saber la fecha en que se hizo un pedido. Pero la
base de datos para guardar fechas lo hace mediante un Int que representa el TIMESTAMP.
Definiremos primero una clase denominada RoomConverters dentro del paquete .data.room con
todos los métodos convertidores. Ojo, no importa el nombre del método, sino su signatura
(parámetro de entrada y de salida). Por ejemplo para fecha podría ser:

// Estamos presuponiendo que nuestras fechas nunca son nulas.

class RoomConverters {

 @TypeConverter

 fun fromTimestamp(value: Int): LocalDate {

 return LocalDate.fromEpochDays(value)

 }

 @TypeConverter

 fun dateToTimestamp(date: LocalDate): Int {

 return date.toEpochDays()

 }

}

Ahora ya podemos definir nuestra clase PedidoEntity dentro del paquete .data.room ...

Importante

Cuando definamos la BD ya veremos como indicarle que aplique todas las conversiones
definidas.



8/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

@Entity(tableName = "pedidos",

 foreignKeys = arrayOf(

 ForeignKey(

 entity = ClienteEntity::class,

 parentColumns = arrayOf("dni"),

 childColumns = arrayOf("dni_cliente"),

 onDelete = CASCADE)

)

)

data class PedidoEntity(

 // El id será autogenerado insertando un 0.

 @PrimaryKey (autoGenerate = true)

 @ColumnInfo(name = "id")

 val id: Int,

 @ColumnInfo(name = "dni_cliente")

 val dniCliente: Int,

 // Indicamos que siempre debe tener una fecha.

 // Esta en la DB se guardará como un Int.

 @NonNull

 @ColumnInfo(name = "fecha")

 val fecha: LocalDate

)

6

16

9/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Definiendo relaciones entre Objetos
Usando los 'objetos incorporados' podremos hacerlo de forma sencilla.

Relaciones Uno a Muchos entre objetos

Supongamos que queremos definir un nuevo objeto a recuparar que no es una entidad en la BD,
pero quiero que contenga un cliente con todos sus pedidos. De forma análoga a los que
tenemos en las entidades de JPA.

Deberemos definir la clase que exprese la relación y que se completará 'mapeará' automáticamente
cuando la usemos en nuestro DAO.

data class ClienteConPedidos(

 // Sabe recuperar el objeto embebido.

 @Embedded val cliente: ClienteEntity,

 @Relation(

 parentColumn = "dni",

 // Nombre de la columna en la parte del muchos

 entityColumn = "dni_cliente"

)

 val pedidos: List<PedidoEntity>

)

Más adelante, veremos su utilidad y que hay formas más 'simples' de hacerlo.

Información

Puedes saber más sobre como definir otros tipos de relaciones entre objetos con room en el
siguiente enlace



10/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/relationships

Crear los Objetos de Acceso a la Base de Datos
Los DAO serán elementos de tipo Interfaz, en los cuales incluiremos los métodos necesarios de
acceso y gestión a las entidades de la Base de Datos. En tiempo de compilación, Room generará
automáticamente la implementaciones de DAOs que hayamos definido.

Es buena práctica, definir un DAO por cada entidad que tengamos, y en este definir las
funcionalidades asociadas a esta entidad.

Para que una interfaz sea gestionada como DAO, habrá que añadir la anotación @Dao , siguiendo
nuestro ejemplo tendríamos:

@Dao

interface ClienteDao

{

 ...

}

Para poder operar con la funcionalidad de Room, se necesitará hacer las llamadas fuera del hilo
principal ya que las instancias de RoomDatabase son costosas en cuanto a tiempo, por lo que será
necesario lanzar estas llamadas mediante corrutinas. La manera recomendada es la de crear los
métodos de la interfaces DAO como métodos de suspensión.

Dentro de un DAO podemos crear dos tipos distintos de métodos, de conveniencia y de búsqueda.

11/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/accessing-data

Métodos de conveniencia
Estos métodos nos permiten realizar las operaciones básicas de inserción, modificación y
eliminación de registros en la BD sin tener que escribir ningún tipo de código SQL. A estos métodos
se le pasa la entidad sobre la que se quiera trabajar y es la propia librería Room la encargada de
crear la sentencia SQL usando la clave primaria para la identificación del registro sobre el que se
quiere operar. Deberán ir precedidos por las anotaciones @Insert, @Delete o @Update
dependiendo de la necesidad. Por ejemplo, en nuestro caso, para la entidad ClienteEntity
crearemos ClienteDao en su mismo paquete de la siguiente manera...

@Dao

interface ClienteDao {

 @Insert(onConflict = OnConflictStrategy.REPLACE)

 suspend fun insert(cliente : ClienteEntity)

 @Delete

 suspend fun delete(cliente : ClienteEntity)

 @Update

 suspend fun update(cliente : ClienteEntity)

 // Si no pasamos la entidad y lo que tenemos

 // es la PK deberemos hacer una consulta con @Query

 // pasando la PK como parámetro.

 @Query("DELETE FROM clientes WHERE dni = :dni")

 suspend fun deleteByDni(dni: String)

}

Como se puede ver en el anterior código, es una manera muy sencilla de realizar las operaciones
básicas usando las anotaciones correspondientes y pasando como parámetro al método la Entidad
sobre la que queremos operar. En el caso de la inserción podemos ver que se puede utilizar la
propiedad onConflict para indicar si queremos reemplazar el elemento existente por el nuevo en
caso de que coincida la clave primaria (en este caso el dni).

12/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Métodos de búsqueda
Estos métodos serán los que crearemos para realizar consultas sobre la BD y tendrán que ir
precedidos por la anotación @Query. Esta anotación permite que se añada como parámetro una
cadena con la sentencia SQL para la consulta. Por ejemplo, podemos completar nuestro DAO de la
siguiente manera....

@Dao

interface ClienteDao {

 // ... aquí van los métodos de conveniencia CRUD

 @Query("SELECT * FROM clientes")

 suspend fun get(): List<ClienteEntity>

 @Query("SELECT * FROM clientes WHERE dni IN (:dni)")

 suspend fun getFromDni(dni : String): ClienteEntity

 @Query("SELECT COUNT(*) FROM clientes")

 suspend fun count(): Int

}

Los dos primeros métodos de nuestro DAO, son dos métodos de consulta, el primero devuelve una
lista de Clientes mientras que el segundo devuelve un solo cliente. Como ya hemos visto, Room
permite pasar un parámetro o una lista de parámetros dentro de la propia consulta siempre que lo
precedamos con : y que coincida en nombre con el parámetro que le llega al método.

Selección de un subconjunto de columnas

En muchas ocasiones no será necesaria toda la información de la tabla, sino que solo necesitaremos
recuperar algunas de las columnas a modo de DTO. Aunque se puede recuperar toda la informació y
posteriormente realizar un filtrado de esta, para ahorrar recursos es interesante consultar solamente
los campos que se necesitan. Para ello, necesitaremos crear un objeto del tipo de columnas que
queramos devolver, esto se podrá hacer usando una data class nueva para esos datos:

data class NombreApellidosDTO(

 @ColumnInfo(name = "nombre")

 val nombre: String,

 @ColumnInfo(name = "apellidos")

 val apellidos: String

)

13/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Y solamente se tendrá que indicar en el Dao que el método correspondiente devolverá los datos de
este tipo:

@Query("SELECT nombre, apellidos FROM clientes")

suspend fun getNombreApellido(): List<NombreApellidosDTO>

Por ejemplo, si quisiéramos recuperar el mapeo de la clase ClienteConPedidos que definimos en la
relación uno a muchos entre objetos. Deberíamos marcar el método con anotación @Transaction ,
pues en su interior hay una anotación @Relation que se deberá completar antes de devolver la
instancia del objetos.

@Transaction

// Fíjate que no indicamos la relación en la consulta ya está definida

// en el objeto a recuperar.

@Query("SELECT * FROM clientes")

// Fíjate que devuelve una lista de objetos ClienteConPedidos

suspend fun getPedidos(): List<ClienteConPedidos>

Sin embargo si la relación ya la definimos al definir las entidades podemos hacerlo mediante un
 JOIN sin necesidad de definir el objeto ClienteConPedidos ni ningún tipo de DTO de la siguiente
manera.

@Query("SELECT * FROM clientes JOIN pedidos ON clientes.dni = pedidos.dni_cliente")

suspend fun obtenerClientesConPedidos(): Map<ClienteEntity, List<PedidoEntity>>

Fíjate que en este caso, el método devuelve un Map en el que la clave es un ClienteEntity y el
valor todos los PedidoEntity asociados a este.

14/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Crear la Base de Datos Room y consumirla
El último elemento que quedaría por crear sería la RoomDatabase. Este elemento es el que se
encargará de crear la base de datos a partir de las entidades definidas y las operaciones que se
realizarán sobre estas a partir de los DAOs de nuestra app. Por tanto, es el elemento que enlaza a
los dos anteriores. Para ello crearemos una clase abstracta que deberá de heredar de RoomDatabase
y a la que etiquetaremos con la anotación @Database con las propiedades versión y entities. La
primera propiedad especificará la versión de la BD, mientras que en entities indicaremos la entidad o
entidades asociadas a esta.

Instanciar la RoomDatabase para su posterior
funcionamiento
Una vez creados todos los componentes necesarios para el funcionamiento de Room Database,
deberemos poder crear una instancias de la misma. Para ello, podemos definir un método de clase
denominado fun getDatabase(context: Context) que usaremos posteriormente para que Hilt sepa
crear una instancia del mismo e inyectarlo al obtener el DAO como veremos más adelante.

@Database(

 entities = [ClienteEntity::class, PedidoEntity::class],

 version = 1

)

// Indicaremos las conversiones de tipos que hemos definido para

// nuestra base de datos si las hay. Ej. LocalDate ↔ Long o Bitmap ↔ byte[]

@TypeConverters(RoomConverters::class)

abstract class TiendaDB: RoomDatabase() {

 // Cada RoomDatabase definirá métodos abstractos que devolverá

 // los tipos de **`DAO`** definidos y cuando instanciemos

 // la base de datos, obtendremos una instancia de

 // estos DAOs a través de ellos.

 abstract fun clienteDao() : ClienteDao

 abstract fun pedidoDao() : PedidoDao

}

2

7

14

15

15/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room#database

Si te fijas Room.databaseBuilder precisa del contexto de la aplicación para poder crear el fichero
 tienda que contendrá la BD.

Preparando la Base de Datos y los DAOs con Hilt
En el fichero AppModule.kt dentro del paquete .di prepararemos la inyección de dependencias de
la siguiente manera:

1. Para inyectar la BD definimos provideTiendaDatabase que llama al método estático
 TiendaDB.getDatabase(context) para instanciarla. Fíjate que el contexto de la aplicación se
inyecta usando la anotación @ApplicationContext de Hilt.

2. Para inyectar los DAOs, definimos provideClienteDao y providePedidoDao que inyectan los
DAOs de la BD. Fíjate que se inyecta la BD y se llama a los métodos abstractos que devuelven
los DAOs.

@Database(

 entities = [ClienteEntity::class, PedidoEntity::class],

 version = 1

)

@TypeConverters(RoomConverters::class)

abstract class TiendaDB: RoomDatabase() {

 abstract fun clienteDao() : ClienteDao

 abstract fun pedidoDao() : PedidoDao

 companion object {

 fun getDatabase(

 context: Context

) = Room.databaseBuilder(

 context,

 TiendaDB::class.java, "tienda"

)

 .allowMainThreadQueries()

 .fallbackToDestructiveMigration()

 .build()

 }

}

14

@Provides

@Singleton

fun provideTiendaDatabase(

 @ApplicationContext context: Context

): TiendaDB = TiendaDB.getDatabase(context)

4

16/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Inyectando los DAOs en los repositorios
Para inyectar los DAOs en los repositorios, deberemos añadirlos como propiedades privadas en los
constructores de estos. Por ejemplo, en el caso del repositorio de ClienteRepository deberemos
añadir el DAO de ClienteDao como parámetro del constructor.

Cargando datos de prueba en la BD
Este proceso se puede realizar de diferentes maneras, pero una forma de hacerlo de manera
centralizada es en el momento de carga de la aplicación, por ejemplo invalidando el método
 onCreate de la clase TiendaAplication que recordemos hereda de Application .

Fíjate que a través de la anotación @Inject Hilt será capaz de crear una instancia de ClienteDao y
por ende de TiendaDB en la propiedad daoClientes la primera vez que se use al ejecutar el método
 onCreate para cargar los datos de prueba.

@Provides

@Singleton

fun provideClienteDao(

 tiendaDB: TiendaDB

): ClienteDao = tiendaDB.clienteDao()

@Provides

@Singleton

fun providePedidoDao(

 tiendaDB: TiendaDB

): PedidoDao = tiendaDB.pedidoDao()

4

10

class ClienteRepository @Inject constructor(

 private val clienteDao: ClienteDao

) {

 ...

}

2

Importante

Recuerda que, tal y como hicimos a principio de curso con las clases de prueba. Deberemos
definir los métodos de extensión que transformen un ClienteEntity en un objeto Cliente del
modelo para su uso en el ViewModel y viceversa.



17/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

Ubicación de la Base de Datos en el dispositivo
Si abrimos el Device Explorer de Android Studio, podremos ver que
se ha creado un fichero tienda en la ruta
 data/data/<nombre_paquete>/databases . Este fichero es la base de
datos que hemos creado y que se ha guardado en el dispositivo.
Podremos ver su contenido si la copiamos con cualquier herramienta
de gestión de bases de datos SQLite como DBeaver.

Pixel 3a
[data]

[data]
[com.pmdm.tienda]

[databases]
tienda
tienda-shm
tienda-wal

Aunque hay formas de mantener versiones de la BD y migrar de una a otra. La opción más sencilla
es ante un cambio en alguna de las entidades sería eliminar la BD y volver a crearla. Para ello,
podemos usar la propiedad fallbackToDestructiveMigration() en el método databaseBuilder que
hemos usado para crear la BD o símplmente borrarla usando el Device Explorer y volver a ejecutar
la app.

Inspeccionando y depurando la BD con Database
Inspector
Existe la posibilidad de probar las consultas e inspeccionar la base de datos en tiempo de ejecución.
Para ello, la herramienta de Android Studio Database Inspector.

@HiltAndroidApp

class TiendaAplication: Application() {

 @Inject

 lateinit var daoClientes: ClienteDao

 override fun onCreate() {

 super.onCreate()

 runBlocking {

 if (daoClientes.count() == 0) {

 daoClientes.insert(

 ClienteEntity("12345678A", "Juan", "Pérez"))

 daoClientes.insert(

 ClienteEntity("87654321B", "María", "García"))

 }

 }

}

4

5

18/18 PMDM 2º DAM Tema 5.1 - Room Rev. 09/01/2025 IES Doctor Balmis

https://developer.android.com/training/data-storage/room/migrating-db-versions
https://developer.android.com/studio/inspect/database

