Anadiendo Navegacion la Agenda

Descargar estos apuntes

® Caso de Estudio

Vamos a partir de nuestra Agenda de Contactos con Scaffold del caso de estudio anterior en la que
teniamos dos pantallas y vamos a hacer una navegacion simple entre ellas.

Paso 1: Definiendo las rutas o destinos de navegacién

En el paquete .ui.navagation vamos a definir la ruta raiz o pantalla inicial de nuestra navegacion
que sera la pantalla de Contactos definida en ListaContactosScreen.kt . Para ello definimos en el
paquete que acabamos de definir el archivo ListaContactosRoute.kt donde definiremos las
funciones de extension con las rutas a la pantalla de Contactos y que nos permitan navegar a la
misma.

@Serializable

object ListaContactosRoute

fun NavGraphBuilder.listaContactosScreen(
vm : ListaContactosViewModel,
onNavigateCrearContacto: () -> Unit,

onNavigateEditarContacto: (idContacto: Int) -> Unit

Yy { ...

1/6 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/ejercicios/B_4_2_Navegacion/0_Agenda_navegacion.pdf

Para definir nuestra ruta, podemos partir de la funciéon que emitia dicha pantalla en el el
MainActivity del caso de estudio anterior.

Fijate que al definir los callbacks de editar y crear contacto les pasamos los callbacks que nos
permitiran navegar a la pantalla FormContactoScreen.kt de una forma u otra.

composable<ListaContactosRoute> {
ListaContactosScreen(
contactosState = vm.contactosState,
contactoSeleccionadoState = vm.contatoSleccionadoState,
filtradoActivoState = vm.filtradoActivoState,
filtroCategoriaState = vm.filtroCategoriaState,
informacionEstadoState = vm.informacionEstadoState,
onActualizaContactos = { vm.cargaContactos() },
onActivarFiltradoClicked = { vm.onActivarFiltradoClicked() },
onFiltroModificado = { categorias -> vm.onFiltroModificado(categorias) },
onContactoClicked = { c ->
vm.onItemListaContatoEvent(ItemListaContactosEvent.OnClickContacto(c))
¥
onAddClicked = {
vm.onItemListaContatoEvent(
ItemListaContactosEvent.OnCrearContacto(

onNavigateCrearContacto

}s
onEditClicked = {

vm.onItemListaContatoEvent(
ItemListaContactosEvent.OnEditContacto(
onNavigateEditarContacto

}s
onDeleteClicked = {

vm.onItemListaContatoEvent(ItemListaContactosEvent.OnDeleteContacto)

2/6 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Para que compile el cddigo anterior, tendremos que haber definido dos nuevos tipos de evento en
ItemListaContactosEvent.kt para crear y editar un contacto.

sealed class ItemListaContactosEvent {
data class OnClickContacto(val contacto : ContactoUiState)
: ItemListaContactosEvent()
data class OnCrearContacto(
val onNavigateCrearContacto: () -> Unit
) : ItemListaContactosEvent()
data class OnEditContacto(
val onNavigateEditarContacto: (idContacto: Int) -> Unit
) : ItemListaContactosEvent()
object OnDeleteContacto
: ItemListaContactosEvent()

Ademas, en ListaContactosViewModel.kt deberemos gestionarlos en el switch de eventos.

fun onItemListaContatoEvent(e: ItemListaContactosEvent) {
when (e) {

is ItemListaContactosEvent.OnCrearContacto -> {
e.onNavigateCrearContacto()

}

is ItemListaContactosEvent.OnEditContacto -> {

e.onNavigateEditarContacto(contatoSleccionadoState!!.id)

3/6 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Vamos ahora a realizar el mismo proceso para la pantalla de FormContactoScreen.kt . Para ello

definimos en el paquete .ui.navagation el archivo FormContactoRoute.kt .

Fijate que como vamos a recibir el id del contacto a editar, definimos un data class con un campo
opcional para el id. Ademas, definimos la funcién de extensién que nos permitira navegar al
destino con la pantalla de FormcontactoScreen.kt .

@Serializable

data class FormContactoRoute(val id: Int? = null)

fun NavGraphBuilder.formContactoDestination(
vm : ContactoViewModel,

onNavigateTrasFormContacto: (actualizaContactos : Boolean) -> Unit

) o
composable<FormContactoRoute> { backStackEntry ->
vm.setContactoState(backStackEntry.toRoute<FormContactoRoute>().id)
FormContactoScreen(
contactoState = vm.contactoState,
validacionContactoState = vm.validacionContactoState,
informacionEstado = vm.informacionEstadoState,
onContactoEvent = vm::onContactoEvent,
onNavigateTrasFormContacto = onNavigateTrasFormContacto
)
}
}

4/6 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

¢) Importante

Para acceder al parametro de navegacion hemos usado
backStackEntry.toRoute<FormContactoRoute>().id . Pero como comentabamos en los
apuntes puede ser que esta composicidn se realice varias veces con lo que al 'setear’ el id
en el VM volveremos a burcar los datos del contacto en la base de datos y perderemos
cualquier modificacion es por eso que en la funcion setcontactostate del
ContactoViewModel deberemos comprobar si ya tenemos el contacto cargado....

fun setContactoState(idContacto: Int?) {
if (idContacto != null && idContacto != contactoState.id) {

viewModelScope.launch {
editandoContactoExistenteState = true
val c: Contacto = contactoRepository.get(idContacto)

?: throw ContactoViewModelException(
"El id $idContacto no existe en la base de datos"

)
contactoState = c.toContactoUiState()
validacionContactoState = validadorContacto.valida(contactoState)

Para terminar de definir la navegacion, vamos a definir el componente que contiene nuestro
NavHost . En €él, crearemos el NavController por ser el elemento mas alto en la jerarquia de

navegacion de nuestra Ul y ademas los ViewModels . Para ello, crearemos el fichero
AgendaNavHost.kt €n el paquete .ui.navagation . Ademas, site fijas pararemos a la definicion de

las rutas los callbacks de navegacion.

5/6 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun AgendaNavHost() {
val navController = rememberNavController()
val vmLc = hiltViewModel<ListaContactosViewModel>()
val vmFc = hiltViewModel<ContactoViewModel>()

NavHost (
navController = navController,

startDestination = ListaContactosRoute
) A
listaContactosDestination(
vm = vmLc,
onNavigateCrearContacto = {
vmFc.clearContactoState()
navController.navigate(FormContactoRoute())
1
onNavigateEditarContacto = { idContacto ->
vmFc.clearContactoState()

navController.navigate(FormContactoRoute(idContacto))

)

formContactoDestination(
vm = vmFc,
onNavigateTrasFormContacto = { actualizaContactos ->
navController.popBackStack()
if (actualizaContactos) {

vmLc.cargaContactos()

o Solucién

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solucion de este caso de estudio del siguiente enlace: propuesta de solucion

6/6 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/ejercicio4_2/ejercicio0/0_AgendaNavegacion_recurso.zip

