
Añadiendo Scaffold la Agenda
Descargar estos apuntes

🎓 Caso de Estudio
Vamos a partir de nuestra Agenda de Contactos con Intents en la que teníamos dos pantallas, una
para mostrar los contactos y otra para añadirlos y vamos a añadir a ambas algún tipo de Scaffold.

Paso 1: Añadir Scaffold al formulario de añadir o editar un
contacto.
Empezaremos con el formulario de contactos.
Para ello, vamos a pasarlo añadir un Sacffold
como el de la imagen donde tenemos:

1. Un TopAppBar con un título y un botón de
navegación para volver atrás.

2. El FAB de guardar los datos del contacto,
pasará a estar gestionado por el Scaffold.

3. Además el SnackBarHost del Scaffold, nos
permitirá mostrar mensajes de error a
través de un SnackBar personalizado tal y
como se indica en la imagen.

Vemos pues el proceso de cómo realizarlo:

1. Vamos a borrar la función composable BoxScope.Pie que emitía el FAB o el SnackBar, pues
ahora lo hará el Scaffold. Los parámetros que recibiese CuerpoFormulario para usar en
dicho composable ya no serán necesarios.

2. Definiremos un composable que emitirá nuestro TopAppBar en nuestro caso usaremos
 CenterAlignedTopAppBar de Material 3 pues no vamos a tener acciones. Además, recibirá el
callback para volver atrás en la navegación.

1/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/ejercicios/B_4_1_Scaffold/0_Agenda_scaffold.pdf

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun FormContactoTopAppBar(

 scrollBehavior: TopAppBarScrollBehavior = TopAppBarDefaults.pinnedScrollBehavior(),

 onNavigateTrasFormContacto: (actualizaContactos: Boolean) -> Unit

) {

 CenterAlignedTopAppBar(

 scrollBehavior = scrollBehavior,

 title = {

 Text(text = stringResource(id = R.string.app_name))

 },

 navigationIcon = {

 IconButton(onClick = { onNavigateTrasFormContacto(false) }) {

 Icon(

 painter = Filled.getArrowBackIosIcon(),

 contentDescription = "Volver a lista de contactos",

 modifier = Modifier.size(ButtonDefaults.IconSize),

)

 }

 },

)

}

3. Definiremos un composable que emitirá nuestro FAB del Scaffold para guardar los datos del
contacto. Recibirá el callback para guardar los datos del contacto.

@Composable

fun FabGuardar(onGuardarContacto: () -> Unit) {

 ExtendedFloatingActionButton(

 text = { Text(text = "Guardar") },

 icon = {

 Icon(

 painter = Filled.getSaveIcon(),

 contentDescription = "Localized description",

 modifier = Modifier.size(FloatingActionButtonDefaults.LargeIconSize),

)

 },

 onClick = onGuardarContacto

)

}

2/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

4. Para la gestión del SnackBar , tenemos la clase InformacionEstadoUiState definida en la
librería de componentes del módulo en
 com.github.pmdmiesbalmis.components.manejo_errores.InformacionEstadoUiState

InformacionEstadoUiState.kt. Esta nos permita gestionar mensajes de estado tales como
información o error en la UI. En ella, tendremos tres estados para mostrar el SnackBar:

Uno para ocultarlo
Uno para mostrar información.
Uno para mostrar un error.

Esta clase gestionará el estado de visualización del componente definido
 com.github.pmdmiesbalmis.components.ui.composables SnackbarCommon.kt. Esta se emitirá
dentro del SnackBarHost del Scaffold.

fun SnackbarCommon(informacionEstado: InformacionEstadoUiState)

Básicamente este composable nos permitirá mostrar un SnackBar con un mensaje de
información con una barra de progreso circular o un SnackBar con un mensaje de error y un
botón para cerrarlo.

3/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

https://github.com/pmdmiesbalmis/components/blob/main/components/src/main/java/com/github/pmdmiesbalmis/components/manejo_errores/InformacionEstadoUiState.kt
https://github.com/pmdmiesbalmis/components/blob/main/components/src/main/java/com/github/pmdmiesbalmis/components/manejo_errores/InformacionEstadoUiState.kt%5D(https://github.com/pmdmiesbalmis/components/blob/main/components/src/main/java/com/github/pmdmiesbalmis/components/ui/composables/SnackbarCommon.kt)

5. Ya estamos preparados para añadir el Scaffold a FormContactoScreen que quedará de la
siguiente manera...
Primero redefinimos el prototipo pasando un nuevo parámetro InformacionEstadoUiState
para nuestro Scaffold.

Llamamos al LaunchedEffect para gestionar el estado del SnackBar en el SnackBarHost del
 Scaffold a través de la función CorrutinaGestionSnackBar definida en SnackbarCommon.kt .

CorrutinaGestionSnackBar(

 snackbarHostState = snackbarHostState,

 informacionEstado = informacionEstado

)

...

OptIn(ExperimentalMaterial3Api::class)

@Composable

fun FormContactoScreen(

 contactoState: ContactoUiState,

 validacionContactoState: ValidacionContactoUiState,

 informacionEstado: InformacionEstadoUiState,

 onContactoEvent: (ContactoEvent) -> Unit,

 onNavigateTrasFormContacto: (actualizaContactos: Boolean) -> Unit

) {

 val scrollBehavior = TopAppBarDefaults.enterAlwaysScrollBehavior()

 val snackbarHostState = remember { SnackbarHostState() }

 ...

}

6

4/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Ya podemos definir el Scaffold con su TopAppBar , FAB y SnackBarHost ...

Scaffold(

 modifier = Modifier.nestedScroll(scrollBehavior.nestedScrollConnection),

 topBar = {

 FormContactoTopAppBar(

 scrollBehavior = scrollBehavior,

 onNavigateTrasFormContacto = onNavigateTrasFormContacto

)

 },

 floatingActionButton = {

 FabGuardar(

 onGuardarContacto = {

 onContactoEvent(

 ContactoEvent.OnSaveContacto(

 onNavigateTrasFormContacto

)

)

 }

)

 },

 snackbarHost = {

 SnackbarHost(hostState = snackbarHostState) {

 // Emitiremos un SanackBar u otro dependiendo

 // el valor de informacionEstado

 SnackbarCommon(informacionEstado = informacionEstado)

 }

 }

)

{

 BoxWithConstraints(

 modifier = Modifier

 .fillMaxSize()

 .padding(it)

) {

 // Contenido del formulario anterior

 }

}

5/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

6. Por último, nos queda gestionar el estado de tipo InformacionEstadoUiState en
 ContactoViewModel.kt , sustituyéndolo el actual verSnackBarState . Es por ello que borraremos
 verSnackBarState y definiremos...

var informacionEstadoState: InformacionEstadoUiState by mutableStateOf(

 InformacionEstadoUiState.Oculta())

 private set

Ahora en la gestión de ContactoEvent al producirse un error en la validación.

Ya solo quedaría pasar este estado desde el VM al FormContactoScreen en la MainActivity .
Puedes definir este composable para probarlo.

...

is ContactoEvent.OnDismissError -> {

 validacionContactoState = ValidacionContactoUiState()

}

is ContactoEvent.OnSaveContacto -> {

 validacionContactoState = validadorContacto.valida(contactoState)

 if (!validacionContactoState.hayError) {

 ...

 // Guardamos o editamos el contacto

 } else {

 informacionEstadoState = InformacionEstadoUiState.Error(

 mensaje = validacionContactoState.mensajeError!!,

 onDismiss = { informacionEstadoState = InformacionEstadoUiState.Oculta()

)

 }

}

...

3

12

15

@Composable

fun VerFormContacto(vm : ContactoViewModel = hiltViewModel()) {

 FormContactoScreen(

 contactoState = vm.contactoState,

 validacionContactoState = vm.validacionContactoState,

 informacionEstado = vm.informacionEstadoState,

 onContactoEvent = vm::onContactoEvent,

 onNavigateTrasFormContacto = {}

)

}

2

6

6/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Paso 2: Añadir Scaffold la pantalla de listar contactos
Vamos a pasar la pantalla de listar contactos a un BottomSheetScaffold como el de la imagen...

En el vamos a colocar:

1. Un TopAppBar con un título y un botón de acción para actualizar la lista de contactos.
2. Un SnackBarHost para mostrar mensajes de estado donde utilizaremos el SnackbarCommon

que definimos en el paso anterior.
3. Una hoja inferior desplegable modal (BottomSheet) que contendrá el componente con

 FilterChips que definimos en temas anteriores y que se encuentra en el
 .ui.features.components.SeleccionCategorias.kt . Este composable nos permitirá filtrar los
contactos por categorías.

4. Además, definiremos un sheetDragHandle específico para nuestra hoja inferior, que será un
componente Switch que nos permitirá activar o desactivar los filtros.

Nota

Puesto que al usar un BottomSheetScaffold , no tendremos slot para el FAB, este seguirá
mostrándose en el composable con el contenido principal como sucedía hasta ahora.



7/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

También, modificaremos ListaContatosViewModel para que gestione los nuevos estados de la
pantalla, así como el filtrado de los contactos y la acción recarga de los mismos.

8/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Vemos pues el proceso de cómo realizarlo:

1. Primero definiremos el sheetDragHandle personalizado para nuestro BottomSheet . Como
hemos comentado, recibirá un estado que me indicará si el filtrado está activo o no y un
callback para cambiar dicho estado.

@Composable

fun SwitchActivacionFiltrado(

 modifier: Modifier = Modifier,

 filtradoActivoState: Boolean,

 onActivarFiltradoClicked: (Boolean) -> Unit

) {

 Switch(

 modifier = modifier,

 checked = filtradoActivoState,

 onCheckedChange = onActivarFiltradoClicked,

 thumbContent = {

 Icon(

 painter = if (filtradoActivoState) Filled.getFilterListIcon()

 else Filled.getFilterListOffIcon(),

 contentDescription = null,

 modifier = Modifier.size(SwitchDefaults.IconSize),

)

 }

)

}

2. Ahora definiremos la CenterAlignedTopAppBar para el BottomSheetScaffold .

9/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun ListaContactosTopAppBar(

 scrollBehavior: TopAppBarScrollBehavior = TopAppBarDefaults.pinnedScrollBehavior(),

 onActualizaContactos: () -> Unit,

) {

 CenterAlignedTopAppBar(

 scrollBehavior = scrollBehavior,

 title = {

 Text(text = stringResource(id = R.string.app_name))

 },

 actions = {

 IconButton(onClick = onActualizaContactos) {

 Icon(

 painter = Filled.getRefreshIcon(),

 contentDescription = "Actualiza contactos",

 modifier = Modifier.size(ButtonDefaults.IconSize),

)

 }

 }

)

}

10/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

3. Vamos ahora de definir la diferentes partes de nuestro BottomSheetScaffold. Teniendo en
cuenta que toda la lógica va estar en nuestro ViewModel. En primer lugar definiremos el
prototipo, los estados que manejará localmente y los LandchedEffect para gestionar que
nuestro BottomSheet siempre esté visible y el mostrar o ocultar el SnackBar en función del
estado de InformacionEstadoUiState .

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun ListaContactosScreen(

 modifier: Modifier = Modifier,

 contactosState: List<ContactoUiState>,

 contactoSeleccionadoState: ContactoUiState?,

 filtradoActivoState: Boolean,

 filtroCategoriaState: CatergoriaUiState,

 informacionEstadoState: InformacionEstadoUiState,

 onActualizaContactos: () -> Unit,

 onActivarFiltradoClicked: (Boolean) -> Unit,

 onFiltroModificado: (CatergoriaUiState) -> Unit,

 onContactoClicked: (ContactoUiState) -> Unit,

 onAddClicked: () -> Unit,

 onEditClicked: () -> Unit,

 onDeleteClicked: () -> Unit

) {

 val scrollBehavior = TopAppBarDefaults.pinnedScrollBehavior()

 val scaffoldState = rememberBottomSheetScaffoldState()

 val snackbarHostState = remember { SnackbarHostState() }

 val scope = rememberCoroutineScope()

 // Corrutina que muestra el bottom sheet si no está visible

 LaunchedEffect(

 key1 = !scaffoldState.bottomSheetState.isVisible,

 block = { scaffoldState.bottomSheetState.show() }

)

 // Gestión del estado del SnackBar como en la pantalla anterior

 CorrutinaGestionSnackBar(

 snackbarHostState = snackbarHostState,

 informacionEstado = informacionEstadoState

)

 ...

7

8

12

11/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Veamos las ranuras del BottomSheetScaffold :

 BottomSheetScaffold(

 sheetContent = {

 SeleccionCategoriasConFilterChip(

 categoriaState = filtroCategoriaState,

 onCategoriaChanged = onFiltroModificado

)

 },

 sheetDragHandle = {

 SwitchActivacionFiltrado(

 filtradoActivoState = filtradoActivoState,

 // Cuando se desactive el filtrado,

 // cerraremos nuestro BottomSheet

 onActivarFiltradoClicked = { filtradoOn ->

 onActivarFiltradoClicked(filtradoOn)

 scope.launch {

 if (!filtradoOn) {

 scaffoldState.bottomSheetState.show()

 }

 }

 }

)

 },

 sheetPeekHeight = 45.dp,

 sheetShape = BottomSheetDefaults.ExpandedShape,

 scaffoldState = scaffoldState,

 modifier = Modifier.nestedScroll(scrollBehavior.nestedScrollConnection),

 topBar = {

 ListaContactosTopAppBar(

 scrollBehavior = scrollBehavior,

 onActualizaContactos = onActualizaContactos

)

 },

 snackbarHost = {

 SnackbarHost(hostState = snackbarHostState) {

 SnackbarCommon(informacionEstado = informacionEstadoState)

 }

 }

) {

 // Contenido principal de la pantalla con la lista y el FAB

 }

}

11

20

12/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Ahora realizaremos los cambios en el ViewModel en ListaContactosViewModel.kt para que
gestione los nuevos estados de la pantalla, así como el filtrado de los contactos y la acción recarga
de los mismos.

Añadiremos pues las siguientes propiedades...

var filtradoActivoState: Boolean by mutableStateOf(false)

 private set

var filtroCategoriaState: CatergoriaUiState

by mutableStateOf(CatergoriaUiState())

 private set

var informacionEstadoState: InformacionEstadoUiState

by mutableStateOf(InformacionEstadoUiState.Oculta())

 private set

Añadiremos una nueva función de extensión para filtrar los contactos que cumplan con el
predicado definido en el estado filtroCategoriaState .

private fun ContactoUiState.predicadoFiltro(): Boolean {

 var cumpleFiltro = !filtradoActivoState

 if (!cumpleFiltro) // Está en alguna de las categoirias seleccionadas

 cumpleFiltro = categorias.familia && filtroCategoriaState.familia ||

 categorias.amigos && filtroCategoriaState.amigos ||

 categorias.trabajo && filtroCategoriaState.trabajo ||

 categorias.emergencias && filtroCategoriaState.emergencias

 if (!cumpleFiltro) // El contacto no está en ninguna de las categorias seleccionadas

 cumpleFiltro = !categorias.familia && !filtroCategoriaState.familia &&

 !categorias.amigos && !filtroCategoriaState.amigos &&

 !categorias.trabajo && !filtroCategoriaState.trabajo &&

 !categorias.emergencias && !filtroCategoriaState.emergencias

 return cumpleFiltro

}

13/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

fun onActivarFiltradoClicked() {

 filtradoActivoState = !filtradoActivoState

 cargaContactos()

}

fun onFiltroModificado(categorias: CatergoriaUiState) {

 filtroCategoriaState = categorias.copy()

 cargaContactos()

}

private fun deseleccionaContacto() {

 contatoSleccionadoState = null

}

// Función de suspensión que accede a los datos del repositorio y

// si es necesario algún filtro lo aplica.

private suspend fun getContactos(): List<ContactoUiState> = contactoRepository.get()

 .map { it.toContactoUiState() }

 .filter { c -> c.predicadoFiltro() }

 .toList()

// Función que se encarga de cargar los contactos y gestionar los estados

// notificados en el SnackBarHost. Si se produce algún error, se mostrará

// un SnackBar con un mensaje de error.

fun cargaContactos() {

 deseleccionaContacto()

 informacionEstadoState = InformacionEstadoUiState.Informacion(

 mensaje = "Cargando contactos...",

 muestraProgreso = true

)

 viewModelScope.launch {

 runCatching {

 contactosState = getContactos()

 }.onSuccess {

 informacionEstadoState = InformacionEstadoUiState.Oculta()

 }.onFailure {

 Log.d("ListaContactosViewModel", "Cargando Contactos: ${it.localizedMessage}")

 informacionEstadoState = InformacionEstadoUiState.Error(

 mensaje = "Error al cargar los contactos",

 onDismiss = { informacionEstadoState = InformacionEstadoUiState.Oculta() }

)

 }

 }

14/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

}

// Nada más crearse el viewModel cargamos los contactos

init { cargaContactos() }

15/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Por último, nos queda la gestión del borrado de un contacto gestionando los mensajes de estado y
error en el SnackBarHost de forma similar a como lo hemos hecho al cargar los contactos.

fun onItemListaContatoEvent(e: ItemListaContactosEvent) {

 when (e) {

 is ItemListaContactosEvent.OnClickContacto -> {

 contatoSleccionadoState =

 if (contatoSleccionadoState?.id != e.contacto.id) e.contacto else null

 }

 is ItemListaContactosEvent.OnDeleteContacto -> {

 informacionEstadoState = InformacionEstadoUiState.Informacion(

 mensaje = "Borrando a ${contatoSleccionadoState!!.nombre}...",

 muestraProgreso = true

)

 viewModelScope.launch {

 runCatching {

 contactoRepository.delete(contatoSleccionadoState!!.id)

 contactosState = getContactos()

 }.onSuccess {

 informacionEstadoState = InformacionEstadoUiState.Oculta()

 }.onFailure {

 Log.d(

 "ListaContactosViewModel",

 "Borrando Contacto: ${it.localizedMessage}"

)

 informacionEstadoState = InformacionEstadoUiState.Error(

 mensaje =

 "Error al borrar el contacto ${contatoSleccionadoState!!.nombre}",

 onDismiss = {

 informacionEstadoState = InformacionEstadoUiState.Oculta()

 }

)

 }

 }

 }

 }

}

16/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

Ya solo quedaría pasar estos estados desde el VM al ListaContactosScreen en la MainActivity .
Puedes definir este composable para probarlo.

@Composable

fun VerListaContactos(vm : ListaContactosViewModel = hiltViewModel()) {

 ListaContactosScreen(

 contactosState = vm.contactosState,

 contactoSeleccionadoState = vm.contatoSleccionadoState,

 filtradoActivoState = vm.filtradoActivoState,

 filtroCategoriaState = vm.filtroCategoriaState,

 informacionEstadoState = vm.informacionEstadoState,

 onActualizaContactos = { vm.cargaContactos() },

 onActivarFiltradoClicked = { vm.onActivarFiltradoClicked() },

 onFiltroModificado = { categorias -> vm.onFiltroModificado(categorias) },

 onContactoClicked = { c ->

 vm.onItemListaContatoEvent(ItemListaContactosEvent.OnClickContacto(c))

 },

 onAddClicked = {},

 onEditClicked = {},

 onDeleteClicked = {

 vm.onItemListaContatoEvent(ItemListaContactosEvent.OnDeleteContacto)

 }

)

}

Solución

Si te surge alguna duda o tienes dificultades para completar este caso de estudio. Puedes
descargar la solución de este caso de estudio del siguiente enlace: propuesta de solución



17/17 PMDM 2º DAM Tema 4 Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/ejercicio4_1/ejercicio0/0_AgendaScaffold_recurso.zip

