
Añadiendo Navegación la Agenda
Descargar estos apuntes

🎓 Caso de Estudio
Vamos a partir de nuestra Agenda de Contactos con Scaffold del caso de estudio anterior en la que
teníamos dos pantallas y vamos a hacer una navegación simple entre ellas.

Paso 1: Definiendo las rutas o destinos de navegación
En el paquete  .ui.navagation  vamos a definir la ruta raíz o pantalla inicial de nuestra navegación
que será la pantalla de Contactos definida en  ListaContactosScreen.kt . Para ello definimos en el
paquete que acabamos de definir el archivo  ListaContactosRoute.kt  donde definiremos las
funciones de extensión con las rutas a la pantalla de Contactos y que nos permitan navegar a la
misma.

@Serializable

object ListaContactosRoute

// Definimos la función de extensión para definir las rutas a dicha pantalla

// y en esta ocasión en lugar de pasar el NavController, le pasamos los 

// callbacks que nos permitirán navegar desde la definición del NavHost.

fun NavGraphBuilder.listaContactosScreen(

    vm : ListaContactosViewModel,

    onNavigateCrearContacto: () -> Unit,

    onNavigateEditarContacto: (idContacto: Int) -> Unit

) { ...
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Para definir nuestra ruta, podemos partir de la función que emitía dicha pantalla en el el
 MainActivity  del caso de estudio anterior.
Fíjate que al definir los callbacks de editar y crear contacto les pasamos los callbacks que nos
permitirán navegar a la pantalla  FormContactoScreen.kt  de una forma u otra.

    composable<ListaContactosRoute> {

        ListaContactosScreen(

            contactosState = vm.contactosState,

            contactoSeleccionadoState = vm.contatoSleccionadoState,

            filtradoActivoState = vm.filtradoActivoState,

            filtroCategoriaState = vm.filtroCategoriaState,

            informacionEstadoState = vm.informacionEstadoState,

            onActualizaContactos =  { vm.cargaContactos() },

            onActivarFiltradoClicked = { vm.onActivarFiltradoClicked() },

            onFiltroModificado = { categorias -> vm.onFiltroModificado(categorias) },

            onContactoClicked = { c ->

                vm.onItemListaContatoEvent(ItemListaContactosEvent.OnClickContacto(c))

            },

            onAddClicked = {

                vm.onItemListaContatoEvent(

                    ItemListaContactosEvent.OnCrearContacto(

                        onNavigateCrearContacto

                    )

                )

            },

            onEditClicked = {

                vm.onItemListaContatoEvent(

                    ItemListaContactosEvent.OnEditContacto(

                        onNavigateEditarContacto

                    )

                )

            },

            onDeleteClicked = {

                vm.onItemListaContatoEvent(ItemListaContactosEvent.OnDeleteContacto)

            }

        )

    }

}
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Para que compile el código anterior, tendremos que haber definido dos nuevos tipos de evento en
 ItemListaContactosEvent.kt  para crear y editar un contacto.

Además, en  ListaContactosViewModel.kt  deberemos gestionarlos en el switch de eventos.

sealed class ItemListaContactosEvent {

    data class OnClickContacto(val contacto : ContactoUiState) 

        : ItemListaContactosEvent()

    data class OnCrearContacto(

        val onNavigateCrearContacto: () -> Unit

    ) : ItemListaContactosEvent()

    data class OnEditContacto(

        val onNavigateEditarContacto: (idContacto: Int) -> Unit

    ) : ItemListaContactosEvent()

    object OnDeleteContacto 

        : ItemListaContactosEvent()

}
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fun onItemListaContatoEvent(e: ItemListaContactosEvent) {

    when (e) {

        ...

        is ItemListaContactosEvent.OnCrearContacto -> {

            e.onNavigateCrearContacto()

        }

        is ItemListaContactosEvent.OnEditContacto -> {

            e.onNavigateEditarContacto(contatoSleccionadoState!!.id)

        }

    }

}
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Vamos ahora a realizar el mismo proceso para la pantalla de  FormContactoScreen.kt . Para ello
definimos en el paquete  .ui.navagation  el archivo  FormContactoRoute.kt .

Fíjate que como vamos a recibir el id del contacto a editar, definimos un data class con un campo
opcional para el id. Además, definimos la función de extensión que nos permitirá navegar al
destino con la pantalla de  FormContactoScreen.kt .

@Serializable

data class FormContactoRoute(val id: Int? = null)

fun NavGraphBuilder.formContactoDestination(

    vm : ContactoViewModel,

    onNavigateTrasFormContacto: (actualizaContactos : Boolean) -> Unit

) {

    composable<FormContactoRoute> { backStackEntry ->

        vm.setContactoState(backStackEntry.toRoute<FormContactoRoute>().id)

        FormContactoScreen(

            contactoState = vm.contactoState,

            validacionContactoState = vm.validacionContactoState,

            informacionEstado = vm.informacionEstadoState,

            onContactoEvent = vm::onContactoEvent,

            onNavigateTrasFormContacto = onNavigateTrasFormContacto

        )

    }

}
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Para terminar de definir la navegación, vamos a definir el componente que contiene nuestro
 NavHost . En él, crearemos el  NavController  por ser el elemento más alto en la jerarquía de
navegación de nuestra UI y además los  ViewModels . Para ello, crearemos el fichero
 AgendaNavHost.kt  en el paquete  .ui.navagation . Además, si te fijas pararemos a la definición de
las rutas los callbacks de navegación.

Importante

Para acceder al parámetro de navegación hemos usado
 backStackEntry.toRoute<FormContactoRoute>().id . Pero como comentábamos en los
apuntes puede ser que esta composición se realice varias veces con lo que al 'setear' el id
en el VM volveremos a burcar los datos del contacto en la base de datos y perderemos
cualquier modificación es por eso que en la función  setContactoState  del
 ContactoViewModel  deberemos comprobar si ya tenemos el contacto cargado....



fun setContactoState(idContacto: Int?) {

    if (idContacto != null && idContacto != contactoState.id) {

        viewModelScope.launch {

            editandoContactoExistenteState = true

            val c: Contacto = contactoRepository.get(idContacto)

                ?: throw ContactoViewModelException(

                    "El id $idContacto no existe en la base de datos"

                   )

            contactoState = c.toContactoUiState()

            validacionContactoState = validadorContacto.valida(contactoState)

        }

    }

}
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@Composable

fun AgendaNavHost() {

    val navController = rememberNavController()

    val vmLc = hiltViewModel<ListaContactosViewModel>()

    val vmFc = hiltViewModel<ContactoViewModel>()

    NavHost(

        navController = navController,

        startDestination = ListaContactosRoute

    ) {

        listaContactosDestination(

            vm = vmLc,

            onNavigateCrearContacto = {

                vmFc.clearContactoState()

                navController.navigate(FormContactoRoute())

            },

            onNavigateEditarContacto = { idContacto ->

                vmFc.clearContactoState()

                navController.navigate(FormContactoRoute(idContacto))

            }

        )

        formContactoDestination(

            vm = vmFc,

            onNavigateTrasFormContacto = { actualizaContactos ->

                navController.popBackStack()

                if (actualizaContactos) {

                    vmLc.cargaContactos()

                }

            }

        )

    }

}

Solución

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solución de este caso de estudio del siguiente enlace: propuesta de solución


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