Anadiendo Navegacion la Agenda

Descargar estos apuntes

® Caso de Estudio

Vamos a partir de nuestra Agenda de Contactos con Scaffold del caso de estudio anterior en la que
teniamos dos pantallas y vamos a hacer una navegacion simple entre ellas.

Paso 1: Definiendo las rutas o destinos de navegacién

En el paquete .ui.navagation vamos a definir la ruta raiz o pantalla inicial de nuestra navegacion
que sera la pantalla de Contactos definida en ListaContactosScreen.kt . Para ello definimos en el
paquete que acabamos de definir el archivo ListaContactosRoute.kt donde definiremos las
funciones de extension con las rutas a la pantalla de Contactos y que nos permitan navegar a la
misma.

@Serializable

object ListaContactosRoute

fun NavGraphBuilder.listaContactosScreen(
vm : ListaContactosViewModel,
onNavigateCrearContacto: () -> Unit,

onNavigateEditarContacto: (idContacto: Int) -> Unit

Yy { ...
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Para definir nuestra ruta, podemos partir de la funciéon que emitia dicha pantalla en el el
MainActivity del caso de estudio anterior.

Fijate que al definir los callbacks de editar y crear contacto les pasamos los callbacks que nos
permitiran navegar a la pantalla FormContactoScreen.kt de una forma u otra.

composable<ListaContactosRoute> {
ListaContactosScreen(
contactosState = vm.contactosState,
contactoSeleccionadoState = vm.contatoSleccionadoState,
filtradoActivoState = vm.filtradoActivoState,
filtroCategoriaState = vm.filtroCategoriaState,
informacionEstadoState = vm.informacionEstadoState,
onActualizaContactos = { vm.cargaContactos() },
onActivarFiltradoClicked = { vm.onActivarFiltradoClicked() },
onFiltroModificado = { categorias -> vm.onFiltroModificado(categorias) },
onContactoClicked = { c ->
vm.onItemListaContatoEvent(ItemListaContactosEvent.OnClickContacto(c))
¥
onAddClicked = {
vm.onItemListaContatoEvent(
ItemListaContactosEvent.OnCrearContacto(

onNavigateCrearContacto

}s
onEditClicked = {

vm.onItemListaContatoEvent(
ItemListaContactosEvent.OnEditContacto(
onNavigateEditarContacto

}s
onDeleteClicked = {

vm.onItemListaContatoEvent(ItemListaContactosEvent.OnDeleteContacto)
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Para que compile el cddigo anterior, tendremos que haber definido dos nuevos tipos de evento en
ItemListaContactosEvent.kt para crear y editar un contacto.

sealed class ItemListaContactosEvent {
data class OnClickContacto(val contacto : ContactoUiState)
: ItemListaContactosEvent()
data class OnCrearContacto(
val onNavigateCrearContacto: () -> Unit
) : ItemListaContactosEvent()
data class OnEditContacto(
val onNavigateEditarContacto: (idContacto: Int) -> Unit
) : ItemListaContactosEvent()
object OnDeleteContacto
: ItemListaContactosEvent()

Ademas, en ListaContactosViewModel.kt deberemos gestionarlos en el switch de eventos.

fun onItemListaContatoEvent(e: ItemListaContactosEvent) {
when (e) {

is ItemListaContactosEvent.OnCrearContacto -> {
e.onNavigateCrearContacto()

}

is ItemListaContactosEvent.OnEditContacto -> {

e.onNavigateEditarContacto(contatoSleccionadoState!!.id)
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Vamos ahora a realizar el mismo proceso para la pantalla de FormContactoScreen.kt . Para ello

definimos en el paquete .ui.navagation el archivo FormContactoRoute.kt .

Fijate que como vamos a recibir el id del contacto a editar, definimos un data class con un campo
opcional para el id. Ademas, definimos la funcién de extensién que nos permitira navegar al
destino con la pantalla de FormcontactoScreen.kt .

@Serializable

data class FormContactoRoute(val id: Int? = null)

fun NavGraphBuilder.formContactoDestination(
vm : ContactoViewModel,

onNavigateTrasFormContacto: (actualizaContactos : Boolean) -> Unit

) o
composable<FormContactoRoute> { backStackEntry ->
vm.setContactoState(backStackEntry.toRoute<FormContactoRoute>().id)
FormContactoScreen(
contactoState = vm.contactoState,
validacionContactoState = vm.validacionContactoState,
informacionEstado = vm.informacionEstadoState,
onContactoEvent = vm::onContactoEvent,
onNavigateTrasFormContacto = onNavigateTrasFormContacto
)
}
}
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¢) Importante

Para acceder al parametro de navegacion hemos usado
backStackEntry.toRoute<FormContactoRoute>().id . Pero como comentabamos en los
apuntes puede ser que esta composicidn se realice varias veces con lo que al 'setear’ el id
en el VM volveremos a burcar los datos del contacto en la base de datos y perderemos
cualquier modificacion es por eso que en la funcion setcontactostate del
ContactoViewModel deberemos comprobar si ya tenemos el contacto cargado....

fun setContactoState(idContacto: Int?) {
if (idContacto != null && idContacto != contactoState.id) {

viewModelScope.launch {
editandoContactoExistenteState = true
val c: Contacto = contactoRepository.get(idContacto)

?: throw ContactoViewModelException(
"El id $idContacto no existe en la base de datos"

)
contactoState = c.toContactoUiState()
validacionContactoState = validadorContacto.valida(contactoState)

Para terminar de definir la navegacion, vamos a definir el componente que contiene nuestro
NavHost . En €él, crearemos el NavController por ser el elemento mas alto en la jerarquia de

navegacion de nuestra Ul y ademas los ViewModels . Para ello, crearemos el fichero
AgendaNavHost.kt €n el paquete .ui.navagation . Ademas, site fijas pararemos a la definicion de

las rutas los callbacks de navegacion.
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@Composable

fun AgendaNavHost() {
val navController = rememberNavController()
val vmLc = hiltViewModel<ListaContactosViewModel>()
val vmFc = hiltViewModel<ContactoViewModel>()

NavHost (
navController = navController,

startDestination = ListaContactosRoute
) A
listaContactosDestination(
vm = vmLc,
onNavigateCrearContacto = {
vmFc.clearContactoState()
navController.navigate(FormContactoRoute())
1
onNavigateEditarContacto = { idContacto ->
vmFc.clearContactoState()

navController.navigate(FormContactoRoute(idContacto))

)

formContactoDestination(
vm = vmFc,
onNavigateTrasFormContacto = { actualizaContactos ->
navController.popBackStack()
if (actualizaContactos) {

vmLc.cargaContactos()

o Solucién

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solucion de este caso de estudio del siguiente enlace: propuesta de solucion
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