Anadiendo Scaffold la Agenda

Descargar estos apuntes

® Caso de Estudio

Vamos a partir de nuestra Agenda de Contactos con Intents en la que teniamos dos pantallas, una
para mostrar los contactos y otra para afadirlos y vamos a afiadir a ambas algun tipo de Scaffold.

Paso 1: Anadir Scaffold al formulario de anadir o editar un
contacto.

Empezaremos con el formulario de contactos. OG0T vit oo 0 d Z
Para ello, vamos a pasarlo afadir un Sacffold
como el de la imagen donde tenemos:

@ ®
1. Un TopAppBar con un titulo y un botén de c.comarcome (s)
navegacion para volver atras. E]] E T
2. El raB de guardar los datos del contacto, ~ g g
pasara a estar gestionado por el Scaffold. G : [‘ ‘
3. Ademas el snackBarHost del Scaffold, nos :
permitira mostrar mensajes de error a | P |
través de un snackBar personalizado tal y .
como se indica en la imagen. B s S eeenes B e
L L

Vemos pues el proceso de como realizarlo:

1. Vamos a borrar la funcién composable Boxscope.Pie que emitia el FAB o el SnackBar, pues
ahora lo hara el Scaffold. Los parametros que recibiese CuerpoFormulario para usar en
dicho composable ya no seran necesarios.

2. Definiremos un composable que emitira nuestro TopAppBar en nuestro caso usaremos

CenterAlignedTopAppBar de Material 3 pues no vamos a tener acciones. Ademas, recibira el
callback para volver atras en la navegacion.

117 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/ejercicios/B_4_1_Scaffold/0_Agenda_scaffold.pdf

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun FormContactoTopAppBar(
scrollBehavior: TopAppBarScrollBehavior = TopAppBarDefaults.pinnedScrollBehavior(),
onNavigateTrasFormContacto: (actualizaContactos: Boolean) -> Unit
) o
CenterAlignedTopAppBar(
scrollBehavior = scrollBehavior,
title = {
Text(text = stringResource(id = R.string.app_name))
¥
navigationIcon = {
IconButton(onClick = { onNavigateTrasFormContacto(false) }) {
Icon(
painter = Filled.getArrowBackIosIcon(),
contentDescription = "Volver a lista de contactos”,

modifier = Modifier.size(ButtonDefaults.IconSize),

}s

}

3. Definiremos un composable que emitira nuestro FAB del Scaffold para guardar los datos del
contacto. Recibira el callback para guardar los datos del contacto.

@Composable
fun FabGuardar(onGuardarContacto: () -> Unit) {
ExtendedFloatingActionButton(
text = { Text(text = "Guardar") },
icon = {
Icon(
painter = Filled.getSaveIcon(),
contentDescription = "Localized description”,

modifier = Modifier.size(FloatingActionButtonDefaults.LargeIconSize),

}s

onClick = onGuardarContacto

2/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

4. Para la gestion del snackBar , tenemos la clase InformacionEstadoUiState definida en la

libreria de componentes del médulo en
com.github.pmdmiesbalmis.components.manejo_errores.InformacionEstadoUiState
InformacionEstadoUiState.kt. Esta nos permita gestionar mensajes de estado tales como
informacion o error en la Ul. En ella, tendremos tres estados para mostrar el SnackBar:

¢ Uno para ocultarlo

¢ Uno para mostrar informacion.

e Uno para mostrar un error.
Esta clase gestionara el estado de visualizacion del componente definido
com.github.pmdmiesbalmis.components.ui.composables SnackbarCommon.kt. Esta se emitira

dentro del snackBarHost del Scaffold.

fun SnackbarCommon(informacionEstado: InformacionEstadoUiState)

Basicamente este composable nos permitira mostrar un SnackBar con un mensaje de
informacion con una barra de progreso circular o un SnackBar con un mensaje de error y un

botén para cerrarlo.

o Cargadon.

3117 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

https://github.com/pmdmiesbalmis/components/blob/main/components/src/main/java/com/github/pmdmiesbalmis/components/manejo_errores/InformacionEstadoUiState.kt
https://github.com/pmdmiesbalmis/components/blob/main/components/src/main/java/com/github/pmdmiesbalmis/components/manejo_errores/InformacionEstadoUiState.kt%5D(https://github.com/pmdmiesbalmis/components/blob/main/components/src/main/java/com/github/pmdmiesbalmis/components/ui/composables/SnackbarCommon.kt)

5. Ya estamos preparados para afiadir el Scaffold a FormContactoScreen que quedara de la

4117

siguiente manera...

Primero redefinimos el prototipo pasando un nuevo parametro InformacionEstadoUiState

para nuestro Scaffold.

OptIn(ExperimentalMaterial3Api::class)

@Composable

fun

)

FormContactoScreen(

contactoState: ContactoUiState,
validacionContactoState: ValidacionContactoUiState,
informacionEstado: InformacionEstadoUiState,
onContactoEvent: (ContactoEvent) -> Unit,

onNavigateTrasFormContacto: (actualizaContactos: Boolean) -> Unit

val scrollBehavior = TopAppBarDefaults.enterAlwaysScrollBehavior()
val snackbarHostState = remember { SnackbarHostState() }

Llamamos al LaunchedEffect para gestionar el estado del snackBar en el snackBarHost del

Scaffold a través de la funcidn cCorrutinaGestionSnackBar definida en SnackbarCommon.kt .

CorrutinaGestionSnackBar(

snackbarHostState = snackbarHostState,

informacionEstado = informacionEstado

PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

517

Ya podemos definir el Scaffold con su TopAppBar , FAB y SnackBarHost ...

Scaffold(
modifier = Modifier.nestedScroll(scrollBehavior.nestedScrollConnection),
topBar = {
FormContactoTopAppBar(
scrollBehavior = scrollBehavior,

onNavigateTrasFormContacto = onNavigateTrasFormContacto

)
}s
floatingActionButton = {
FabGuardar(
onGuardarContacto = {
onContactoEvent(
ContactoEvent.OnSaveContacto(
onNavigateTrasFormContacto
)
)
}
)
¥

snackbarHost = {
SnackbarHost(hostState = snackbarHostState) {
// Emitiremos un SanackBar u otro dependiendo
// el valor de informacionEstado

SnackbarCommon(informacionEstado = informacionEstado)

BoxWithConstraints(
modifier = Modifier
.fillMaxSize()
.padding(it)
) A

// Contenido del formulario anterior

PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

6. Por ultimo, nos queda gestionar el estado de tipo InformacionEstadoUiState en
ContactoViewModel.kt , sustituyéndolo el actual verSnackBarState . Es por ello que borraremos
verSnackBarState Yy definiremos...

var informacionEstadoState: InformacionEstadoUiState by mutableStateOf(
InformacionEstadoUiState.Oculta())
private set

Ahora en la gestion de contactoEvent al producirse un error en la validacion.

is ContactoEvent.OnDismissError -> {

validacionContactoState = ValidacionContactoUiState()

is ContactoEvent.OnSaveContacto -> {
validacionContactoState = validadorContacto.valida(contactoState)

if (!validacionContactoState.hayError) {

} else {
informacionEstadoState = InformacionEstadoUiState.Error(
mensaje = validacionContactoState.mensajeError!!,

onDismiss = { informacionEstadoState = InformacionEstadoUiState.Oculta()

Ya solo quedaria pasar este estado desde el VM al FormContactoScreen en la MainActivity .
Puedes definir este composable para probarlo.

@Composable
fun VerFormContacto(vm : ContactoViewModel = hiltViewModel()) {
FormContactoScreen(

contactoState = vm.contactoState,
validacionContactoState = vm.validacionContactoState,
informacionEstado = vm.informacionEstadoState,
onContactoEvent = vm::onContactoEvent,
onNavigateTrasFormContacto = {}

6/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Paso 2: Anadir Scaffold la pantalla de listar contactos

Vamos a pasar la pantalla de listar contactos a un BottomSheetScaffold como el de la imagen...

6543321876 (R [A

Rico Cuba, Vicente José

Estany Llorens, Luis vicenter@iesdoctorbalmis.com

luis@iesdoctorbalmis.com

6543321876 R [-

6170 ¢ @ vdl
Garcia Benavente, Xusa
o xusa@iesdoctorbalmis.com D”’ectory (¢ D|rect0ry c
654654654 -
e Garcia Benavente, Xusa Guarinos Huesca, Juan José
Balmaseda del Alamo, Jose Cod) xusa@iesdoctorbalmis.com juanjo@iesdoctorbalmis.com
pepe@iesdoctorbalmis.com 654654654 ~ 987987927 Il §ib <
A 876876576 GR Il e = s
2 Balmaseda del Alamo, Jose = Martinez Martinez, Vicente
e e e e pepe@iesdoctorbalmis.com # '\, vicentem@iesdoctorbalmis.com
e e o e e A | 576576576 §R il > [&N 6sa0s776s 4 =
P | >
987987987 (il §i} - L3 —~—
e Guarinos Huesca, Juan José Rico Cuba, Vicente José
Martinez Martinez, Vicente juanjo@iesdoctorbalmis.com vicenter @iesdoctorbalmis.com
N PR S 987987987 [l $if b PR (-i5521a76 m P A
? 3 vicentem@lesdoctorbalmis.com it 2
| 654987765 W3 = =
- it
— = Martinez Martinez, Vicente Estany Llorens, Luis
Rico Cuba, Vicente José 1' N, vicentem@iesdoctorbalmis.com luis@iesdoctorbalmis.com
vicenter@iesdoctorbalmis.com () 654987765 4} v . 678432876 ﬂ v
O &
‘ ¢ .

678432876 [y v

Estany Llorens, Luis
luis@iesdoctorbalmis.com

678432876 [h

DO

TN
@ cCargando contactos.. (2) ' 5 E)
- + Familia M Amigos
eE & N @
¥ Tl Trabajo |+ Emergencias
. — I

En el vamos a colocar:

1. Un TopAppBar con un titulo y un botdn de accion para actualizar la lista de contactos.

2. Un SnackBarHost para mostrar mensajes de estado donde utilizaremos el SnackbarCommon

que definimos en el paso anterior.

3. Una hoja inferior desplegable modal (BottomSheet) que contendra el componente con
Filterchips que definimos en temas anteriores y que se encuentra en el
.ui.features.components.SeleccionCategorias.kt . Este composable nos permitira filtrar los

contactos por categorias.

4. Ademas, definiremos un sheetDragHandle especifico para nuestra hoja inferior, que sera un

componente Switch que nos permitira activar o desactivar los filtros.

2" Nota

Puesto que al usar un BottomSheetscaffold , N0 tendremos slot para el FAB, este seguira
mostrandose en el composable con el contenido principal como sucedia hasta ahora.

7117 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

También, modificaremos ListaContatosViewModel para que gestione los nuevos estados de la
pantalla, asi como el filtrado de los contactos y la accion recarga de los mismos.

8/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Vemos pues el proceso de como realizarlo:

1. Primero definiremos el sheetDragHandle personalizado para nuestro BottomSheet . Como
hemos comentado, recibira un estado que me indicara si el filtrado esta activo o no y un

callback para cambiar dicho estado.

@Composable
fun SwitchActivacionFiltrado(
modifier: Modifier = Modifier,
filtradoActivoState: Boolean,
onActivarFiltradoClicked: (Boolean) -> Unit
) A
Switch(
modifier = modifier,
checked = filtradoActivoState,
onCheckedChange = onActivarFiltradoClicked,
thumbContent = {
Icon(
painter = if (filtradoActivoState) Filled.getFilterListIcon()
else Filled.getFilterListOffIcon(),
contentDescription = null,

modifier = Modifier.size(SwitchDefaults.IconSize),

2. Ahora definiremos |la CenterAlignedTopAppBar para el BottomSheetScaffold .

9/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun ListaContactosTopAppBar(
scrollBehavior: TopAppBarScrollBehavior = TopAppBarDefaults.pinnedScrollBehavior(),
onActualizaContactos: () -> Unit,
) o
CenterAlignedTopAppBar(
scrollBehavior = scrollBehavior,
title = {
Text(text = stringResource(id = R.string.app_name))
s
actions = {
IconButton(onClick = onActualizaContactos) {
Icon(
painter = Filled.getRefreshIcon(),
contentDescription = "Actualiza contactos",

modifier = Modifier.size(ButtonDefaults.IconSize),

10/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

3. Vamos ahora de definir la diferentes partes de nuestro BottomSheetScaffold. Teniendo en
cuenta que toda la l6gica va estar en nuestro ViewModel. En primer lugar definiremos el
prototipo, los estados que manejara localmente y los LandchedEffect para gestionar que
nuestro BottomSheet siempre esté visible y el mostrar o ocultar el snackBar en funcion del
estado de InformacionEstadoUiState .

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun ListaContactosScreen(
modifier: Modifier = Modifier,
contactosState: List<ContactoUiState>,
contactoSeleccionadoState: ContactoUiState?,
filtradoActivoState: Boolean,
filtroCategoriaState: CatergoriaUiState,
informacionEstadoState: InformacionEstadoUiState,
onActualizaContactos: () -> Unit,
onActivarFiltradoClicked: (Boolean) -> Unit,
onFiltroModificado: (CatergoriaUiState) -> Unit,
onContactoClicked: (ContactoUiState) -> Unit,
onAddClicked: () -> Unit,
onEditClicked: () -> Unit,
onDeleteClicked: () -> Unit

) o
val scrollBehavior = TopAppBarDefaults.pinnedScrollBehavior()
val scaffoldState = rememberBottomSheetScaffoldState()
val snackbarHostState = remember { SnackbarHostState() }

val scope = rememberCoroutineScope()

LaunchedEffect(
keyl = !scaffoldState.bottomSheetState.isVisible,
block = { scaffoldState.bottomSheetState.show() }

CorrutinaGestionSnackBar(
snackbarHostState = snackbarHostState,

informacionEstado = informacionEstadoState

11117 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Veamos las ranuras del BottomSheetScaffold :

BottomSheetScaffold(
sheetContent = {
SeleccionCategoriasConFilterChip(
categoriaState = filtroCategoriaState,

onCategoriaChanged = onFiltroModificado

s
sheetDragHandle = {

SwitchActivacionFiltrado(
filtradoActivoState = filtradoActivoState,

onActivarFiltradoClicked = { filtradoOn ->
onActivarFiltradoClicked(filtradoOn)
scope.launch {
if (!filtradoOn) {
scaffoldState.bottomSheetState.show()

s
sheetPeekHeight = 45.dp,

sheetShape = BottomSheetDefaults.ExpandedShape,
scaffoldState = scaffoldState,
modifier = Modifier.nestedScroll(scrollBehavior.nestedScrollConnection),
topBar = {
ListaContactosTopAppBar(
scrollBehavior = scrollBehavior,

onActualizaContactos = onActualizaContactos

¥

snackbarHost = {
SnackbarHost(hostState = snackbarHostState) {

SnackbarCommon(informacionEstado = informacionEstadoState)

) A

12/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Ahora realizaremos los cambios en el ViewModel en ListaContactosViewModel.kt para que

gestione los nuevos estados de la pantalla, asi como el filtrado de los contactos y la accion recarga
de los mismos.

Anadiremos pues las siguientes propiedades...

var filtradoActivoState: Boolean by mutableStateOf(false)

private set

var filtroCategoriaState: CatergoriaUiState
by mutableStateOf(CatergoriaUiState())

private set

var informacionEstadoState: InformacionEstadoUiState
by mutableStateOf(InformacionEstadoUiState.Oculta())

private set

Anadiremos una nueva funcién de extension para filtrar los contactos que cumplan con el
predicado definido en el estado filtroCategoriaState .

private fun ContactoUiState.predicadoFiltro(): Boolean {

var cumpleFiltro = !filtradoActivoState

if (!cumpleFiltro)
cumpleFiltro = categorias.familia && filtroCategoriaState.familia ||
categorias.amigos && filtroCategoriaState.amigos ||
categorias.trabajo && filtroCategoriaState.trabajo ||

categorias.emergencias && filtroCategoriaState.emergencias

if (!cumpleFiltro)
cumpleFiltro = !categorias.familia && !filtroCategoriaState.familia &&
Icategorias.amigos && !filtroCategoriaState.amigos &&
Icategorias.trabajo & & !filtroCategoriaState.trabajo &&

Icategorias.emergencias && !filtroCategoriaState.emergencias

return cumpleFiltro

13/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

fun onActivarFiltradoClicked() {
filtradoActivoState = !filtradoActivoState

cargaContactos()

fun onFiltroModificado(categorias: CatergoriaUiState) {
filtroCategoriaState = categorias.copy()

cargaContactos()

private fun deseleccionaContacto() {

contatoSleccionadoState = null

// Funcidn de suspension que accede a los datos del repositorio y

// si es necesario algun filtro lo aplica.

private suspend fun getContactos(): List<ContactoUiState> = contactoRepository.get()
.map { it.toContactoUiState() }
.filter { ¢ -> c.predicadoFiltro() }
.tolList()

// Funcion que se encarga de cargar los contactos y gestionar los estados
// notificados en el SnackBarHost. Si se produce algun error, se mostrara
// un SnackBar con un mensaje de error.
fun cargaContactos() {
deseleccionaContacto()
informacionEstadoState = InformacionEstadoUiState.Informacion(
mensaje = "Cargando contactos...",
muestraProgreso = true
)
viewModelScope.launch {
runCatching {
contactosState = getContactos()
}.onSuccess {
informacionEstadoState = InformacionEstadoUiState.Oculta()
}.onFailure {
Log.d("ListaContactosViewModel", "Cargando Contactos: ${it.localizedMessage}")
informacionEstadoState = InformacionEstadoUiState.Error(
mensaje = "Error al cargar los contactos”,
onDismiss = { informacionEstadoState = InformacionEstadoUiState.Oculta() }

14/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

// Nada mas crearse el viewModel cargamos los contactos

init { cargaContactos() }

15/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Por ultimo, nos queda la gestion del borrado de un contacto gestionando los mensajes de estado y

error en el SnackBarHost de forma similar a como lo hemos hecho al cargar los contactos.

fun onItemListaContatoEvent(e: ItemListaContactosEvent) {
when (e) {
is ItemListaContactosEvent.OnClickContacto -> {
contatoSleccionadoState =

if (contatoSleccionadoState?.id != e.contacto.id) e.contacto else null

is ItemListaContactosEvent.OnDeleteContacto -> {
informacionEstadoState = InformacionEstadoUiState.Informacion(
mensaje = "Borrando a ${contatoSleccionadoState!!.nombre}...",
muestraProgreso = true
)
viewModelScope.launch {
runCatching {
contactoRepository.delete(contatoSleccionadoState!!.id)
contactosState = getContactos()
}.onSuccess {
informacionEstadoState = InformacionEstadoUiState.Oculta()
}.onFailure {
Log.d(
"ListaContactosViewModel",
"Borrando Contacto: ${it.localizedMessage}"
)
informacionEstadoState = InformacionEstadoUiState.Error(
mensaje =
"Error al borrar el contacto ${contatoSleccionadoState!!.nombre}",
onDismiss = {

informacionEstadoState = InformacionEstadoUiState.Oculta()

16/17 PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Ya solo quedaria pasar estos estados desde el VM al ListaContactosScreen en la MainActivity .

Puedes definir este composable para probarlo.

@Composable
fun VerListaContactos(vm : ListaContactosViewModel = hiltViewModel()) {

1717

ListaContactosScreen(
contactosState = vm.contactosState,
contactoSeleccionadoState = vm.contatoSleccionadoState,
filtradoActivoState = vm.filtradoActivoState,
filtroCategoriaState = vm.filtroCategoriaState,
informacionEstadoState = vm.informacionEstadoState,
onActualizaContactos = { vm.cargaContactos() },
onActivarFiltradoClicked = { vm.onActivarFiltradoClicked() },
onFiltroModificado = { categorias -> vm.onFiltroModificado(categorias) },
onContactoClicked = { ¢ ->

vm.onItemListaContatoEvent(ItemListaContactosEvent.OnClickContacto(c))

¥
onAddClicked = {},
onEditClicked = {},
onDeleteClicked = {

vm.onItemListaContatoEvent(ItemListaContactosEvent.OnDeleteContacto)

0 Solucién

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solucion de este caso de estudio del siguiente enlace: propuesta de solucién

PMDM 2° DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/ejercicio4_1/ejercicio0/0_AgendaScaffold_recurso.zip

