
Añadiendo Navegación la Agenda
Descargar estos apuntes

🎓 Caso de Estudio
Vamos a partir de nuestra Agenda de Contactos con Scaffold del caso de estudio anterior en la que
teníamos dos pantallas y vamos a hacer una navegación simple entre ellas.

Paso 1: Definiendo las rutas o destinos de navegación
En el paquete .ui.navagation vamos a definir la ruta raíz o pantalla inicial de nuestra navegación
que será la pantalla de Contactos definida en ListaContactosScreen.kt . Para ello definimos en el
paquete que acabamos de definir el archivo ListaContactosRoute.kt donde definiremos las
funciones de extensión con las rutas a la pantalla de Contactos y que nos permitan navegar a la
misma.

@Serializable

object ListaContactosRoute

// Definimos la función de extensión para definir las rutas a dicha pantalla

// y en esta ocasión en lugar de pasar el NavController, le pasamos los

// callbacks que nos permitirán navegar desde la definición del NavHost.

fun NavGraphBuilder.listaContactosScreen(

 vm : ListaContactosViewModel,

 onNavigateCrearContacto: () -> Unit,

 onNavigateEditarContacto: (idContacto: Int) -> Unit

) { ...

1/6 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/ejercicios/B_4_2_Navegacion/0_Agenda_navegacion.pdf

Para definir nuestra ruta, podemos partir de la función que emitía dicha pantalla en el el
 MainActivity del caso de estudio anterior.
Fíjate que al definir los callbacks de editar y crear contacto les pasamos los callbacks que nos
permitirán navegar a la pantalla FormContactoScreen.kt de una forma u otra.

 composable<ListaContactosRoute> {

 ListaContactosScreen(

 contactosState = vm.contactosState,

 contactoSeleccionadoState = vm.contatoSleccionadoState,

 filtradoActivoState = vm.filtradoActivoState,

 filtroCategoriaState = vm.filtroCategoriaState,

 informacionEstadoState = vm.informacionEstadoState,

 onActualizaContactos = { vm.cargaContactos() },

 onActivarFiltradoClicked = { vm.onActivarFiltradoClicked() },

 onFiltroModificado = { categorias -> vm.onFiltroModificado(categorias) },

 onContactoClicked = { c ->

 vm.onItemListaContatoEvent(ItemListaContactosEvent.OnClickContacto(c))

 },

 onAddClicked = {

 vm.onItemListaContatoEvent(

 ItemListaContactosEvent.OnCrearContacto(

 onNavigateCrearContacto

)

)

 },

 onEditClicked = {

 vm.onItemListaContatoEvent(

 ItemListaContactosEvent.OnEditContacto(

 onNavigateEditarContacto

)

)

 },

 onDeleteClicked = {

 vm.onItemListaContatoEvent(ItemListaContactosEvent.OnDeleteContacto)

 }

)

 }

}

2/6 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Para que compile el código anterior, tendremos que haber definido dos nuevos tipos de evento en
 ItemListaContactosEvent.kt para crear y editar un contacto.

Además, en ListaContactosViewModel.kt deberemos gestionarlos en el switch de eventos.

sealed class ItemListaContactosEvent {

 data class OnClickContacto(val contacto : ContactoUiState)

 : ItemListaContactosEvent()

 data class OnCrearContacto(

 val onNavigateCrearContacto: () -> Unit

) : ItemListaContactosEvent()

 data class OnEditContacto(

 val onNavigateEditarContacto: (idContacto: Int) -> Unit

) : ItemListaContactosEvent()

 object OnDeleteContacto

 : ItemListaContactosEvent()

}

4

9

fun onItemListaContatoEvent(e: ItemListaContactosEvent) {

 when (e) {

 ...

 is ItemListaContactosEvent.OnCrearContacto -> {

 e.onNavigateCrearContacto()

 }

 is ItemListaContactosEvent.OnEditContacto -> {

 e.onNavigateEditarContacto(contatoSleccionadoState!!.id)

 }

 }

}

4

9

3/6 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Vamos ahora a realizar el mismo proceso para la pantalla de FormContactoScreen.kt . Para ello
definimos en el paquete .ui.navagation el archivo FormContactoRoute.kt .

Fíjate que como vamos a recibir el id del contacto a editar, definimos un data class con un campo
opcional para el id. Además, definimos la función de extensión que nos permitirá navegar al
destino con la pantalla de FormContactoScreen.kt .

@Serializable

data class FormContactoRoute(val id: Int? = null)

fun NavGraphBuilder.formContactoDestination(

 vm : ContactoViewModel,

 onNavigateTrasFormContacto: (actualizaContactos : Boolean) -> Unit

) {

 composable<FormContactoRoute> { backStackEntry ->

 vm.setContactoState(backStackEntry.toRoute<FormContactoRoute>().id)

 FormContactoScreen(

 contactoState = vm.contactoState,

 validacionContactoState = vm.validacionContactoState,

 informacionEstado = vm.informacionEstadoState,

 onContactoEvent = vm::onContactoEvent,

 onNavigateTrasFormContacto = onNavigateTrasFormContacto

)

 }

}

1

2

9

4/6 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Para terminar de definir la navegación, vamos a definir el componente que contiene nuestro
 NavHost . En él, crearemos el NavController por ser el elemento más alto en la jerarquía de
navegación de nuestra UI y además los ViewModels . Para ello, crearemos el fichero
 AgendaNavHost.kt en el paquete .ui.navagation . Además, si te fijas pararemos a la definición de
las rutas los callbacks de navegación.

Importante

Para acceder al parámetro de navegación hemos usado
 backStackEntry.toRoute<FormContactoRoute>().id . Pero como comentábamos en los
apuntes puede ser que esta composición se realice varias veces con lo que al 'setear' el id
en el VM volveremos a burcar los datos del contacto en la base de datos y perderemos
cualquier modificación es por eso que en la función setContactoState del
 ContactoViewModel deberemos comprobar si ya tenemos el contacto cargado....



fun setContactoState(idContacto: Int?) {

 if (idContacto != null && idContacto != contactoState.id) {

 viewModelScope.launch {

 editandoContactoExistenteState = true

 val c: Contacto = contactoRepository.get(idContacto)

 ?: throw ContactoViewModelException(

 "El id $idContacto no existe en la base de datos"

)

 contactoState = c.toContactoUiState()

 validacionContactoState = validadorContacto.valida(contactoState)

 }

 }

}

2

5/6 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun AgendaNavHost() {

 val navController = rememberNavController()

 val vmLc = hiltViewModel<ListaContactosViewModel>()

 val vmFc = hiltViewModel<ContactoViewModel>()

 NavHost(

 navController = navController,

 startDestination = ListaContactosRoute

) {

 listaContactosDestination(

 vm = vmLc,

 onNavigateCrearContacto = {

 vmFc.clearContactoState()

 navController.navigate(FormContactoRoute())

 },

 onNavigateEditarContacto = { idContacto ->

 vmFc.clearContactoState()

 navController.navigate(FormContactoRoute(idContacto))

 }

)

 formContactoDestination(

 vm = vmFc,

 onNavigateTrasFormContacto = { actualizaContactos ->

 navController.popBackStack()

 if (actualizaContactos) {

 vmLc.cargaContactos()

 }

 }

)

 }

}

Solución

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solución de este caso de estudio del siguiente enlace: propuesta de solución



6/6 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/ejercicio4_2/ejercicio0/0_AgendaNavegacion_recurso.zip

