Tema 4.2 - Navegacion

Descargar estos apuntes pdf o html

indice

= |ntroduccion
¥ Conceptos Basicos
= Dependencias necesarias
= NavController
= NavHost
¥ Ejemplo basico de navegacion
= |Implementacién minima
» Refactorizando con buenas practicas
¥ Pasando datos entre pantallas
= Estrategias para pasar datos entre pantallas
= Paso de argumentos de navegacion
¥ Integrando Hilt + ViewModel + Animaciones
= Cambiando las transiciones entre pantallas
= |ntegrando los ViewModels en la navegacion
= Gestionar grafos de navegacion complejos
= Integrado navegacion y NavigationBar

= Anexo | - Integrado navegacion y NavigationDrawer

1/34 PMDM 2° DAM Tema 4.2 - Navegacion ~ Rev. 06/01/2025

IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_2_navegacion.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_2_navegacion.html

Introduccion

» Navegacion con Jetpack Compose
o Documentacion oficial general tanto con XML como Compose Ul: Principles of navigation
o Documentacion oficial compose: Navigation with Compose
o Codelab Basico Oficial de Google: Navigation with Compose
o Codelab Avanzado Oficial de Google: Navigation with Compose
o Seguridad de tipos en la navegacion (Video Inglés) Android Developers
o New Navegacion con seguridad de tipos (Video Castellano): AristiDevs
o Navegacion en Jetpack Compose (Lista de Reproduccion): Stevdza-San
o Compartir datos entre pantallas (Video Inglés): Philipp Lackner
o Navegacion con seguridad de tipos (Video Inglés): Philipp Lackner

La necesidad de navegar entre pantallas es una de las caracteristicas mas importantes de cualquier
aplicacion. Android Jetpack Compose proporciona una biblioteca de navegacion que le permite
navegar entre pantallas, pasar datos, administrar el historial de navegacion y mucho mas.

Esta biblioteca, inicialmente se implemento para las aplicaciones de Android basadas en vistas XML
(Activities y Fragments), incluso dispone de una herramienta visual para disefiar la navegacion de la
aplicacién.

Ahora, la biblioteca de navegacién también se puede usar con aplicaciones de Android Jetpack
Compose. La biblioteca de navegacion de Compose proporciona una API declarativa para definir la
navegacion, y una API de navegacion para navegar entre pantallas. Pero sin embargo no dispone de
una herramienta visual para disefiar la navegacion de la aplicacion.

Como la mayoria de clases y el sistema de navegacion es comun a las aplicaciones basadas en vistas
XML y a las basadas en Compose, la documentacion oficial de la biblioteca de navegacion es
comun para ambas. Por lo que en la documentacion oficial, en la mayoria de ejemplos, se muestra la
implementacion con vistas XML y no con Compose. Esto puede llevarnos a confusion y a pensar que
la biblioteca de navegacion no es compatible con Compose, pero no es asi, simplemente hay que
saber interpretar los ejemplos y adaptarlos a Compose. De todas formas, tienes una entrada
especifica para Compose en ente enlace

Desde sus inicios, la biblioteca de navegacion para Compose ha tenido criticas por parte de la
comunidad de desarrolladores, debido a su complejidad, falta de documentacion y constantes cambios
en su API. Es por eso que han surgido multitud de librerias de terceros, que en principio, facilitan la
implementacion evitando excesivo codigo "bolierplate" o incluso algunas son multiplataforma (Android,
i0OS, Desktop y Web)

2/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/principles
https://developer.android.com/jetpack/compose/navigation
https://developer.android.com/codelabs/basic-android-kotlin-compose-navigation#0
https://developer.android.com/codelabs/jetpack-compose-navigation#0
https://www.youtube.com/watch?v=8m1W4PyYMYQ
https://www.youtube.com/watch?v=1OxiEaEWEe4
https://www.youtube.com/watch?v=glyqjzkc4fk&list=PLSrm9z4zp4mFYcmFGcJmdsps_lpsaWvKM
https://www.youtube.com/watch?v=h61Wqy3qcKg&t=596s
https://www.youtube.com/watch?v=qBxaZ071N0c
https://developer.android.com/guide/navigation/principles
https://developer.android.com/jetpack/compose/navigation

Algunas de estas librerias son: Compose Destinations, Appyx, Voyager, Reimagined, Decompose.

Al final muchas de estas librerias son una capa de abstraccién sobre la biblioteca de navegacion
oficial, por lo que es recomendable conocer la biblioteca oficial. Este video en inglés, Philipp Lackner
nos hace una reflexién sobre este tema y el porqué conocer la biblioteca oficial de Google y en todo
caso hacernos nosotros mismos nuestra propia abstraccion de navegacion.

Incluso utilizando la biblioteca oficial, hay muchas formas de implementar la navegacion y que podréis
ver en los diferentes tutoriales y videos que hay en la red, teniendo en cuenta que en cada uno se
siguen diferentes patrones de disefio.

¢) Importante

Nosotros en este tema vamos a seguir las recomendaciones de uso y mejores practicas de
implementacion que en la actualidad recomienda Google y que pueden encontrar en el siguiente
enlace que recomendamos que visites y leas tras ver el tema.

3/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://composedestinations.rafaelcosta.xyz/v2/
https://bumble-tech.github.io/appyx/
https://voyager.adriel.cafe/
https://olshevski.github.io/compose-navigation-reimagined/
https://xxfast.github.io/Decompose-Router/overview.html
https://www.youtube.com/watch?v=JAGLOaWztBc
https://developer.android.com/guide/navigation/design/type-safety

Conceptos Basicos

Dependencias necesarias

Recuerda que la version puede cambiar en el futuro, por lo que es recomendable que consultes la
ultima version en el enlace. También debes tener en cuanta que un cambio en el primer numero de la

version, puede implicar cambios importantes en la APl que vamos a describir.

Para poder utilizar la biblioteca de navegacion en Compose, debemos afadir las siguientes
dependencias ...

En el 1libs.versions.toml

2’ Nota

Aunque en el ejemplo hemos puesto las entradas en varias lineas indentadas para mas claridad
y que quepa todo en la version en pdf. El intérprete de Gradle para el toml no admite esta
sintaxis, por lo que debes ponerlo en una sola linea.

[versions]

composeNavigation = "2.8.5"
kotlinxSerializationJson = "1.7.3"
[libraries]

compose-navigation = {
group = "androidx.navigation",
name = "navigation-compose”,
version.ref = "composeNavigation"
}
kotlinx-serializarion-json = {
group = "org.jetbrains.kotlinx",
name = "kotlinx-serialization-json",
version.ref = "kotlinxSerializationJson"
}
androidx-hilt-navigation-compose = {
group = "androidx.hilt",
name = "hilt-navigation-compose",

version.ref = "hiltNavigationCompose"

4/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/navigation

[plugins]
kotlinx-serialization = {
id = "org.jetbrains.kotlin.plugin.serialization",

version.ref = "kotlin"

En el DSL definido en build.gradle.kts del proyecto ...

plugins {

alias(libs.plugins.kotlinx.serialization) apply false

En el DSL definido en build.gradle.kts del médulo app ...

plugins {
alias(libs.plugins.kotlinx.serialization)

dependencies {
implementation(libs.compose.navigation)

implementation(libs.kotlinx.serializarion.json)

implementation(libs.androidx.hilt.navigation.compose)

NavController

El Navcontroller es el encargado de gestionar la navegacion entre destinos. El controlador
ofrece métodos para navegar entre destinos, manejar enlaces profundos, administrar la pila de

retroceso y mas.

Para crear un NavController en Jetpack Compose haremos:
val navController = rememberNavController()

Puesto que rememberNavController es una funcion @Composable NO puede ser creado en un
VviewModel . Asi pues, si quieres que la mayoria de tus componentes puedan acceder a la navegacion,
debes crear el objeto NavController en el componente mas alto de la jerarquia de composicion
esto es junto al NavHost del que hablaremos a continuacion.

5/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

NavHost

Para poder navegar entre pantallas, debemos tener un contenedor donde se muestren las
pantallas. En las aplicaciones basadas en compose este contenedor es un ‘composable’ llamado
NavHost . Al ser un contenedor, puede ocupar todo la pantalla o solo una parte de ella como se

muestra en las imagenes mas a a la derecha.

NavHost recibira un NavController e ira definiendo los destinos de navegacion a través de un
NavGraph , este componente lo recibira como parametro o sera creado y gestionado por el propio
NavHost de forma interna, solo si no se le ha pasa. El navGraph es basicamente por tanto, una

coleccion de destinos recuperables.

1255 @ @ .40 1154 2 O @ v4l
TopAppBar
NavHost

< Ejemplo Navegacién f
NavHost

NavigationBar

@ @ @
Pantalla 1 Pantalla 2 Pantalla 3

6/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

Ejemplo basico de navegacién

Implementacién minima

Vamos a aplicar los conceptos anteriores a un ejemplo basico de navegacion entre dos pantallas A 'y
B.

Tal y como se muestra en la imagen de ejemplo. La pantalla A sera la pantalla principal y tendra un
Scaffold con un TopAppBar Yy un botdn que nos permitira navegar a la pantalla B. La pantalla B
tendra un Scaffold con un TopAppBar Yy en ella tendra un IconButton de vuelta a la pantalla anterior

que solo puede ser pantalla A.

Descarga proyecto de ejemplo 1: EjemploNavegacionBasico1.zip

547 % @ 2T 548 & @ v4n
-
o
Ejemplo Navegacion Basico Ejemplo Navegacion Basico
——
>

Los pasos serian los siguientes:

1. Primero definiremos las pantallas en el paquete ui.features
Definimos PantallaAscreen.kt que emite en la composicion la pantalla A y recibe un callback

que sera llamado cuando se pulse el boton de navegacién a la pantalla B.:

@Composable
fun PantallaAScreen(onNavigatePantallaB: () -> Unit)

Definimos PantallaBScreen.kt que emite en la composicion la pantalla B y recibe un callback
que sera llamado cuando se pulse el botdon de navegacién a la pantalla anterior que solo puede

ser |la pantalla A.:

7134 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionBasico1_recurso.zip

2.

3.

8/34

@Composable
fun PantallaBScreen(onNavegarAtras: () -> Unit)

¢) Importante

Como ves, en ambos casos pasamos callbacks que seran llamados cuando se pulse el
boton de navegacion y asi evitamos dependencias con el NavController y tendremos
centralizadas todas las acciones de navegacién en el NavHost .

Decidimos en que punto vamos a tener nuestro NavHost Yy como ya hemos comentado tendremos
varias opciones. Para este ejemplo, lo normal es que esté lo mas alto en la jerarquia de
composicion, por lo que lo pondremos en el setContent de la MainActivity Yy es en este punto

donde crearemos al NavController .

// MainActivity.kt
class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
EjemploNavegacionTheme {
Surface(modifier = Modifier.fillMaxSize()) {
val navController = rememberNavController()

NavHostEjemploBasicoInicial(navController = navController)

Para ello hemos definido la funcion composable NavHostEjemploBasicoInicial que recibe una

instancia de NavHostController .

PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

@Composable

private fun NavHostEjemploBasicoInicial(navController: NavHostController) {

NavHost (
navController = navController,
startDestination = "pantalla_A"
) A
composable(route = "pantalla A") { backStackEntry ->
PantallaAScreen {
navController.navigate("pantalla B")
}
}
composable(route = "pantalla_B") { backStackEntry ->
PantallaBScreen {
navController.popBackStack()
}
}
}

9/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

Vamos a comentar mas detalladamente el codigo del punto anterior:

@Composable
private fun NavHostEjemploBasicoInicial(navController: NavHostController) {
NavHost (
navController = navController, // Pasamos el NavController
startDestination = "pantalla_A" // Indicamos el destino inicial
) o
// En este contexto estamos definiendo un objeto NavGraphBuilder
// encargado de crear el grafo de navegacion.

// Por lo que solo podemos usar métodos de esta clase.

@Composable
private fun NavHostEjemploBasicoInicial(navController: NavHostController) {

NavHost(navController = navController, startDestination = "pantalla A") {

// composable es uno de los métodos de NavGraphBuilder y crea un o
// destin de navegacion en el grafo.

// Como parametro obligatorio recibe la ruta del destino que sera
// una cadena de texto similar a una URL de consumo de un API REST.
// Mas adelante comentaremos otros parametros opcionales.

composable(route = "pantalla A") { backStackEntry ->

// Aqui ira el composable con la pantalla o Screen que se
// emite en el NavHost en esta ruta del grafo.

PantallaAScreen {

// Callback que serda llamado cuando se pulse el botdén de navegacidn
// de ir a pantalla B. Si la ruta especificada no existe en el grafo
// obtendremos una excepcion en tiempo de ejecucion.

navController.navigate("pantalla_B")

Por ultimo, al definir el callback de navegacion en la pantalla B hemos usado el método
navigateUp que nos permite volver a la pantalla anterior, que en este caso es la pantalla A.

10/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

Refactorizando con buenas practicas

En este punto ya tenemos un ejemplo basico de navegacion, pero en una aplicacién real donde los
destinos de navegacion pueden ser muchos, podremos pasar parametros entre pantallas, definir

transiciones, usaremos ViewModel para acceder a la l6gica de negocio, etc. El uso de cadenas para
las rutas puede volver el cédigo muy complejo. Esto hara que sea facil cometer errores que no se
detecten en tiempo de compilacion y consecuentemente también sera dificil de mantener o ampliar,

testear y depurar.

Para solucionar esto, como comentamos en la introduccion del tema, vamos a usar tipos seguros que
es la recomendacion actual Google y que pueden encontrar en el siguiente enlace. Por lo que vamos
a refactorizar el codigo siguiendo los siguientes pasos:

1. Crearemos un paquete ui.navigation donde definiremos los destinos y el grafo de navegacion.
2. Por cada destino de navegacion crearemos un fichero <PantallaDestino>Route.kt donde
definiremos la gestion de la ruta o rutas que nos lleven a esa pantalla de destino.

@Serializable
object PantallaARoute

fun NavGraphBuilder.pantallaADestination(
onNavigatePantallaB: () -> Unit

) A

composable<PantallaARoute> { backStackEntry ->
PantallaAScreen(onNavigatePantallaB)

Definir NavGraphBuilder.pantallaADestination me ayuda a simplificar la definicion del grafo de
navegacion, manteniendo asi la emision del NavHost limpia y facil de leer. Ademas, podra
recibir el ViewModel de la pantalla destino y descomponer en la emision del componente de la
pantalla destino, lo que me ayudara a mantener la I6gica de negocio fuera de la vista y asi poder
hacer previews test de mis pantallas.

Ahora definiremos PantallaBRoute.kt donde haremos lo mismo que antes pero definiendo una

nueva ruta ...

11/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/design/type-safety

@Serializable
object PantallaBRoute

fun NavGraphBuilder.pantallaBDestination(

onNavegarAtras: () -> Unit

) 1
composable<PantallaBRoute> { backStackEntry ->
PantallaBScreen(
onNavegarAtras = onNavegarAtras
)
}
}

3. Por ultimo definiremos NavHostEjemploBasico.kt donde definiremos el composable con el
NavHost usando los métodos de extension que hemos definido en los ficheros anteriores y que
usaremos en el método setContent de la MainActivity .

@Composable
fun NavHostEjemploBasico(navController: NavHostController) {
NavHost (
navController = navController,

startDestination = PantallaARoute

) A
pantallaADestination { navController.navigate(PantallaBRoute) }
pantallaBDestination { navController.popBackStack() }

Como vemos el cédigo queda mucho mas limpio y modularizado. Ademas, no usamos literales de
cadena y tendremos una metodologia de definicion.

Pasando datos entre pantallas

o Pasando datos entre pantallas
o Documentacion oficial compose: Navigate with arguments

o Navegacion con seguridad de tipos (Video Castellano): DevExperto

En el ejemplo anterior hemos visto como navegar entre pantallas, pero en una aplicacion real, es muy
probable que necesitemos pasar datos entre pantallas.

Estrategias para pasar datos entre pantallas

¢) Importante

12/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/compose/navigation?optional-args#nav-with-args
https://www.youtube.com/watch?v=4xFpapw4PF0

En el siguiente video tutorial de Philipp Lackner se explica las diferentes estrategias de cémo
pasar datos entre pantallas y las ventajas e inconvenientes de cada una de ellas. Es interesante
que le eches un vistazo antes y después de ver este tema.

Der entre las estrategias posibles vamos a destacar las siguientes:

1.

& & Pasar argumentos de navegacion: La mas adecuadas si queremos evitar acoplamiento
entre pantallas y de esta manera usar una misma pantalla en diferentes contextos. La libreria de
navegacion de Jetpack Compose para Android nos permite pasar argumentos de navegacion
entre pantallas.

Estos argumentos se pasan en la ruta de navegacioén soporta el paso de argumentos de tipo
primitivo y objetos parcelables o serializables.

Lo mas comun es pasar un argumento de tipo primitivo que sea la clave primaria de un objeto
que queremos recuperar en el ViewModel de la pantalla destino (es la recomendacion de
Google). Por ejemplo, si queremos recuperar un objeto de tipo Usuario en la pantalla destino,
pasaremos como argumento de navegacion el id del usuario y en la pantalla destino
recuperaremos el objeto de nuestros repositorios a partir de ese id .

& Compartir un ViewModel: Basicamente consiste en tener el dato en un ViewModel que sea
compartido por ambas pantallas. Para ello debemos asegurarnos que el viewModelOwner
sobreviva a ambas pantallas como por ejemplo el viewModelOwner de la MainActivity . Aunque
también hay otras estrategias como usar un VviewModel donde el ViewModelOwner sea un

NavGraph .

. 7 Compartir una dependencia con estado: Basicamente consiste en usar Hilt para definir una

clase que se pueda inyectar en los ViewModels que necesiten compartir datos y esté marcada
como @singleton . De esta manera tendremos una unica instancia de la clase y por tanto los
datos que almacene seran compartidos por todos los ViewModels que la inyecten. Las
propiedades de dicha clase deben ser mutableState para que los cambios sean observables por
los ViewModels que la inyecten.

Paso de argumentos de navegacion

Veamos el proceso de paso de argumentos de

navegacion entre pantallas completando el ejemplo

anterior donde navegabamos entre las pantallas A
y B.

VVamos ha realizar una paso simple de datos

entre pantallas. Como puedes ver en la imagen de

ejemplo, en la pantalla A tendremos un TextField

13/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://www.youtube.com/watch?v=h61Wqy3qcKg

1022 % @ 40 10:22 % @ *40
<
pantalla B mostraremos un Text con el nombre Ejemplo Navegacion Basico Ejemplo Navegacion Basico

donde el usuario introducird su nombre y en la

introducido.

Descarga proyecto de ejemplo 2:
EjemploNavegacionBasico2.zip

usuario1 234
mlsb@la| USUario1234
. — . —

Vamos los pasos logicos que debemos seguir:

1. Modificamos PantallaBScreen.kt para gestionar el argumento de navegacion:
PantallaBScreen recibe ahora un parametro de tipo string? que si es distinto de null mostrara
el nombre en un Text justo debajo del rétulo B

@Composable

fun PantallaBScreen(
nombre: String? = null,
onNavegarAtras: () -> Unit)

14/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionBasico2_recurso.zip

2. Modificamos PantallaAScreen.kt para enviar el argumento de navegacion:
Fijate que onNavigatePantallaB ahora recibe un parametro de tipo String que sera el estado con
el nombre introducido por el usuario.

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun PantallaAScreen(

onNavigatePantallaB: (String) -> Unit

) {
val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()
var nombreState by remember { mutableStateOf("andénimo") }
val onNombreChange: (String) -> Unit = { nombreState = it }
Scaffold(
content = { innerPadding ->ContenidoPantalla(...) },

@Composable

private fun ContenidoPantalla(
nombreState: String,
onNombreChange: (String) -> Unit,
onNavigatePantallaB: (String) -> Unit,
modifier: Modifier = Modifier) {

Button(onClick = {
onNavigatePantallaB(nombreState)

A
Text(text = "Ir a pantalla B")

3. Modificamos PantallaBRoute.kt para redefinir la ruta de navegacion con el parametro de entrada
y en lugar de un object definimos una data class con una propiedad de tipo string que sera el
dato que pasaremos entre pantallas.

Nota

Estas propiedades deben ser tipos simples del propio lenguaje que ya que por defecto
son serializables y parcelables. En caso de ser tipos compuestos definidos por nosotros el
paso de parametros no funcionaria y el proceso se complicaria ya que tendriamo que
indicarle a la navegacion como se serializan dichos tipos.

15/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

@Serializable

data class PantallaBRoute(val nombre: String)

fun NavGraphBuilder.pantallaBDestination(
onNavegarAtras: () -> Unit

) 1
composable<PantallaBRoute> { backStackEntry ->

val datos : PantallaBRoute = remember { backStackEntry.toRoute<PantallaBRoute>() }
PantallaBScreen(
nombre = datos.nombre,

onNavegarAtras = onNavegarAtras

}

4. Modificamos NavHostEjemploBasico.kt fijate que ahora en el callback de navegacion de la
pantalla A creamos un objeto de tipo PantallaBRoute con el nombre introducido por el usuario
que sera el argumento de navegacion.

@Composable
fun NavHostEjemploBasico(navController: NavHostController) {
NavHost(...) {
pantallaADestination(
onNavigatePantallaB = { nombre ->

navController.navigate(PantallaBRoute(nombre))

Integrando Hilt + ViewModel + Animaciones

Si nos fijamos en el ejemplo anterior, al volver de la pantalla B a la pantalla A el texto introducido en el
TextField se pierde. Esto es debido a que la pantalla A se vuelve a crear y por tanto el estado del
TextField se reinicia.

Para evitar esto vamos a introducir un ViewModel para cada una de las pantallas. La forma mas
simple de hacerlo es usando Hilt . Ademas, como comentamos también podria ayudarnos a
compartir datos entre pantallas. Recuerda que debemos tener la dependencia de
hilt-navigation-compose €n el fichero build.gradle.kts del mdédulo app:

16/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

implementation(libs.androidx.hilt.navigation.compose)

Otro aspecto que vamos a mejorar, es la transicion entre pantallas durante la navegacion. Para ello,
Google ha incorporado en la biblioteca de navegacién de Jetpack Compose, un nuevo sistema de
animaciones que nos permite definir animaciones de entrada y salida de las pantallas. Recuerda que
debes tener afadida la siguiente libreria de animaciones en el fichero build.gradle.kts del modulo

app.

implementation(libs.compose.navigation)

Descarga proyecto de ejemplo 3: EjemploNavegacionBasico3.zip

Cambiando las transiciones entre pantallas

Vamos a continuar con nuestro ejemplo anterior, pero vamos a cambiar las transiciones entre
pantallas. Para ello, lo mas sencillo sera aplicar la mismas transiciones a todas nuestras navegaciones
y para ello nos hemos inventado la transicion, en la imagen de ejemplo puedes ver como la pantalla B
tiene una transicion de entrada de derecha a izquierda con un fade-in y la pantalla A una transicion de
salida de arriba a abajo con un fade-out.

Cuando hagamos un volver atras con un popBackStack las direcciones de las transiciones se
invertiran.

506 3 & vl
<

Ejemplo Navegacic

B

Ejemplo Naveg Hola an¢

17/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionBasico3_recurso.zip

Podemos crear una biblioteca de funciones de extensién de
AnimatedContentTransitionScope<NavBackStackEntry> para definir las transiciones de navegacion. Para
ello siguiendo la documentacién de Accompanist hemos definido las siguientes. Podriamos, por
ejemplo, llevarlas a algun tipo de fichero del paquete utilities de nuestro proyecto.

fun AnimatedContentTransitionScope<NavBackStackEntry>
.entradaDesdeDerecha(duracion: Int) =
fadeIn(animationSpec = tween(duracion)) +
slideIntoContainer(
AnimatedContentTransitionScope.SlideDirection.Left,
tween(duracion)
)
fun AnimatedContentTransitionScope<NavBackStackEntry>
.salidaAlaDerecha(duracion: Int) =
fadeOut(animationSpec = tween(duracion)) +
slideOutOfContainer(
AnimatedContentTransitionScope.SlideDirection.Right,
tween(duracion)
)
fun AnimatedContentTransitionScope<NavBackStackEntry>
.salidaHaciaAbajo(duracion: Int) =
fadeOut(animationSpec = tween(duracion)) +
slideOutOfContainer(
AnimatedContentTransitionScope.SlideDirection.Down,
tween(duracion)
)
fun AnimatedContentTransitionScope<NavBackStackEntry>
.entradaHaciaArriba(duracion: Int) =
fadeIn(animationSpec = tween(duracion)) +
slideIntoContainer(
AnimatedContentTransitionScope.SlideDirection.Up,

tween(duracion)

18/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

Posteriormente, para conseguir el efecto descrito, simplemente tendremos que usarlas en los

parametros de las transiciones de navegacion en el NavHost . Por ejemplo:

val duracionAnimacion = 1100

NavHost (
navController = navController,
startDestination = PantallaARoute,
enterTransition = { entradaDesdeDerecha(duracionAnimacion) },
exitTransition = { salidaHaciaAbajo(duracionAnimacion) },
popEnterTransition = { entradaHaciaArriba(duracionAnimacion) },

popExitTransition = { salidaAlaDerecha(duracionAnimacion) }

Integrando los ViewModels en la navegacion

Como sabemos, normalmente nuestras pantallas van a tener toda los 'UlStates', l6gica y acceso a
datos en un viewModel . Veamos los pasos para hacerlo en nuestro ejemplo:

1. Integraremos Hilt en nuestro proyecto como vimos en temas anteriores. No hace falta definir, de
momento, el paquete di pues no vamos a preparar ningun moédulo.

2. Definiremos el VM de la pantalla A en PantallaAviewModel.kt . En el ascendemos los estados
utilizados en la misma. En nuestro caso el nombre introducido y el callback llamado desde el
TextField .

@HiltViewModel
class PantallaAViewModel @Inject constructor() : ViewModel() {
var nombreState by mutableStateOf("andénimo™)
private set

fun onNombreChange(nombre: String) {

nombreState = nombre

3. Definiremos el VM de la pantalla B en PantallaBviewModel.kt . En el ascendemos los estados
utilizados en la misma. En nuestro caso el estado con el nombre que vamos a visualizar en el
Text de la pantalla B.
@HiltViewModel

class PantallaBViewModel @Inject constructor() : ViewModel() {

var nombreState: String = "andénimo"

! Fijate que NO hemos hecho el private set a la propiedad. De esta manera podremos
modificar el estado antes de navegar y no pasar parametro o pasar el parametro, y al recibirlo
'setearlo’ en el VM de B. Nosotros vamos a optar por la segunda opcidn.

19/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

4. En NavHostEjemploBasico.kt crearemos las instancias de los VM mediante
hiltViewModel<TipoDelViewMode> . Des esta manera los VM tendran como ViewModelOwner |a
MainActivity Yy por tanto no se destruiran al navegar entre pantallas y al regresar a una patalla
anterior se mantendran los estados.

@Composable

fun NavHostEjemploBasico(

navController: NavHostController

) 1
val vmPantallaA = hiltViewModel<PantallaAViewModel> ()
val vmPantallaB = hiltViewModel<PantallaBViewModel> ()
NavHost (
navController = navController,
) o
}
}

5. En PantallaARoute.kt vamos a definir la ruta y el builder del nodo del grafo de navegacion para la
pantalla A. Al recibir el VM desde el navHost cualquier cambio de estado del nombre que se
produzca en el VM se reflejara en la vista,

@Serializable
object PantallaARoute

fun NavGraphBuilder.pantallaADestination(
vm: PantallaAViewModel,
onNavigatePantallaB: (String) -> Unit

) 1
composable<PantallaARoute> { backStackEntry ->
PantallaAScreen(
nombreState = vm.nombreState,
onNombreChange = vm::onNombreChange,
onNavigatePantallaB = onNavigatePantallaB
)
}
}

Si hubieramos creado el VM en el momento de emitir la pantalla como en el siguiente ejemplo...

20/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

fun NavGraphBuilder.pantallaADestination(
onNavigatePantallaB: (String) -> Unit

) 1
composable<PantallaARoute> { backStackEntry ->

val vm = hiltViewModel<PantallaAViewModel> ()
PantallaAScreen(
nombreState = vm.nombreState,
onNombreChange = vm::onNombreChange,

onNavigatePantallaB = onNavigatePantallaB

entonces el viewModelOwner seria el NavGraph creado por el NavGraphBuilder en el momento de
la navegacion y el VM se destruiria al volver atras en la navegacion. Esto puede ser util en
algunos casos, pero no en este porque perderiamos el estado del nombre introducido por el
usuario.
Solo si usamos grafos de navegaciéon anidados y el VM esta asociado a un grafo anidado. El
VM se destruira al salir del grafo anidado en la navegacién. Nosotros en este curso no vamos a
tratar este tema por simplificar, pero puedes ver en el enlace anterior como se hace.

6. En PantallaBRoute.kt vamos 'setear en el VM de B el nombre recibido como parametro en la
navegacion.

2" Nota

En este caso podriamos pasar directemante como parametro el nombre a PantallaBRoute
pues no se trata de un estado que vaya a modificar. Pero hemos querido mostrar el caso
mas comun de que el parametro recibido tenga un efecto en algun estado del viewModel
asociado a la pantalla a emitir.

21/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/design/nested-graphs

@Serializable

data class PantallaBRoute(val nombre: String)

fun NavGraphBuilder.pantallaBDestination(
vm: PantallaBViewModel,

onNavegarAtras: () -> Unit,

) A
composable<PantallaBRoute>{ backStackEntry ->

vm.nombreState = remember { backStackEntry.toRoute<PantallaBRoute>().nombre }
PantallaBScreen(
nombre = vm.nombreState,

onNavegarAtras = onNavegarAtras

En este ejemplo simple, 'Setear el nombre el el viuewModel de la pantalla B no desencadena
mas cambios de estado ni busquedas en un repositorio, etc. Pero esto no es lo normal. Lo mas
habitual es que pasemos algun tipo de id o clave primaria de un objeto y que en el viewModel de
la pantalla destino recuperemos el objeto de nuestros repositorios a partir de ese id produciendo
el consecuente cambio de estado.

¢) Importante

En este ultimo caso es importante comprobar que el id ha cambiado realmente para evitar
hacer busquedas y recomposiciones innecesarias si se proujese alguna recomposicion del

NavHost .
Por ejemnplo, definiendo el setter de la propiedad id del viewModel de la pantalla destino

de la siguiente manera:

@HiltViewModel class PantallaBViewModel @Inject constructor(
private val repositorio: Repositorio
) : ViewModel() {
var datosState: Datos by mutableStateOf(Datos())
private set
fun setDatos(id : Int) {
if (id != datosState.id) datosState = repositorio.getDatos(id)

22/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

® Caso de estudio:

Puedes descargar el codigo aqui: EjemploNavegacionCompartiendoVM.zip si no sabes seguir

alguno de los ejemplos.

Aunque como hemos comentado, no es la opcidn recomendada por Google. En el siguiente caso
de estudio vamos a aplicar lo que hemos visto hasta ahora para en lugar de pasar datos en la
navegacion, compartir datos complejos entre VviewModels . Ademas, vamos a ver como crear un

destino de navegacion que sea un dialogo.

1. Creamos una feature datos con el siguiente contenido:

data class DatosUiState(
val nombre: String = "Jhon",

val apellido: String = "Doe"

2. En el paquete .features.datos.ver definimos el viewModel de la pantalla
VerDatosScreen.kt Yy lo denominaremos VerDatosViewModel.kt. . Simplemente me gestionara
un estado de tipo DatosUiState .

3. En el paquete .features.datos.editar definimos EditarDatosDialog.kt Y
EditarDatosEvent.kt que agrupe los eventos de modificar nombre y apellido. Asi mismo
definirmos EditarDatosViewModel.kt que ademas de los eventos contenga como antes un

estado de tipo DatosUiState .

1159 GO 0 & v4n 1200 G 9 0 & -

Compartiendo datos con VM

Introduce Datos

Nombre
Jhon

Nombre: Jhon
Apellido: Doe

Apellido
Doe

Cancelar Aceptar

23/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionCompartiendoVM_recurso.zip

4. En el paquete .ui.nabigation definimos VerDatosRoute.kt donde la destinacion que
recibira su correspondiente VverDatosviewModel Yy el callback de nagacion desde donde
centralizamos la misma.

5. En el paquete .ui.nabigation definimos EditarDatosRoute.kt con el siguiente codigo.

@Serializable

object EditarDatosRoute

fun NavGraphBuilder.editarDatosDestination(
vm: EditarDatosViewModel,
onAceptar: (DatosUiState) -> Unit,

onCancelar: () -> Unit

) {
dialog<EditarDatosRoute> {

EditarDatosDialog(
datosState = vm.datosState,

onPantallaPrincipalEvent = vm::onEditarDatosEvent,
onAceptar = onAceptar,

onCancelar = onCancelar

Fijate que en lugar de composable<EditarDatosRoute> usamos dialog<EditarDatosRoute>
para definir un destino de navegacion se comporte como un dialogo modal.
EditarDatosDialog.kt emite el componente de material3 AlertDialog que ya hemos visto en

temas anteriores.

24/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

6. La opcidon de compartir datos entre los ViewModel la centralizaremos al definir el NavHost y
en los callback de navegacion al dialogo y volver de la misma.

@Composable
fun NavHostCompartiendoVm(
navController: NavHostController
) 1
val vWm = hiltViewModel<VerDatosViewModel> ()
val eVm = hiltViewModel<EditarDatosViewModel> ()
NavHost (

navController = navController,

startDestination = VerDatosRoute
) A
verDatosDestination(
vm = vVm,
onEditar = {
eVm.setDatos(vVm.datosState)

navController.navigate(EditarDatosRoute)

)

editarDatosDestination(
vm = evVm,
onAceptar = { datos ->
navController.popBackStack()
vVm.setDatos(datos)
¥
onCancelar = { navController.popBackStack() }

25/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

Gestionar grafos de navegacion complejos

Descarga proyecto: EjemploNavegacionJerarquiaCompleja.zip

En dicho proyecto hemos definido el siguiente grafo de navegacion. Donde hay pantallas que me
pueden llevar a dos posibles destinos como n1, n21 y n22 . Otras que me llevan a un unico
destino como n32 y pantalla finales que no tienen destinos como n31, n33 y n4.

NavGraph
\/
n1
@:kswck() \RopBackStack()
n21 n22

popUpTo(n1) opBackStack opBackStack(n1)
popBackStack

Pero fijémonos en la gestién que se hace de los retornos indicada en cada arista del grafo:

o Siindicamos popBacksStack() indicaremos que cuando se vuelva de la pantalla de destino se ira
justoa a la anterior de donde se llamo.

e Siindicamos popBackStack(nl) como de n22 a n33 indicaremos que cuando se vuelva de la
pantalla de destino se ira a la pantalla indicada en el parametro de la funcién en este caso al nodo
inicial.

e Siindicamos popUpTo(ni) como de n21 a n24 indicaremos que cualquier popBackStack en el
destino siempre me llevara a n1 . En este ultimo caso si llegamos a n4 desde n21 volveremos a
nl al hacer un popBackStack pero sillegamos desde n32 volveremos justo a la pantalla de
origen n32.

26/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavegacionJerarquiaCompleja_recurso.zip

@Composable
fun NavHostEjemploJerarquiaCompleja(navController: NavHostController) {
NavHost (navController = navController,

startDestination = NivellRoute)

{
nivellDestination(
onNavigateNivel21l = { navController.navigate(Nivel21Route) },
onNavigateNivel22 = { navController.navigate(Nivel22Route) }
)
nivel2ilDestination(
onNavigateNivel31l = {
navController.navigate(Nivel31Route) {
popUpTo(NivellRoute) { inclusive = false }
}
s
onNavigateNiveld = {
navController.navigate(Nivel4Route("N1 > N2.1")) {
popUpTo(NivellRoute) { inclusive = false }
}
3
onNavegarAtras = { navController.popBackStack() }
)
nivel22Destination(
onNavigateNivel32 = { navController.navigate(Nivel32Route) },
onNavigateNivel33 = { navController.navigate(Nivel33Route) },
onNavegarAtras = { navController.popBackStack() }
)
nivel3lDestination(
onNavegarAtras = { navController.popBackStack() }
)
nivel32Destination(
onNavigateNiveld = { navController.navigate(Nivel4Route("N1 > N2.2 > N3.2")) },
onNavegarAtras = { navController.popBackStack() }
)
nivel33Destination(
onNavegarAtras = { navController.popBackStack(NivellRoute, inclusive = false) }
)
nivel4Destination(
onNavegarAtras = { navController.popBackStack() }
)
}

Recuerda profuncizar en el uso de popBackstack(...) €s muy altamente recomendable la lectura
documentacion oficial de Android ya que por su 'complejidad’ vamos a dejar fuera del Tema.

Asi mimos en este enlace tienes un ejemplo de como como definir un builder de opciones de
navegacion con mas detalle.

27134 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/guide/navigation/backstack?hl=es-419#pop-back
https://developer.android.com/guide/navigation/backstack?hl=es-419#compose-examples

Integrado navegacién y NavigationBar

En el tema anterior ya vimos como definir diferentes componentes graficos en la

TopAppBar

< Ejemplo Navegacion

jerarquia superior de la pantalla, definidos en Material3 para navegar de una pantalla
a otra. Algunos de estos serian: NavigationBar , NavigationDrawer , PrimaryTabs ,

NavHost

etc. En este apartado vamos a ver el caso del NavigationBar . Para ello, vamos a
realizar una aplicacion con el esquema mostrado a la derecha.

Si nos fijamos en el mismo, el Scaffold no cambia y sera el contenido del mismo el

que contenga nuestro NavHost que intercambiara diferentes 'pantallas' que en este

caso hemos denominado Pantalla1, Pantalla2 y Pantalla3. s e @
B8 ,

Descarga proyecto de Ejemplo NavigationBar: EjemploNavConNavigationBar.zip

Puedes ver un esquema de funcionamiento en la siguiente imagen...

7% 0 # 0 428 6 O @ . R 71 B
& Ejemplo NavigationBar # < Ejemple NavigationBar ﬂ < Ejemplo NavigationBar *

3. Vuelvoa P

anterior

Pantalla actual 3 Pantalla actual 1
Pantalla actual 1 Vengo de pantalla 1 Vengo de pantalla 3
=D
Q'b
2 oA
Jol oy 2
A- .

@ E & G @ o
.. — . — . — |
4206 0 & vl EEIT T 7T 427 % 0 @ 2T
< Ejemplo NavigationBar L < Ejemplo NavigationBar L.l < Ejemplo NavigationBar L

|
e -
D%, %
/C‘/é G/lr
3. Regresando 4 %%
a P3 (Anterior) o
Pantalla actual 3 Pantalla actual 2
go de pantalla 1 Vengo de pantalla 3 Pantalla actual 1
oy a‘ﬂ
A.
@ (5] @ (@) qop. (g @

L ___— /| L _____— . —

28/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavConNavigationBar_recurso.zip

Para simplificar la implementacién de la propuesta, no vamos a usar Hilt, ni ViewModel y voy a pasar

como parametro de navegacion un entero con el numero de la pantalla de donde vengo. Por tanto,

siguiendo los pasos descritos a lo largo del tema ...

1.

29/34

Definiremos los composables con las pantallas Pantalla1, Pantalla2 y Pantalla3 en el paquete
ui.features . En nuestro caso, sera un unico componente pantalla denominado
PantallaScreen.kt Yy que tendra el siguiente interfaz.
fun PantallaScreen(
pantalla: Int,

pantallaDeDondeVengo: Int? = null,

onNavigatePantallaAnterior: () -> Unit

Si el parametro pantallaDeDondeVengo esta a null significa que estoy en la primera pantalla. En
caso contrario, se mostrara un texto con la pantalla de donde vengo y un botén de navegacién
para volver a ella que tendra el mismo efecto que pulsar el icono de la TopAppBar < tal y como se
veia en la imagen anterior.

. En el paquete ui.navigation definiremos nuestro componente NavHost . Pero antes, definiremos

un fuente con la especificacion de cada uno de los destinos y como navegar a ellos. Por ejemplo,
vamos a ver la definicion de PantallalRoute.kt Ya que Pantalla2Route.kt Y Pantalla3Route.kt
seran analogos.

Permitimos que pantallaAnterior pueda ser null porque al ser Pantalla1Route el primer destino
de navegacion, no vendra de ninguna pantalla anterior, pero podemos volver regresar a ella desde

la 2 yla3yen ese caso si que tendremos un valor.

@Serializable
data class PantallalRoute(val pantallaAnterior: Int? = null)

fun NavGraphBuilder.pantallalDestination(
onNavigatePantallaAnterior: () -> Unit
) {
composable<PantallalRoute>{ backStackEntry ->
PantallaScreen(
pantalla = 1,
pantallaDeDondeVengo = backStackEntry.toRoute<PantallalRoute>().pantallaAnterior,

onNavigatePantallaAnterior = onNavigatePantallaAnterior

PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

3. Implementados los destinos o rutas, ya podemos definir nuestro NavHost en EjemploNavHost.kt .
Este recibira el NavHostController y lo usara en el el callback que pasamos para volver a la
pantalla anterior.

@Composable
fun EjemploNavHost(navController: NavHostController) {
NavHost (
navController = navController,

startDestination = PantallalRoute

) A
val onNavigatePantallaAnterior: () -> Unit = {

navController.popBackStack()
}

pantallalDestination(onNavigatePantallaAnterior = onNavigatePantallaAnterior)
pantalla2Destination(onNavigatePantallaAnterior = onNavigatePantallaAnterior)

pantalla3Destination(onNavigatePantallaAnterior = onNavigatePantallaAnterior) }

4. Implementaremos Scaffold principal con una TopAppBar Yy la NavigationBar en el fuente
EjemploNavDentroDeUnScaffold.kt tal y como vimos en el tema anterior. Este sera emitido desde el
setContent de la MainActivity aunque también podremos tener un @pPreview Yy su contenido
principal sera el NavHost .

Nuestro NavigationBar solo recibe el estado con el indice de la pantalla actual y el callback para
navegar a la pantalla seleccionada.

@Composable

fun NavigationBarEnEjemploNav(

iOpcionNevagacionSeleccionada: Int = 0,

onNavigateToScreen: (Int) -> Unit

) 1
val titlesAndIcons = remember { ... }
NavigationBar {
titlesAndIcons.forEachIndexed { index, (title, icon) ->
NavigationBarItem(
icon = { Icon(icon, contentDescription = title) },
label = { Text(title) },
selected = iOpcionNevagacionSeleccionada == index,
onClick = { onNavigateToScreen(index) }
)
}
}
}

30/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

El contenido principal lo metemos dentro de un Box para poder aplicar el padding recibido desde
el Scaffold.

@Composable

fun ContenidoPrincipalEnEjemploNav(
navController: NavHostController,
modifier: Modifier = Modifier

) A

Box(modifier = modifier) { EjemploNavHost(navController)}

Definimos una funcién de utilidad privada que a partir de la ruta actual como NavDestination
obtenida de la pila de nevegacion NavBackstackentry nos devuelve el indice de la pantalla
actual.
Fijate que usamos el método hasRoute indicandole el tipo de la ruta que queremos comprobar.
private fun iOpcionNevagacionSeleccionadaAPartirDeDestino(destino: NavDestination?): Int {
return when {

destino == null -> @

destino.hasRoute<PantallalRoute>() -> 9

destino.hasRoute<Pantalla2Route>() -> 1

destino.hasRoute<Pantalla3Route>() -> 2

else -> 0

Vamos por ultimo a definir la funcidn EjemploNavDentroDeUnScaffold que como hemos comentado
sera llamada desde la mainActivity . Veamos sus diferentes partes:

¢) Importante

Cuando pulsemos el boton de volver atras. ¢ Coémo se actualiza el estado de la
NavigationBar ?. Fijate que obtenemos un State<NavBackStackEntry?> con
navController.currentBackStackEntryAsState() que se actualizara cada vez que se
produzca un cambio en el destino de navegacion. De él, obtenemos un estado derivado
(derivedstateof) con el indice de nuestro NavigationBar utilizando la funcién de utilidad
que hemos definido anteriormente y a la que le pasamos la ruta actual con

entradaEnPilaDeNavegacionActuasState.destination? .

31/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun EjemploNavDentroDeUnScaffold() {
val comportamientoAnteScroll = TopAppBarDefaults.exitUntilCollapsedScrollBehavior()
val navController = rememberNavController()
val entradaEnPilaDeNavegacionActuasState by navController.currentBackStackEntryAsState()
val iOpcionNevagacionSeleccionada by remember {
derivedStateOf {
iOpcionNevagacionSeleccionadaAPartirDeDestino(

entradaEnPilaDeNavegacionActuasState?.destination

Definimos ya el componente Scaffold Yy le pasamos al TopAppBar :
i. El callback para navegar atras.
ii. EI callback para deshacer toda la navegacion.

Scaffold(
modifier = Modifier.nestedScroll(
comportamientoAnteScroll.nestedScrollConnection),
topBar = {
TopAppBarEnEjemploNav (
comportamientoAnteScroll = comportamientoAnteScroll,
onNavegarAtras = {
navController.popBackStack()
¥
onDeshacerNavegacion = {
navController.popBackStack(

navController.graph.startDestinationRoute!!, false

}
}s

Nuestro NavigationBar recibira del indice seleccionado a partir del estado que actulizaba la
navegacion. De tal manera que solo con navegar este estado cambiara. Ademas, le pasamos los
callbacks para navegar a la pantalla seleccionada utilizando la funciones de extenxion de
NavHostController que hemos definido anteriormente en cada uno de los destinos.

32/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

33/34

bottomBar = {
NavigationBarkEnEjemploNav(
iOpcionNevagacionSeleccionada = iOpcionNevagacionSeleccionada,
onNavigateToScreen = { i ->
when (i) {
0 -> navController.navigate(

PantallalRoute(pantallaAnterior = iOpcionNevagacionSeleccionada + 1)

)

1 -> navController.navigate(

Pantalla2Route(pantallaAnterior = iOpcionNevagacionSeleccionada + 1)

)
2 -> navController.navigate(

Pantalla3Route(pantallaAnterior = iOpcionNevagacionSeleccionada + 1)

¥

Por ultimo, emitiremos el componente que definia el NavHost en el contenido principal del
Scaffold .
content = { innerPadding ->
ContenidoPrincipalEnEjemploNav(

navController = navController,

modifier = Modifier.padding(innerPadding)

PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

Anexo | - Integrado navegacion y NavigationDrawer

Descarga proyecto de Ejemplo NavigationDrawer: EjemploNavConNavigationDrawer.zip

En el proyecto anterior puedes encontrar un ejemplo analogo al enterior, pero usando un
NavigationDrawer . Tendremos 5 destinos de navegacion y siempre volveremos a la pantallal. La
pantallal ademas, nos permitira desplegar el DrawerSheet a través de una accion en su TopAppBar .

602 L O @ B () w4 603 © @ B () van 604 © @ B () van 609 © @ B () van

= Ejemplo NavigationDrawer Menu Menu < Ejemplo NavigationDrawer
n | Pantalla 1 | Pantalla 1 u
|B Pantalla2 |B Pantalla2
Bl Pantalla3 Bl Pantalla3 n
B Pantalla 4 B Pantalla 4
1B Pantalla 5 1B Pantalla 5
Pantalla actual 1 Pantalla actual 3
5 ____— 4

£l En la Pantalla 1 damos por ejemplo acceso al menu y desde ella podemor ir a cualquier otra.
1 Por ejemplo, si seleccionamos al desplegar la Pantalla 3 se cerrara el menu e iremos a ella.
) Desde cualquier Pantalla el volver ira a la Pantalla 1.

34/34 PMDM 2° DAM Tema 4.2 - Navegacion Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_2/EjemploNavConNavigationDrawer_recurso.zip

