
Tema 4.2 - Navegación
Descargar estos apuntes pdf o html

Índice
Introducción
Conceptos Básicos

Dependencias necesarias
NavController
NavHost

Ejemplo básico de navegación
Implementación mínima
Refactorizando con buenas prácticas

Pasando datos entre pantallas
Estrategias para pasar datos entre pantallas
Paso de argumentos de navegación

Integrando Hilt + ViewModel + Animaciones
Cambiando las transiciones entre pantallas
Integrando los ViewModels en la navegación

Gestionar grafos de navegación complejos
Integrado navegación y NavigationBar
Anexo I - Integrado navegación y NavigationDrawer

1/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_2_navegacion.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_2_navegacion.html

Introducción
Navegación con Jetpack Compose

Documentación oficial general tanto con XML como Compose UI: Principles of navigation
Documentación oficial compose: Navigation with Compose
Codelab Básico Oficial de Google: Navigation with Compose
Codelab Avanzado Oficial de Google: Navigation with Compose
Seguridad de tipos en la navegación (Vídeo Inglés) Android Developers
New Navegación con seguridad de tipos (Vídeo Castellano): AristiDevs
Navegación en Jetpack Compose (Lista de Reproducción): Stevdza-San
Compartir datos entre pantallas (Vídeo Inglés): Philipp Lackner
Navegación con seguridad de tipos (Vídeo Inglés): Philipp Lackner

La necesidad de navegar entre pantallas es una de las características más importantes de cualquier
aplicación. Android Jetpack Compose proporciona una biblioteca de navegación que le permite
navegar entre pantallas, pasar datos, administrar el historial de navegación y mucho más.

Esta biblioteca, inicialmente se implementó para las aplicaciones de Android basadas en vistas XML
(Activities y Fragments), incluso dispone de una herramienta visual para diseñar la navegación de la
aplicación.

Ahora, la biblioteca de navegación también se puede usar con aplicaciones de Android Jetpack
Compose. La biblioteca de navegación de Compose proporciona una API declarativa para definir la
navegación, y una API de navegación para navegar entre pantallas. Pero sin embargo no dispone de
una herramienta visual para diseñar la navegación de la aplicación.

Como la mayoría de clases y el sistema de navegación es común a las aplicaciones basadas en vistas
XML y a las basadas en Compose, la documentación oficial de la biblioteca de navegación es
común para ambas. Por lo que en la documentación oficial, en la mayoría de ejemplos, se muestra la
implementación con vistas XML y no con Compose. Esto puede llevarnos a confusión y a pensar que
la biblioteca de navegación no es compatible con Compose, pero no es así, simplemente hay que
saber interpretar los ejemplos y adaptarlos a Compose. De todas formas, tienes una entrada
específica para Compose en ente enlace

Desde sus inicios, la biblioteca de navegación para Compose ha tenido criticas por parte de la
comunidad de desarrolladores, debido a su complejidad, falta de documentación y constantes cambios
en su API. Es por eso que han surgido multitud de librerías de terceros, que en principio, facilitan la
implementación evitando excesivo código "bolierplate" o incluso algunas son multiplataforma (Android,
iOS, Desktop y Web)

2/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/principles
https://developer.android.com/jetpack/compose/navigation
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#0
https://developer.android.com/codelabs/jetpack-compose-navigation#0
https://www.youtube.com/watch?v=8m1W4PyYMYQ
https://www.youtube.com/watch?v=1OxiEaEWEe4
https://www.youtube.com/watch?v=glyqjzkc4fk&list=PLSrm9z4zp4mFYcmFGcJmdsps_lpsaWvKM
https://www.youtube.com/watch?v=h61Wqy3qcKg&t=596s
https://www.youtube.com/watch?v=qBxaZ071N0c
https://developer.android.com/guide/navigation/principles
https://developer.android.com/jetpack/compose/navigation

Algunas de estas librerías son: Compose Destinations, Appyx, Voyager, Reimagined, Decompose.

Al final muchas de estas librerías son una capa de abstracción sobre la biblioteca de navegación
oficial, por lo que es recomendable conocer la biblioteca oficial. Este vídeo en inglés, Philipp Lackner
nos hace una reflexión sobre este tema y el porqué conocer la biblioteca oficial de Google y en todo
caso hacernos nosotros mismos nuestra propia abstracción de navegación.

Incluso utilizando la biblioteca oficial, hay muchas formas de implementar la navegación y que podréis
ver en los diferentes tutoriales y vídeos que hay en la red, teniendo en cuenta que en cada uno se
siguen diferentes patrones de diseño.

Importante

Nosotros en este tema vamos a seguir las recomendaciones de uso y mejores prácticas de
implementación que en la actualidad recomienda Google y que pueden encontrar en el siguiente
enlace que recomendamos que visites y leas tras ver el tema.



3/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://composedestinations.rafaelcosta.xyz/v2/
https://bumble-tech.github.io/appyx/
https://voyager.adriel.cafe/
https://olshevski.github.io/compose-navigation-reimagined/
https://xxfast.github.io/Decompose-Router/overview.html
https://www.youtube.com/watch?v=JAGLOaWztBc
https://developer.android.com/guide/navigation/design/type-safety

Conceptos Básicos

Dependencias necesarias
Recuerda que la versión puede cambiar en el futuro, por lo que es recomendable que consultes la
última versión en el enlace. También debes tener en cuanta que un cambio en el primer número de la
versión, puede implicar cambios importantes en la API que vamos a describir.

Para poder utilizar la biblioteca de navegación en Compose, debemos añadir las siguientes
dependencias ...

En el libs.versions.toml ...

[versions]

composeNavigation = "2.8.5"

kotlinxSerializationJson = "1.7.3"

[libraries]

compose-navigation = {

 group = "androidx.navigation",

 name = "navigation-compose",

 version.ref = "composeNavigation"

}

kotlinx-serializarion-json = {

 group = "org.jetbrains.kotlinx",

 name = "kotlinx-serialization-json",

 version.ref = "kotlinxSerializationJson"

}

androidx-hilt-navigation-compose = {

 group = "androidx.hilt",

 name = "hilt-navigation-compose",

 version.ref = "hiltNavigationCompose"

}

Nota

Aunque en el ejemplo hemos puesto las entradas en varias líneas indentadas para más claridad
y que quepa todo en la versión en pdf. El intérprete de Gradle para el toml no admite esta
sintaxis, por lo que debes ponerlo en una sola línea.



4/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/navigation

[plugins]

kotlinx-serialization = {

 id = "org.jetbrains.kotlin.plugin.serialization",

 version.ref = "kotlin"

}

En el DSL definido en build.gradle.kts del proyecto ...

plugins {

 alias(libs.plugins.kotlinx.serialization) apply false

}

En el DSL definido en build.gradle.kts del módulo app ...

plugins {

 alias(libs.plugins.kotlinx.serialization)

}

dependencies {

 implementation(libs.compose.navigation)

 implementation(libs.kotlinx.serializarion.json)

 // y su estamos usano Hilt y no está ya añadida

 implementation(libs.androidx.hilt.navigation.compose)

}

NavController
El NavController es el encargado de gestionar la navegación entre destinos. El controlador
ofrece métodos para navegar entre destinos, manejar enlaces profundos, administrar la pila de
retroceso y más.

Para crear un NavController en Jetpack Compose haremos:

val navController = rememberNavController()

Puesto que rememberNavController es una función @Composable NO puede ser creado en un
 ViewModel . Así pues, si quieres que la mayoría de tus componentes puedan acceder a la navegación,
debes crear el objeto NavController en el componente más alto de la jerarquía de composición
esto es junto al NavHost del que hablaremos a continuación.

5/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

NavHost
Para poder navegar entre pantallas, debemos tener un contenedor donde se muestren las
pantallas. En las aplicaciones basadas en compose este contenedor es un 'composable' llamado
 NavHost . Al ser un contenedor, puede ocupar todo la pantalla o solo una parte de ella como se
muestra en las imágenes más a a la derecha.

 NavHost recibirá un NavController e irá definiendo los destinos de navegación a través de un
 NavGraph , este componente lo recibirá como parámetro o será creado y gestionado por el propio
 NavHost de forma interna, solo si no se le ha pasa. El NavGraph es básicamente por tanto, una
colección de destinos recuperables.

6/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Ejemplo básico de navegación

Implementación mínima
Vamos a aplicar los conceptos anteriores a un ejemplo básico de navegación entre dos pantallas A y
B.

Tal y como se muestra en la imagen de ejemplo. La pantalla A será la pantalla principal y tendrá un
 Scaffold con un TopAppBar y un botón que nos permitirá navegar a la pantalla B. La pantalla B
tendrá un Scaffold con un TopAppBar y en ella tendrá un IconButton de vuelta a la pantalla anterior
que solo puede ser pantalla A.

Descarga proyecto de ejemplo 1: EjemploNavegacionBasico1.zip

Los pasos serían los siguientes:

1. Primero definiremos las pantallas en el paquete ui.features
Definimos PantallaAScreen.kt que emite en la composición la pantalla A y recibe un callback
que será llamado cuando se pulse el botón de navegación a la pantalla B.:

@Composable

fun PantallaAScreen(onNavigatePantallaB: () -> Unit)

Definimos PantallaBScreen.kt que emite en la composición la pantalla B y recibe un callback
que será llamado cuando se pulse el botón de navegación a la pantalla anterior que solo puede
ser la pantalla A.:

7/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionBasico1_recurso.zip

@Composable

fun PantallaBScreen(onNavegarAtras: () -> Unit)

2. Decidimos en que punto vamos a tener nuestro NavHost y como ya hemos comentado tendremos
varias opciones. Para este ejemplo, lo normal es que esté lo más alto en la jerarquía de
composición, por lo que lo pondremos en el setContent de la MainActivity y es en este punto
donde crearemos al NavController .

// MainActivity.kt

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 EjemploNavegacionTheme {

 Surface(modifier = Modifier.fillMaxSize()) {

 val navController = rememberNavController()

 NavHostEjemploBasicoInicial(navController = navController)

 }

 }

 }

 }

}

3. Para ello hemos definido la función composable NavHostEjemploBasicoInicial que recibe una
instancia de NavHostController .

Importante

Como ves, en ambos casos pasamos callbacks que serán llamados cuando se pulse el
botón de navegación y así evitamos dependencias con el NavController y tendremos
centralizadas todas las acciones de navegación en el NavHost .



8/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

@Composable

private fun NavHostEjemploBasicoInicial(navController: NavHostController) {

 NavHost(

 navController = navController,

 startDestination = "pantalla_A"

) {

 composable(route = "pantalla_A") { backStackEntry ->

 PantallaAScreen {

 navController.navigate("pantalla_B")

 }

 }

 composable(route = "pantalla_B") { backStackEntry ->

 PantallaBScreen {

 navController.popBackStack()

 }

 }

 }

}

9/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Vamos a comentar más detalladamente el código del punto anterior:

Por último, al definir el callback de navegación en la pantalla B hemos usado el método
 navigateUp que nos permite volver a la pantalla anterior, que en este caso es la pantalla A.

@Composable

private fun NavHostEjemploBasicoInicial(navController: NavHostController) {

 NavHost(

 navController = navController, // Pasamos el NavController

 startDestination = "pantalla_A" // Indicamos el destino inicial

) {

 // En este contexto estamos definiendo un objeto NavGraphBuilder

 // encargado de crear el grafo de navegación.

 // Por lo que solo podemos usar métodos de esta clase.

 ...

 }

}

7

9

@Composable

private fun NavHostEjemploBasicoInicial(navController: NavHostController) {

 NavHost(navController = navController, startDestination = "pantalla_A") {

 ...

 // composable es uno de los métodos de NavGraphBuilder y crea un o

 // destin de navegación en el grafo.

 // Como parámetro obligatorio recibe la ruta del destino que será

 // una cadena de texto similar a una URL de consumo de un API REST.

 // Más adelante comentaremos otros parámetros opcionales.

 composable(route = "pantalla_A") { backStackEntry ->

 // Aquí irá el composable con la pantalla o Screen que se

 // emite en el NavHost en esta ruta del grafo.

 PantallaAScreen {

 // Callback que será llamado cuando se pulse el botón de navegación

 // de ir a pantalla B. Si la ruta especificada no existe en el grafo

 // obtendremos una excepción en tiempo de ejecución.

 navController.navigate("pantalla_B")

 }

 ...

 }

 }

}

5

9

12

13

16

18

10/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Refactorizando con buenas prácticas
En este punto ya tenemos un ejemplo básico de navegación, pero en una aplicación real donde los
destinos de navegación pueden ser muchos, podremos pasar parámetros entre pantallas, definir
transiciones, usaremos ViewModel para acceder a la lógica de negocio, etc. El uso de cadenas para
las rutas puede volver el código muy complejo. Esto hará que sea fácil cometer errores que no se
detecten en tiempo de compilación y consecuentemente también será difícil de mantener o ampliar,
testear y depurar.

Para solucionar esto, como comentamos en la introducción del tema, vamos a usar tipos seguros que
es la recomendación actual Google y que pueden encontrar en el siguiente enlace. Por lo que vamos
a refactorizar el código siguiendo los siguientes pasos:

1. Crearemos un paquete ui.navigation donde definiremos los destinos y el grafo de navegación.
2. Por cada destino de navegación crearemos un fichero <PantallaDestino>Route.kt donde

definiremos la gestion de la ruta o rutas que nos lleven a esa pantalla de destino.

// Definimos la ruta y como no recibe parámetros será un data object.

// Debe ser serializable para ser pasado como parámetro en la navegación.

@Serializable

object PantallaARoute

// Definimos un método de extensión de NavGraphBuilder para poder

// usarlo en el contexto de nuestro NavHost

// Fíjate que le hemos añadido el sufijo Destination indicando que es

// un "nodo de destino" en el grafo de navegación.

fun NavGraphBuilder.pantallaADestination(

 onNavigatePantallaB: () -> Unit

) {

 // Aquí es donde realmente definimos el destino de navegación para la

 // ruta que hemos definido en el objeto PantallaARoute

 // y donde realmente se emite la pantalla A dentro del NavHost.

 composable<PantallaARoute> { backStackEntry ->

 PantallaAScreen(onNavigatePantallaB)

 }

}

Definir NavGraphBuilder.pantallaADestination me ayuda a simplificar la definición del grafo de
navegación, manteniendo así la emisión del NavHost limpia y fácil de leer. Además, podrá
recibir el ViewModel de la pantalla destino y descomponer en la emisión del componente de la
pantalla destino, lo que me ayudará a mantener la lógica de negocio fuera de la vista y así poder
hacer previews test de mis pantallas.
Ahora definiremos PantallaBRoute.kt donde haremos lo mismo que antes pero definiendo una
nueva ruta ...

11/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/design/type-safety

@Serializable

object PantallaBRoute

fun NavGraphBuilder.pantallaBDestination(

 onNavegarAtras: () -> Unit

) {

 composable<PantallaBRoute> { backStackEntry ->

 PantallaBScreen(

 onNavegarAtras = onNavegarAtras

)

 }

}

3. Por último definiremos NavHostEjemploBasico.kt donde definiremos el composable con el
 NavHost usando los métodos de extensión que hemos definido en los ficheros anteriores y que
usaremos en el método setContent de la MainActivity .

@Composable

fun NavHostEjemploBasico(navController: NavHostController) {

 NavHost(

 navController = navController,

 startDestination = PantallaARoute

) {

 pantallaADestination { navController.navigate(PantallaBRoute) }

 pantallaBDestination { navController.popBackStack() }

 }

}

Como vemos el código queda mucho más limpio y modularizado. Además, no usamos literales de
cadena y tendremos una metodología de definición.

Pasando datos entre pantallas
Pasando datos entre pantallas

Documentación oficial compose: Navigate with arguments
Navegación con seguridad de tipos (Vídeo Castellano): DevExperto

En el ejemplo anterior hemos visto como navegar entre pantallas, pero en una aplicación real, es muy
probable que necesitemos pasar datos entre pantallas.

Estrategias para pasar datos entre pantallas

Importante

12/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/compose/navigation?optional-args#nav-with-args
https://www.youtube.com/watch?v=4xFpapw4PF0

Der entre las estrategias posibles vamos a destacar las siguientes:

1. 👍👍 Pasar argumentos de navegación: La más adecuadas si queremos evitar acoplamiento
entre pantallas y de esta manera usar una misma pantalla en diferentes contextos. La librería de
navegación de Jetpack Compose para Android nos permite pasar argumentos de navegación
entre pantallas.
Estos argumentos se pasan en la ruta de navegación soporta el paso de argumentos de tipo
primitivo y objetos parcelables o serializables.
Lo más común es pasar un argumento de tipo primitivo que sea la clave primaria de un objeto
que queremos recuperar en el ViewModel de la pantalla destino (es la recomendación de
Google). Por ejemplo, si queremos recuperar un objeto de tipo Usuario en la pantalla destino,
pasaremos como argumento de navegación el id del usuario y en la pantalla destino
recuperaremos el objeto de nuestros repositorios a partir de ese id .

2. 👍 Compartir un ViewModel: Básicamente consiste en tener el dato en un ViewModel que sea
compartido por ambas pantallas. Para ello debemos asegurarnos que el ViewModelOwner
sobreviva a ambas pantallas como por ejemplo el ViewModelOwner de la MainActivity . Aunque
también hay otras estrategias como usar un ViewModel donde el ViewModelOwner sea un
 NavGraph .

3. 👎 Compartir una dependencia con estado: Básicamente consiste en usar Hilt para definir una
clase que se pueda inyectar en los ViewModels que necesiten compartir datos y esté marcada
como @Singleton . De esta manera tendremos una única instancia de la clase y por tanto los
datos que almacene serán compartidos por todos los ViewModels que la inyecten. Las
propiedades de dicha clase deben ser MutableState para que los cambios sean observables por
los ViewModels que la inyecten.

Paso de argumentos de navegación
Veamos el proceso de paso de argumentos de
navegación entre pantallas completando el ejemplo
anterior donde navegábamos entre las pantallas A
y B.

Vamos ha realizar una paso simple de datos
entre pantallas. Como puedes ver en la imagen de
ejemplo, en la pantalla A tendremos un TextField

En el siguiente vídeo tutorial de Philipp Lackner se explica las diferentes estrategias de cómo
pasar datos entre pantallas y las ventajas e inconvenientes de cada una de ellas. Es interesante
que le eches un vistazo antes y después de ver este tema.

13/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://www.youtube.com/watch?v=h61Wqy3qcKg

donde el usuario introducirá su nombre y en la
pantalla B mostraremos un Text con el nombre
introducido.

Descarga proyecto de ejemplo 2:
EjemploNavegacionBasico2.zip

Vamos los pasos lógicos que debemos seguir:

1. Modificamos PantallaBScreen.kt para gestionar el argumento de navegación:
PantallaBScreen recibe ahora un parámetro de tipo String? que si es distinto de null mostrará
el nombre en un Text justo debajo del rótulo B

@Composable

fun PantallaBScreen(

 nombre: String? = null,

 onNavegarAtras: () -> Unit)

3

14/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionBasico2_recurso.zip

2. Modificamos PantallaAScreen.kt para enviar el argumento de navegación:
Fíjate que onNavigatePantallaB ahora recibe un parámetro de tipo String que será el estado con
el nombre introducido por el usuario.

3. Modificamos PantallaBRoute.kt para redefinir la ruta de navegación con el parámetro de entrada
y en lugar de un object definimos una data class con una propiedad de tipo String que será el
dato que pasaremos entre pantallas.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaAScreen(

 onNavigatePantallaB: (String) -> Unit

) {

 val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()

 var nombreState by remember { mutableStateOf("anónimo") }

 val onNombreChange: (String) -> Unit = { nombreState = it }

 Scaffold(

 content = { innerPadding ->ContenidoPantalla(...) },

)

}

@Composable

private fun ContenidoPantalla(

 nombreState: String,

 onNombreChange: (String) -> Unit,

 onNavigatePantallaB: (String) -> Unit,

 modifier: Modifier = Modifier) {

 ...

 Button(onClick = {

 onNavigatePantallaB(nombreState)

 }) {

 Text(text = "Ir a pantalla B")

 }

 ...

}

4

7

8

16

18

22

Nota

Estas propiedades deben ser tipos simples del propio lenguaje que ya que por defecto
son serializables y parcelables. En caso de ser tipos compuestos definidos por nosotros el
paso de parametros no funcionaría y el proceso se complicaría ya que tendríamo que
indicarle a la navegación como se serializan dichos tipos.



15/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

// Definimos la ruta con un parámetro de tipo String

@Serializable

data class PantallaBRoute(val nombre: String)

fun NavGraphBuilder.pantallaBDestination(

 onNavegarAtras: () -> Unit

) {

 composable<PantallaBRoute> { backStackEntry ->

 // Con el método toRoute podemos recuperar el objeto PantallaBRoute

 // con el parámetro de entrada.

 val datos : PantallaBRoute = remember { backStackEntry.toRoute<PantallaBRoute>() }

 PantallaBScreen(

 nombre = datos.nombre,

 onNavegarAtras = onNavegarAtras

)

 }

}

4. Modificamos NavHostEjemploBasico.kt fíjate que ahora en el callback de navegación de la
pantalla A creamos un objeto de tipo PantallaBRoute con el nombre introducido por el usuario
que será el argumento de navegación.

Integrando Hilt + ViewModel + Animaciones
Si nos fijamos en el ejemplo anterior, al volver de la pantalla B a la pantalla A el texto introducido en el
 TextField se pierde. Esto es debido a que la pantalla A se vuelve a crear y por tanto el estado del
 TextField se reinicia.

Para evitar esto vamos a introducir un ViewModel para cada una de las pantallas. La forma más
simple de hacerlo es usando Hilt . Además, como comentamos también podría ayudarnos a
compartir datos entre pantallas. Recuerda que debemos tener la dependencia de
 hilt-navigation-compose en el fichero build.gradle.kts del módulo app:

@Composable

fun NavHostEjemploBasico(navController: NavHostController) {

 NavHost(...) {

 pantallaADestination(

 onNavigatePantallaB = { nombre ->

 navController.navigate(PantallaBRoute(nombre))

 }

)

 ...

 }

}

6

16/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

implementation(libs.androidx.hilt.navigation.compose)

Otro aspecto que vamos a mejorar, es la transición entre pantallas durante la navegación. Para ello,
Google ha incorporado en la biblioteca de navegación de Jetpack Compose, un nuevo sistema de
animaciones que nos permite definir animaciones de entrada y salida de las pantallas. Recuerda que
debes tener añadida la siguiente librería de animaciones en el fichero build.gradle.kts del módulo
app:

implementation(libs.compose.navigation)

Descarga proyecto de ejemplo 3: EjemploNavegacionBasico3.zip

Cambiando las transiciones entre pantallas
Vamos a continuar con nuestro ejemplo anterior, pero vamos a cambiar las transiciones entre
pantallas. Para ello, lo más sencillo será aplicar la mismas transiciones a todas nuestras navegaciones
y para ello nos hemos inventado la transición, en la imagen de ejemplo puedes ver como la pantalla B
tiene una transición de entrada de derecha a izquierda con un fade-in y la pantalla A una transición de
salida de arriba a abajo con un fade-out.

Cuando hagamos un volver atrás con un popBackStack las direcciones de las transiciones se
invertirán.

17/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionBasico3_recurso.zip

Podemos crear una biblioteca de funciones de extensión de
 AnimatedContentTransitionScope<NavBackStackEntry> para definir las transiciones de navegación. Para
ello siguiendo la documentación de Accompanist hemos definido las siguientes. Podríamos, por
ejemplo, llevarlas a algún tipo de fichero del paquete utilities de nuestro proyecto.

fun AnimatedContentTransitionScope<NavBackStackEntry>

 .entradaDesdeDerecha(duracion: Int) =

 fadeIn(animationSpec = tween(duracion)) +

 slideIntoContainer(

 AnimatedContentTransitionScope.SlideDirection.Left,

 tween(duracion)

)

fun AnimatedContentTransitionScope<NavBackStackEntry>

 .salidaAlaDerecha(duracion: Int) =

 fadeOut(animationSpec = tween(duracion)) +

 slideOutOfContainer(

 AnimatedContentTransitionScope.SlideDirection.Right,

 tween(duracion)

)

fun AnimatedContentTransitionScope<NavBackStackEntry>

 .salidaHaciaAbajo(duracion: Int) =

 fadeOut(animationSpec = tween(duracion)) +

 slideOutOfContainer(

 AnimatedContentTransitionScope.SlideDirection.Down,

 tween(duracion)

)

fun AnimatedContentTransitionScope<NavBackStackEntry>

 .entradaHaciaArriba(duracion: Int) =

 fadeIn(animationSpec = tween(duracion)) +

 slideIntoContainer(

 AnimatedContentTransitionScope.SlideDirection.Up,

 tween(duracion)

)

18/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Posteriormente, para conseguir el efecto descrito, simplemente tendremos que usarlas en los
parámetros de las transiciones de navegación en el NavHost . Por ejemplo:

Integrando los ViewModels en la navegación
Como sabemos, normalmente nuestras pantallas van a tener toda los 'UIStates', lógica y acceso a
datos en un ViewModel . Veamos los pasos para hacerlo en nuestro ejemplo:

1. Integraremos Hilt en nuestro proyecto como vimos en temas anteriores. No hace falta definir, de
momento, el paquete di pues no vamos a preparar ningún módulo.

2. Definiremos el VM de la pantalla A en PantallaAViewModel.kt . En el ascendemos los estados
utilizados en la misma. En nuestro caso el nombre introducido y el callback llamado desde el
 TextField .

@HiltViewModel

class PantallaAViewModel @Inject constructor() : ViewModel() {

 var nombreState by mutableStateOf("anónimo")

 private set

 fun onNombreChange(nombre: String) {

 nombreState = nombre

 }

}

3. Definiremos el VM de la pantalla B en PantallaBViewModel.kt . En el ascendemos los estados
utilizados en la misma. En nuestro caso el estado con el nombre que vamos a visualizar en el
 Text de la pantalla B.

@HiltViewModel

class PantallaBViewModel @Inject constructor() : ViewModel() {

 var nombreState: String = "anónimo"

}

✋ Fíjate que NO hemos hecho el private set a la propiedad. De esta manera podremos
modificar el estado antes de navegar y no pasar parámetro o pasar el parámetro, y al recibirlo
'setearlo' en el VM de B. Nosotros vamos a optar por la segunda opción.

val duracionAnimacion = 1100

NavHost(

 navController = navController,

 startDestination = PantallaARoute,

 enterTransition = { entradaDesdeDerecha(duracionAnimacion) },

 exitTransition = { salidaHaciaAbajo(duracionAnimacion) },

 popEnterTransition = { entradaHaciaArriba(duracionAnimacion) },

 popExitTransition = { salidaAlaDerecha(duracionAnimacion) }

)

5

8

19/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

4. En NavHostEjemploBasico.kt crearemos las instancias de los VM mediante
 hiltViewModel<TipoDelViewMode> . Des esta manera los VM tendrán como ViewModelOwner la
 MainActivity y por tanto no se destruirán al navegar entre pantallas y al regresar a una patalla
anterior se mantendrán los estados.

@Composable

fun NavHostEjemploBasico(

 navController: NavHostController

) {

 val vmPantallaA = hiltViewModel<PantallaAViewModel>()

 val vmPantallaB = hiltViewModel<PantallaBViewModel>()

 NavHost(

 navController = navController,

 ...

) {

 ...

 }

}

5. En PantallaARoute.kt vamos a definir la ruta y el builder del nodo del grafo de navegación para la
pantalla A. Al recibir el VM desde el navHost cualquier cambio de estado del nombre que se
produzca en el VM se reflejará en la vista,

@Serializable

object PantallaARoute

fun NavGraphBuilder.pantallaADestination(

 vm: PantallaAViewModel,

 onNavigatePantallaB: (String) -> Unit

) {

 composable<PantallaARoute> { backStackEntry ->

 PantallaAScreen(

 nombreState = vm.nombreState,

 onNombreChange = vm::onNombreChange,

 onNavigatePantallaB = onNavigatePantallaB

)

 }

}

Si hubíeramos creado el VM en el momento de emitir la pantalla como en el siguiente ejemplo...

20/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

fun NavGraphBuilder.pantallaADestination(

 onNavigatePantallaB: (String) -> Unit

) {

 composable<PantallaARoute> { backStackEntry ->

 val vm = hiltViewModel<PantallaAViewModel>()

 PantallaAScreen(

 nombreState = vm.nombreState,

 onNombreChange = vm::onNombreChange,

 onNavigatePantallaB = onNavigatePantallaB

)

 }

}

entonces el ViewModelOwner sería el NavGraph creado por el NavGraphBuilder en el momento de
la navegación y el VM se destruiría al volver atrás en la navegación. Esto puede ser útil en
algunos casos, pero no en este porque perderíamos el estado del nombre introducido por el
usuario.
Solo si usamos grafos de navegación anidados y el VM está asociado a un grafo anidado. El
VM se destruirá al salir del grafo anidado en la navegación. Nosotros en este curso no vamos a
tratar este tema por simplificar, pero puedes ver en el enlace anterior como se hace.

6. En PantallaBRoute.kt vamos 'setear' en el VM de B el nombre recibido como parámetro en la
navegación.

Nota

En este caso podríamos pasar directemante como parámetro el nombre a PantallaBRoute
pues no se trata de un estado que vaya a modificar. Pero hemos querido mostrar el caso
más común de que el parámetro recibido tenga un efecto en algún estado del ViewModel
asociado a la pantalla a emitir.



21/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/design/nested-graphs

En este ejemplo simple, 'Setear' el nombre el el ViuewModel de la pantalla B no desencadena
más cambios de estado ni búsquedas en un repositorio, etc. Pero esto no es lo normal. Lo más
habitual es que pasemos algún tipo de id o clave primaria de un objeto y que en el ViewModel de
la pantalla destino recuperemos el objeto de nuestros repositorios a partir de ese id produciendo
el consecuente cambio de estado.

@Serializable

data class PantallaBRoute(val nombre: String)

fun NavGraphBuilder.pantallaBDestination(

 vm: PantallaBViewModel,

 onNavegarAtras: () -> Unit,

) {

 composable<PantallaBRoute>{ backStackEntry ->

 vm.nombreState = remember { backStackEntry.toRoute<PantallaBRoute>().nombre }

 PantallaBScreen(

 nombre = vm.nombreState,

 onNavegarAtras = onNavegarAtras

)

 }

}

9

Importante

En este último caso es importante comprobar que el id ha cambiado realmente para evitar
hacer búsquedas y recomposiciones innecesarias si se proujese alguna recomposición del
 NavHost .
Por ejemnplo, definiendo el setter de la propiedad id del ViewModel de la pantalla destino
de la siguiente manera:

@HiltViewModel class PantallaBViewModel @Inject constructor(

 private val repositorio: Repositorio

) : ViewModel() {

 var datosState: Datos by mutableStateOf(Datos())

 private set

 fun setDatos(id : Int) {

 if (id != datosState.id) datosState = repositorio.getDatos(id)

 }

}



22/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

🎓 Caso de estudio:

Puedes descargar el código aquí: EjemploNavegacionCompartiendoVM.zip si no sabes seguir
alguno de los ejemplos.

Aunque como hemos comentado, no es la opción recomendada por Google. En el siguiente caso
de estudio vamos a aplicar lo que hemos visto hasta ahora para en lugar de pasar datos en la
navegación, compartir datos complejos entre ViewModels . Además, vamos a ver como crear un
destino de navegación que sea un diálogo.

1. Creamos una feature datos con el siguiente contenido:

data class DatosUiState(

 val nombre: String = "Jhon",

 val apellido: String = "Doe"

)

2. En el paquete .features.datos.ver definimos el ViewModel de la pantalla
 VerDatosScreen.kt y lo denominaremos VerDatosViewModel.kt. . Simplemente me gestionará
un estado de tipo DatosUiState .

3. En el paquete .features.datos.editar definimos EditarDatosDialog.kt y
 EditarDatosEvent.kt que agrupe los eventos de modificar nombre y apellido. Así mismo
definirmos EditarDatosViewModel.kt que además de los eventos contenga como antes un
estado de tipo DatosUiState .

23/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionCompartiendoVM_recurso.zip

4. En el paquete .ui.nabigation definimos VerDatosRoute.kt donde la destinación que
recibirá su correspondiente VerDatosViewModel y el callback de nagación desde donde
centralizamos la misma.

5. En el paquete .ui.nabigation definimos EditarDatosRoute.kt con el siguiente código.

@Serializable

object EditarDatosRoute

fun NavGraphBuilder.editarDatosDestination(

 vm: EditarDatosViewModel,

 onAceptar: (DatosUiState) -> Unit,

 onCancelar: () -> Unit

) {

 dialog<EditarDatosRoute> {

 EditarDatosDialog(

 datosState = vm.datosState,

 onPantallaPrincipalEvent = vm::onEditarDatosEvent,

 onAceptar = onAceptar,

 onCancelar = onCancelar

)

 }

}

Fíjate que en lugar de composable<EditarDatosRoute> usamos dialog<EditarDatosRoute>
para definir un destino de navegación se comporte como un diálogo modal.
 EditarDatosDialog.kt emite el componente de material3 AlertDialog que ya hemos visto en
temas anteriores.

24/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

6. La opción de compartir datos entre los ViewModel la centralizaremos al definir el NavHost y
en los callback de navegación al diálogo y volver de la misma.

@Composable

fun NavHostCompartiendoVm(

 navController: NavHostController

) {

 val vVm = hiltViewModel<VerDatosViewModel>()

 val eVm = hiltViewModel<EditarDatosViewModel>()

 NavHost(

 navController = navController,

 startDestination = VerDatosRoute

) {

 verDatosDestination(

 vm = vVm,

 onEditar = {

 eVm.setDatos(vVm.datosState)

 navController.navigate(EditarDatosRoute)

 }

)

 editarDatosDestination(

 vm = eVm,

 onAceptar = { datos ->

 navController.popBackStack()

 vVm.setDatos(datos)

 },

 onCancelar = { navController.popBackStack() }

)

 }

}

5

6

13

16

20

23

25/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Gestionar grafos de navegación complejos
Descarga proyecto: EjemploNavegacionJerarquiaCompleja.zip

En dicho proyecto hemos definido el siguiente grafo de navegación. Donde hay pantallas que me
pueden llevar a dos posibles destinos como n1 , n21 y n22 . Otras que me llevan a un único
destino como n32 y pantalla finales que no tienen destinos como n31 , n33 y n4 .

NavGraph

n1

n21

popBackStack()

n22

popBackStack()

n31

popUpTo(n1)

n4

popUpTo(n1) n32

popBackStack()

n33

popBackStack(n1)

popBackStack()

Pero fijémonos en la gestión que se hace de los retornos indicada en cada arista del grafo:

Si indicamos popBackStack() indicaremos que cuando se vuelva de la pantalla de destino se irá
justoa a la anterior de donde se llamó.
Si indicamos popBackStack(n1) como de n22 a n33 indicaremos que cuando se vuelva de la
pantalla de destino se irá a la pantalla indicada en el parámetro de la función en este caso al nodo
inicial.
Si indicamos popUpTo(n1) como de n21 a n24 indicaremos que cualquier popBackStack en el
destino siempre me llevará a n1 . En este último caso si llegamos a n4 desde n21 volveremos a
 n1 al hacer un popBackStack pero si llegamos desde n32 volveremos justo a la pantalla de
origen n32 .

26/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionJerarquiaCompleja_recurso.zip

@Composable

fun NavHostEjemploJerarquiaCompleja(navController: NavHostController) {

 NavHost(navController = navController,

 startDestination = Nivel1Route)

 {

 nivel1Destination(

 onNavigateNivel21 = { navController.navigate(Nivel21Route) },

 onNavigateNivel22 = { navController.navigate(Nivel22Route) }

)

 nivel21Destination(

 onNavigateNivel31 = {

 navController.navigate(Nivel31Route) {

 popUpTo(Nivel1Route) { inclusive = false }

 }

 },

 onNavigateNivel4 = {

 navController.navigate(Nivel4Route("N1 > N2.1")) {

 popUpTo(Nivel1Route) { inclusive = false }

 }

 },

 onNavegarAtras = { navController.popBackStack() }

)

 nivel22Destination(

 onNavigateNivel32 = { navController.navigate(Nivel32Route) },

 onNavigateNivel33 = { navController.navigate(Nivel33Route) },

 onNavegarAtras = { navController.popBackStack() }

)

 nivel31Destination(

 onNavegarAtras = { navController.popBackStack() }

)

 nivel32Destination(

 onNavigateNivel4 = { navController.navigate(Nivel4Route("N1 > N2.2 > N3.2")) },

 onNavegarAtras = { navController.popBackStack() }

)

 nivel33Destination(

 onNavegarAtras = { navController.popBackStack(Nivel1Route, inclusive = false) }

)

 nivel4Destination(

 onNavegarAtras = { navController.popBackStack() }

)

 }

}

Recuerda profuncizar en el uso de popBackStack(...) es muy altamente recomendable la lectura
documentación oficial de Android ya que por su 'complejidad' vamos a dejar fuera del Tema.

Así mimos en este enlace tienes un ejemplo de como como definir un builder de opciones de
navegación con más detalle.

27/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/backstack?hl=es-419#pop-back
https://developer.android.com/guide/navigation/backstack?hl=es-419#compose-examples

Integrado navegación y NavigationBar
En el tema anterior ya vimos como definir diferentes componentes gráficos en la
jerarquía superior de la pantalla, definidos en Material3 para navegar de una pantalla
a otra. Algunos de estos serían: NavigationBar , NavigationDrawer , PrimaryTabs ,
etc. En este apartado vamos a ver el caso del NavigationBar . Para ello, vamos a
realizar una aplicación con el esquema mostrado a la derecha.

Si nos fijamos en el mismo, el Scaffold no cambia y será el contenido del mismo el
que contenga nuestro NavHost que intercambiará diferentes 'pantallas' que en este
caso hemos denominado Pantalla1, Pantalla2 y Pantalla3.

Descarga proyecto de Ejemplo NavigationBar: EjemploNavConNavigationBar.zip

Puedes ver un esquema de funcionamiento en la siguiente imagen...

28/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavConNavigationBar_recurso.zip

Para simplificar la implementación de la propuesta, no vamos a usar Hilt, ni ViewModel y voy a pasar
como parámetro de navegación un entero con el número de la pantalla de donde vengo. Por tanto,
siguiendo los pasos descritos a lo largo del tema ...

1. Definiremos los composables con las pantallas Pantalla1, Pantalla2 y Pantalla3 en el paquete
 ui.features . En nuestro caso, será un único componente pantalla denominado
 PantallaScreen.kt y que tendrá el siguiente interfaz.

fun PantallaScreen(

 pantalla: Int,

 pantallaDeDondeVengo: Int? = null,

 onNavigatePantallaAnterior: () -> Unit

)

Si el parámetro pantallaDeDondeVengo está a null significa que estoy en la primera pantalla. En
caso contrario, se mostrará un texto con la pantalla de donde vengo y un botón de navegación
para volver a ella que tendrá el mismo efecto que pulsar el icono de la TopAppBar < tal y como se
veía en la imagen anterior.

2. En el paquete ui.navigation definiremos nuestro componente NavHost . Pero antes, definiremos
un fuente con la especificación de cada uno de los destinos y cómo navegar a ellos. Por ejemplo,
vamos a ver la definición de Pantalla1Route.kt ya que Pantalla2Route.kt y Pantalla3Route.kt
serán análogos.
Permitimos que pantallaAnterior pueda ser null porque al ser Pantalla1Route el primer destino
de navegación, no vendrá de ninguna pantalla anterior, pero podemos volver regresar a ella desde
la 2 y la 3 y en ese caso sí que tendremos un valor.

@Serializable

data class Pantalla1Route(val pantallaAnterior: Int? = null)

fun NavGraphBuilder.pantalla1Destination(

 onNavigatePantallaAnterior: () -> Unit

) {

 composable<Pantalla1Route>{ backStackEntry ->

 PantallaScreen(

 pantalla = 1,

 pantallaDeDondeVengo = backStackEntry.toRoute<Pantalla1Route>().pantallaAnterior,

 onNavigatePantallaAnterior = onNavigatePantallaAnterior

)

 }

}

29/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

3. Implementados los destinos o rutas, ya podemos definir nuestro NavHost en EjemploNavHost.kt .
Este recibirá el NavHostController y lo usará en el el callback que pasamos para volver a la
pantalla anterior.

@Composable

fun EjemploNavHost(navController: NavHostController) {

 NavHost(

 navController = navController,

 startDestination = Pantalla1Route

) {

 val onNavigatePantallaAnterior: () -> Unit = {

 navController.popBackStack()

 }

 pantalla1Destination(onNavigatePantallaAnterior = onNavigatePantallaAnterior)

 pantalla2Destination(onNavigatePantallaAnterior = onNavigatePantallaAnterior)

 pantalla3Destination(onNavigatePantallaAnterior = onNavigatePantallaAnterior) }

}

4. Implementaremos Scaffold principal con una TopAppBar y la NavigationBar en el fuente
 EjemploNavDentroDeUnScaffold.kt tal y como vimos en el tema anterior. Este será emitido desde el
 setContent de la MainActivity aunque también podremos tener un @Preview y su contenido
principal será el NavHost .
Nuestro NavigationBar solo recibe el estado con el índice de la pantalla actual y el callback para
navegar a la pantalla seleccionada.

@Composable

fun NavigationBarEnEjemploNav(

 iOpcionNevagacionSeleccionada: Int = 0,

 onNavigateToScreen: (Int) -> Unit

) {

 val titlesAndIcons = remember { ... }

 NavigationBar {

 titlesAndIcons.forEachIndexed { index, (title, icon) ->

 NavigationBarItem(

 icon = { Icon(icon, contentDescription = title) },

 label = { Text(title) },

 selected = iOpcionNevagacionSeleccionada == index,

 onClick = { onNavigateToScreen(index) }

)

 }

 }

}

30/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

El contenido principal lo metemos dentro de un Box para poder aplicar el padding recibido desde
el Scaffold.

@Composable

fun ContenidoPrincipalEnEjemploNav(

 navController: NavHostController,

 modifier: Modifier = Modifier

) {

 Box(modifier = modifier) { EjemploNavHost(navController)}

}

Definimos una función de utilidad privada que a partir de la ruta actual como NavDestination
obtenida de la pila de nevegación NavBackStackEntry nos devuelve el índice de la pantalla
actual.
Fíjate que usamos el método hasRoute indicándole el tipo de la ruta que queremos comprobar.

private fun iOpcionNevagacionSeleccionadaAPartirDeDestino(destino: NavDestination?): Int {

 return when {

 destino == null -> 0

 destino.hasRoute<Pantalla1Route>() -> 0

 destino.hasRoute<Pantalla2Route>() -> 1

 destino.hasRoute<Pantalla3Route>() -> 2

 else -> 0

 }

}

Vamos por último a definir la función EjemploNavDentroDeUnScaffold que como hemos comentado
será llamada desde la MainActivity . Veamos sus diferentes partes:

Importante

Cuando pulsemos el botón de volver atrás. ¿Cómo se actualiza el estado de la
 NavigationBar ?. Fíjate que obtenemos un State<NavBackStackEntry?> con
 navController.currentBackStackEntryAsState() que se actualizará cada vez que se
produzca un cambio en el destino de navegación. De él, obtenemos un estado derivado
(derivedStateOf) con el índice de nuestro NavigationBar utilizando la función de utilidad
que hemos definido anteriormente y a la que le pasamos la ruta actual con
 entradaEnPilaDeNavegacionActuasState.destination? .



31/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Definimos ya el componente Scaffold y le pasamos al TopAppBar :
i. El callback para navegar atrás.
ii. El callback para deshacer toda la navegación.

Nuestro NavigationBar recibirá del índice seleccionado a partir del estado que actulizaba la
navegación. De tal manera que sólo con navegar este estado cambiará. Además, le pasamos los
callbacks para navegar a la pantalla seleccionada utilizando la funciones de extenxión de
NavHostController que hemos definido anteriormente en cada uno de los destinos.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun EjemploNavDentroDeUnScaffold() {

 val comportamientoAnteScroll = TopAppBarDefaults.exitUntilCollapsedScrollBehavior()

 val navController = rememberNavController()

 val entradaEnPilaDeNavegacionActuasState by navController.currentBackStackEntryAsState()

 val iOpcionNevagacionSeleccionada by remember {

 derivedStateOf {

 iOpcionNevagacionSeleccionadaAPartirDeDestino(

 entradaEnPilaDeNavegacionActuasState?.destination

)

 }

 }

7

12

Scaffold(

 modifier = Modifier.nestedScroll(

 comportamientoAnteScroll.nestedScrollConnection),

 topBar = {

 TopAppBarEnEjemploNav(

 comportamientoAnteScroll = comportamientoAnteScroll,

 onNavegarAtras = {

 navController.popBackStack()

 },

 onDeshacerNavegacion = {

 navController.popBackStack(

 navController.graph.startDestinationRoute!!, false

)

 })

 },

8

11

13

32/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

bottomBar = {

 NavigationBarEnEjemploNav(

 iOpcionNevagacionSeleccionada = iOpcionNevagacionSeleccionada,

 onNavigateToScreen = { i ->

 when (i) {

 0 -> navController.navigate(

 Pantalla1Route(pantallaAnterior = iOpcionNevagacionSeleccionada + 1)

)

 1 -> navController.navigate(

 Pantalla2Route(pantallaAnterior = iOpcionNevagacionSeleccionada + 1)

)

 2 -> navController.navigate(

 Pantalla3Route(pantallaAnterior = iOpcionNevagacionSeleccionada + 1)

)

 }

 }

)

},

Por último, emitiremos el componente que definía el NavHost en el contenido principal del
 Scaffold .

 content = { innerPadding ->

 ContenidoPrincipalEnEjemploNav(

 navController = navController,

 modifier = Modifier.padding(innerPadding)

)

 }

)

}

33/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

Anexo I - Integrado navegación y NavigationDrawer
Descarga proyecto de Ejemplo NavigationDrawer: EjemploNavConNavigationDrawer.zip

En el proyecto anterior puedes encontrar un ejemplo análogo al enterior, pero usando un
 NavigationDrawer . Tendremos 5 destinos de navegación y siempre volveremos a la pantalla1. La
pantalla1 además, nos permitirá desplegar el DrawerSheet a través de una acción en su TopAppBar .

1️⃣ En la Pantalla 1 damos por ejemplo acceso al menú y desde ella podemor ir a cualquier otra.
2️⃣ Por ejemplo, si seleccionamos al desplegar la Pantalla 3 se cerrará el menú e iremos a ella.
3️⃣ Desde cualquier Pantalla el volver irá a la Pantalla 1.

34/34 PMDM 2º DAM Tema 4.2 - Navegación Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavConNavigationDrawer_recurso.zip

