Tema 4.1 - Scaffold

Descargar estos apuntes pdf o html

indice

¥ Introduccién
= Diseno basado en ranuras
v Scaffold
V¥ Barras superiores
= Barras de aplicacion superiores (TopAppBars)
» Barras de pestafias (TabRow)
V¥ Barras inferiores
= Barra de navegacion o NavigationBar
= Barra de aplicacion inferior o BottomAppBar
= Menus desplegables
= Snackbars
V¥ Hojas desplegables
= Navigation Drawer
» Hoja desplegable inferior (Bottom Sheet)

1/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_1_scaffold.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_1_scaffold.html

Introduccion

Aunque en temas anteriores hemos visto como maquetar componentes con los los layouts de la
capa 'Foundation', como Surface , Box , Column, Row , efc. en este tema vamos a ver un
componente que nos facilita la maquetacion de la pantalla, el Scaffold.

Scaffold es un componente de la capa Material y por tanto vendra definido en la libreria de
Material 3.

Diseiio basado en ranuras
o Documentacion oficial: Slot-based layouts

Aunque al final del Tema 3.2 ya se comentd. En este tema se va a profundizar en el concepto de

Ranuras o 'Slots'. Es en lo que se basa el disefio de Scaffold y me permite definir componentes

de maquetacion con Marcos o 'Frames' relacionados y que pueden colaborar entre si a través de
estados.

Veamos un ejemplo definiendo el tipico layout de una pantalla con una cabecera, un pié de pagina,
un menu lateral y un contenido central o cuerpo.

En primer lugar definimos un componente que nos permita definir un 'Frame' o marco dentro de
una maquetacion personalizada. Este componente sera un Surface con un borde y un radio de
esquina que le dara un aspecto de marco y emitira un composable contenido en su interior.

@Composable
fun ScaffoldFrame(
modifier: Modifier = Modifier,

contenido: @Composable () -> Unit,

) {
Surface(
modifier = modifier.then(
Modifier
.fillMaxSize().padding(2.dp)
.border(2.dp, MaterialTheme.colorScheme.inverseSurface)
.clip(RoundedCornerShape(10.dp)))
) {
contenido()
}
}

2/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/scaffold?hl=es-419
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Scaffold(androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,androidx.compose.material3.FabPosition,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/jetpack/compose/layouts/basics#slot-based-layouts

Posteriormente definimos el componente MiScaffold que nos permitira definir un layout
personalizado con una cabecera, un menu, un cuerpo y un pié de pagina. Siendo cada uno de
ellos un scaffoldFrame que emitira un contenido que se recibe en el parametro de tipo
@Composable () -> Unit que sera lo que denominaremos Ranura o 'S/of'.

@Composable

fun MiScaffold(
cabecera: @Composable () -> Unit = {},
menu: @Composable () -> Unit = {},
cuerpo: @Composable () -> Unit = {},
pie: @Composable () -> Unit = {}

) o
Column(
modifier = Modifier.fillMaxSize()
) {
ScaffoldFrame(modifier = Modifier.weight(1f)) { cabecera() }
Row(modifier = Modifier
.weight(1ef)
.fillMaxSize()
) o
ScaffoldFrame(modifier = Modifier.weight(2f)) { menu() }
ScaffoldFrame(modifier = Modifier.weight(10f)) { cuerpo() }
}
ScaffoldFrame(modifier = Modifier.weight(1f)) { pie() }
}
}

Por ultimo, vamos a definir un preview de nuestro componente
MiScaffold para ver como se comporta, emitiendo en cada ranura
un texto con el nombre de la ranura y un padding.

3/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Cabecera

@Preview(showBackground = true)

@Composable Menu ||Cuerpo
fun MiScaffoldPreview() {
EjemplosScaffoldTheme {
MiScaffold(
cabecera = { Text(text = "Cabecera",
modifier = Modifier.padding(5.dp)) },
menu = { Text(text = "Menu",
modifier = Modifier.padding(5.dp)) 1},
cuerpo = { Text(text = "Cuerpo",
modifier = Modifier.padding(5.dp)) },
pie = { Text(text = "Pie",
modifier = Modifier.padding(5.dp)) }

4/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

0 Info

Puedes descargar el codigo usado para todos los ejemplo de este tema del siguiente enlace:
Proyecto ejemplos scaffolding

Scaffold

e Enlaces de interés sobre Scaffold
o Documentacién oficial: Scaffold
o Material 3 Jetpack Compose: Scaffold
o Material 3 Jetpack Compose: BottomSheetScaffold
o Video Tutorial (Inglés) Philipp Lackner

En Material Design, un 'scaffold’ o andamiaje es una estructura fundamental que proporciona una
plataforma estandarizada para interfaces de usuario complejas. Mantiene diferentes partes de la
IU, como las barras de la app y los botones de accion flotantes, lo que les da a las apps un
aspecto coherente.

Este componente proporciona una API para reunir varios componentes materiales para construir
su pantalla, asegurando una estrategia de disefio adecuada para ellos y recopilando los datos
necesarios para que estos componentes funcionen juntos correctamente. Por ejemplo, si aparece
un mensaje en un Snackbar, Scaffold se asegura de que el mensaje se muestre correctamente en
la pantalla desplazando otros componentes como podria ser un botén flotante.

Estos componentes que se pueden anadir al Scaffold también definidos en Material 3 son:

o Barras de aplicacion:
o Superiores TopAppBar , CenterAlignedTopAppBar , MediumTopAppBar O LargeTopAppBar
o Inferiores como BottomAppBar O NavigationBar

o Barras de mensaje o estado (SnackBar)

» Botones flotantes de accion (Fab)

» Layouts desplegables inferiores no modales (BottomSheets)

Puesto que todo esta definido en el sistema de disefio de Material, los componentes se combinan
de forma coherente y se comportan de forma predecible y siguen las directrices de 'layout'
descritas en Material, en nuestro caso para pantallas compactas.

Ademas, dispones de la App para Android denominada Now in Android que te permite ver como
se comportan los diferentes componentes de Material 3 en un dispositivo real. Puedes descargarla

5/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/scaffold?hl=es-419
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Scaffold(androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,androidx.compose.material3.FabPosition,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomSheetScaffold(kotlin.Function1,androidx.compose.ui.Modifier,androidx.compose.material3.BottomSheetScaffoldState,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,kotlin.Function0,kotlin.Boolean,kotlin.Function0,kotlin.Function1,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1)
https://www.youtube.com/watch?v=VxgWUdOKgtI
https://m3.material.io/foundations/layout/understanding-layout/parts-of-layout
https://m3.material.io/foundations/layout/applying-layout/compact
https://github.com/android/nowinandroid?tab=readme-ov-file
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_1/ejemplos_scaffolding_recurso.zip

desde Google Play.

En el prototipo de de la funcion composable Scaffold podemos apreciar las diferentes ranuras o

'slots' que nos permite definir:

@Composable
fun Scaffold(

modifier: Modifier = Modifier,

topBar: @Composable () -> Unit = {},

bottomBar: @Composable () -> Unit = {},

snackbarHost: @Composable () -> Unit = {},

floatingActionButton: @Composable () -> Unit = {},
floatingActionButtonPosition: FabPosition = FabPosition.End,
containerColor: Color = MaterialTheme.colorScheme.background,
contentColor: Color = contentColorFor(containerColor),
contentWindowInsets: WindowInsets = ScaffoldDefaults.contentWindowInsets,

content: @Composable (PaddingValues) -> Unit

Disponemos de otra funcién de prototipo BottomSheetScaffold que nos permite definir un layout

con un contenido principal y un contenido secundario que se muestra en una hoja inferior

desplegable no modal. Del protipo de la funcion composable BottomSheetScaffold deducir las

diferentes ranuras o 's/ots' que nos permite definir que este tipo de Scaffold no es compatible con

barras inferiores como BottomAppBar O NavigationBar , Nni con botones flotantes de accion (Fab).

6/39

PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://play.google.com/store/apps/details?id=com.google.samples.apps.nowinandroid&pli=1

@Composable
fun BottomSheetScaffold(
sheetContent: @Composable ColumnScope.() -> Unit,
modifier: Modifier = Modifier,
scaffoldState: BottomSheetScaffoldState = rememberBottomSheetScaffoldState(),
sheetPeekHeight: Dp = BottomSheetDefaults.SheetPeekHeight,
sheetMaxWidth: Dp = BottomSheetDefaults.SheetMaxWidth,
BottomSheetDefaults.ExpandedShape,

sheetContainerColor: Color = BottomSheetDefaults.ContainerColor,

sheetShape: Shape

sheetContentColor: Color = contentColorFor(sheetContainerColor),
sheetTonalElevation: Dp = BottomSheetDefaults.Elevation,
sheetShadowElevation: Dp = BottomSheetDefaults.Elevation,
sheetDragHandle: (@Composable () -> Unit)? = { BottomSheetDefaults.DragHandle() },
sheetSwipeEnabled: Boolean = true,
topBar: (@Composable () -> Unit)? = null,
snackbarHost: @Composable (SnackbarHostState) -> Unit = { SnackbarHost(it) },
containerColor: Color = MaterialTheme.colorScheme.surface,
contentColor: Color = contentColorFor(containerColor),
content: @Composable (PaddingValues) -> Unit

): Unit

7139 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barras superiores

Como su nombre indica pueden ir situadas en la parte superior de la pantalla.

Barras de aplicaciéon superiores (TopAppBars)

o Enlaces de interés de Barras de aplicacion superiores
o Material 3 Jetpack Compose: TopAppBar

(o]

Material 3 Jetpack Compose: CenterAlignedTopAppBar

(o]

Material 3 Jetpack Compose: MediumTopAppBar

(e]

Material 3 Jetpack Compose: LargeTopAppBar

(o]

Video Tutorial (Inglés) Stevdza-San

o

Video Tutorial (Inglés) Philipp Lackner
Especificaciones de uso en el sistema de disefio de Material 3:

1. Contiene un titulo y acciones relacionadas con la pantalla actual. Por ejemplo, puede
contener un botén de navegacién para volver a la pantalla anterior, un menu desplegable
para mostrar acciones adicionales y acciones para realizar tareas relacionadas con la
pantalla actual.

2. Al desplazarse, aplica un color de relleno del contenedor para separar la barra de la aplicacion
del contenido del cuerpo, deben tener el mismo ancho que la ventana del dispositivo y no
deben superponerse con el contenido del cuerpo.

3. Tendremos cuatro tipos: regular (o pequeio), alineado al centro, mediano y grande. Aunque
en dispositivos Compactos solo se recomienda el uso de los dos primeros TopAppBar Yy

CenterAlignedTopAppBar .

En EjemploToAppBar.kt de uso de TopAppBar en el cual le pasamos un parametro de tipo
TopAppBarScrollBehavior donde le definimos como se tiene que comportar ante un scroll en el
contenido principal en el Scaffold.

En nuestro caso sera de tipo ...
val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()
que hara que se quede 'pinneada’ (fija) en la parte superior de la pantalla cuando se haga scroll,

pero de acuerdo al sistema de Material cambie ligeramente su color de fondo indicando si tenemos
scroll o no.

Otros valores pueden ser: enterAlwaysScrollBehavior() Y exitUntilCollapsedScrollBehavior()

8/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#TopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#CenterAlignedTopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#MediumTopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#LargeTopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://www.youtube.com/watch?v=hQJpd78RUVg
https://www.youtube.com/watch?v=EqCvUETekjk

Fijate que nos ofrece Ranuras o 'Slots' para definir el titulo, el icono de navegacioén y las acciones.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun BarraAplicacion(

comportamientoAnteScroll: TopAppBarScrollBehavior
= TopAppBar(
title = {
// El texto en TopAppBar solo puede tener una linea
Text("Titulo de una linea", maxLines = 1, overflow = TextOverflow.Ellipsis)
¥
navigationIcon = {
IconButton(onClick = { }) {

Icon(painter = painterResource(R.drawable.menu_24px), contentDescription = null)

}s
actions = {
IconButton(onClick = { }) {

Icon(painter = painterResource(R.drawable.first_page 24px), contentDescription

}
IconButton(onClick = { }) {

Icon(painter = painterResource(R.drawable.refresh 24px), contentDescription =

}s

scrollBehavior = comportamientoAnteScroll

El contenido del Scaffold serd un LazyColumn que nos permitird hacer scroll.

9/39

¢) Importante
Fijate que contenidoPrincipalScaffold recibe un modificador, esto es porque el lambda que

emite el contenido del Scaffold recibe un parametro de tipo Paddingvalues que ajustara este
contenido respecto al resto de componentes del mismo.

PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

nul

@Composable
fun ContenidoPrincipalScaffold(

modifier: Modifier = Modifier
) {

val colors = remember { 1listOf(Color(@xFF50A2E4), Color(@xFFFFFFFF)) }

LazyColumn(modifier = modifier) {

items(count = 25) {
Box(
Modifier
.fillMaxWidth().background(colors[it % colors.size])

) {
Text(text = "Item $it", modifier = Modifier.padding(16.dp))

La variable comportamientoAnteScroll que pasamos a la BarraAplicacion |a tenemos que pasar el
Scaffold como modificador que indique que debe propagar el evento de scroll través de ella a los

elementos suscritos a ella.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaConScroll() {
val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()
Scaffold(

modifier = Modifier.nestedScroll(comportamientoAnteScroll.nestedScrollConnection

// Ranura que emite la barra de aplicaciodn

topBar = { BarraAplicacion(comportamientoAnteScroll) },
// Ranura que emite el contenido principal geu recibe el padding

content = { innerPadding ->
ContenidoPrincipalScaffold(modifier = Modifier.padding(innerPadding))

10/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Si ejecutamos PantallaConScroll en nuestro dispositivo virtual, veremos que la barra de
aplicaciéon se queda fija en la parte superior de la pantalla cuando hacemos scroll y ademas se
oscurece ligeramente el color en el scroll.

A Aviso

Este comportamiento de escurecimiento no se aprecia en la previsualizacion de Android
Studio pero si en el dispositivo virtual.

534 % O @ o4l 534 % O @ o4l
= Titulo de unalinea K C = Titulo de una linea <K
Item 3

Item 1 _
_ -

Item 3

11/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barras de pestaias (TabRow)

o Enlaces de interés sobre Barras pestanas
o Material 3 Jetpack Compose: Tab

(e]

Material 3 Jetpack Compose: PrimaryTabRow

(o]

Material 3 Jetpack Compose: SecondaryTabRow
Video Tutorial (Inglés) Stevdza-San

[e]

[¢]

Video Tutorial (Inglés) Philipp Lackner
Especificaciones de uso en el sistema de disefio de Material 3:

1. Son utiles para agrupar contenido en categorias.
2. Pueden desplazarse horizontalmente con scroll.

3. También pueden utilizarse para navegar entre pantallas horizontales en dispositivos

compactos usando por ejemplo un HorizontalPager Yy deslizando con el dedo (Swipe). En

este caso no se recomienda Scroll y por tanto tendremos mas de 3 o 4 pestanas.

4. Se recomienda usar LazyGrid en el caso de mostrar algun tipo de coleccion.

5. Si el contenedor principal es scrollable, las pestafias quedaran fijas y no se ocultaran

verticalmente con el contenido.
Tipos de pestanas:

1. Pestafas primarias: Con PrimaryTabRow Y
PrimaryScrollableTabRow
e En estas pestafias tendremos un icono y un texto.
o Estas estan situadas en la parte superior de la pantalla,
justo debajo de la barra de aplicacién.
e Pueden tener un componente Badge Visto en temas
anteriores de forma opcional.

2. Pestanas secundarias: Con secondaryTabRow Y
SecondaryScrollableTabRow
e En estas pestanas tendremos solo un texto.
e Pueden estar situadas en contenido intermedio de la
pantalla, separando contenido relacionado de forma
jerarquica.

12/39 PMDM 2° DAM Tema 4.1 - Scaffold ~ Rev. 06/01/2025

IES Doctor Balmis

9:30 Pda

« My saved media o =
) == J

Video Photos Audio

R
30 mins prep time

Difficulty: Easy

Overview Ingredients Instructions

The Poke bowl is a popular Hawaiian appetizer or main
course that is made up of diced raw fish. What sets the

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Tab(kotlin.Boolean,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Boolean,kotlin.Function0,kotlin.Function0,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.foundation.interaction.MutableInteractionSource)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#PrimaryTabRow(kotlin.Int,androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1,kotlin.Function0,kotlin.Function0)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#SecondaryTabRow(kotlin.Int,androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1,kotlin.Function0,kotlin.Function0)
https://www.youtube.com/watch?v=2K3to2puVDM
https://www.youtube.com/watch?v=9r4st6dmyNE

En EjemploTabs.kt tienes una ejemplo de uso de PrimaryTabRow bajo un TopAppBar .

Definimos un componente con nuestras pestaias. Fijate que necesitamos un estado con un
indice que nos indique la pestafa seleccionada. Esto va ha hacer muy sencillo su uso con

HorizontalPager .

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun Tabs() {
var tabIndexState by remember { mutableStateOf(©) }
val titlesAndIcons = remember {
listOf(
"Todos" to R.drawable.filter 1 24px,
"Pares" to R.drawable.filter_ 2 24px,
"Impares" to R.drawable.filter_3_24px

}
PrimaryTabRow(selectedTabIndex = tabIndexState) {

titlesAndIcons.forEachIndexed { index, (title, icon) ->
Tab(

selected = tabIndexState == index,

onClick = { tabIndexState = index },

text = { Text(
text = title,
maxLines = 2,
overflow = TextOverflow.Ellipsis)

}s

icon = { Icon(painterResource(icon), contentDescription = null) }

Como sucedia antes, es importante que apliquemos un padding al contenedor principal del
Scaffold para que no se solape con las pestafias. Puedes verlo en el siguiente codigo...

13/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable
fun ContenidoTabs(

modifier: Modifier = Modifier

)
Column(modifier = modifier) {
Tabs()
LazyVerticalGrid(
columns = GridCells.Adaptive(100.dp)
) A
items(count = 50) {
ElevatedCard(
modifier = Modifier.widthIn(100.dp).padding(4.dp),
)
Text(
text = "Item $it",
modifier = Modifier.padding(16.dp).fillMaxWidth(),
textAlign = TextAlign.Center
)
}
}
}
}
}

También hemos aplicado un nuevo comportamiento de scroll a la barra de aplicacion, en este caso
enterAlwaysScrollBehavior() que hara que la barra de aplicacion se oculte cuando hacemos scroll
hacia abajo y se muestre cuando volvemos con el scroll al primer elemento.

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun PantallaConTabs() {
val comportamientoAnteScroll = TopAppBarDefaults.exitUntilCollapsedScrollBehavior()

Scaffold(
modifier = Modifier.nestedScroll(comportamientoAnteScroll.nestedScrollConnection
topBar = { BarraAplicacionTabs(comportamientoAnteScroll) },
content = { innerPadding ->
ContenidoTabs(modifier = Modifier.padding(innerPadding))

14/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

9210% O & o4l 9213 % O 4 o4l

< Ejemplo Pestafias < (X & [
Todos Pares Impares
i (i (i
Todos Pares Impares Item 3 Iltem 4 Item 5
Item 0 Iltem 1 Iltem 2 ltem 6 ltem 7 ltem 8
ttem 3 Item 4 Item 5 ltem 9 ltem 10 ltem 11

Barras inferiores

Son barras cuyo uso puede llevar a confusion ya que estan situadas en la misma posicion. Por
esta razon, vamos a tratar de extraer unas pautas de uso de la documentacion oficial de Material

3.

Barra de navegacion o NavigationBar

e Enlaces de interés de NavigationBar
o Material 3 Jetpack Compose: NavigationBar
o Material 3 Jetpack Compose: NavigationBarltem
o Material 3 Jetpack Compose: BottomAppBar
o Video Tutorial (Inglés) Stevdza-San
o Video Tutorial (Inglés) Philipp Lackner

Especificaciones de uso en el sistema de disefio de Material 3:

1. Las barras de navegacion ofrecen una forma persistente y correcta de cambiar entre destinos
primarios en una app con layout compacto. Con persistente nos referimos a que siempre
estan visibles y ademas no cambian a lo largo de la ejecucion.

2. Solo deben contener de tres a cinco elementos de navegacion, cada uno de ellos
representando un destino singular en la misma jerarquia y sin ningun tipo de Scroll.

3. Las posicionaremos en la ranura o 'slot' bottomBar del Scaffold .

4. Aunque se pueden representar solo con un icono, se recomienda que tengan un texto corto
que describa el destino. Ademas, opcionalmente también pueden representar un Badge.

5. Aunque, como sucede con TabRow , tenemos un indice que nos indica el elemento
seleccionado. No debemos deslizar ('Swipe') y por tanto, no podemos usar HorizontalPager
para navegar entre los elementos de la barra de navegacion.

15/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#NavigationBar(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#(androidx.compose.foundation.layout.RowScope).NavigationBarItem(kotlin.Boolean,kotlin.Function0,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Boolean,kotlin.Function0,kotlin.Boolean,androidx.compose.material3.NavigationBarItemColors,androidx.compose.foundation.interaction.MutableInteractionSource)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomAppBar(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://www.youtube.com/watch?v=gg-KBGH9T8s
https://www.youtube.com/watch?v=c8XP_Ee7iqY

En EjemploNavigationBar.kt tienes un ejemplo sencillo de como implementar este componente.

Nota

Mas adelante veremos como gestionar la navegacion de forma mas adecuada con el
sistema de navegacion de Jetpack Compose.

Puesto que no vamos a implementar una navegacion como tal, vamos ha hacer que el
componente que muestra el contenido principal del Scaffold reciba un indice que nos indique el
elemento seleccionado de la barra de navegacion, cambiando su contenido en funcién del mismo.

@Composable
fun ContenidoPrincipalNavBar(
indexScreenState: Int,

modifier: Modifier = Modifier

) A
val backgroundColor = when (indexScreenState) {
@ -> MaterialTheme.colorScheme.primaryContainer
1 -> MaterialTheme.colorScheme.secondaryContainer
else -> MaterialTheme.colorScheme.tertiaryContainer
}
Box (
modifier = modifier.then(
Modifier
.fillMaxSize()
.background(color = backgroundColor)
)>
contentAlignment = Alignment.BottomCenter
)
Text(
modifier = Modifier.padding(bottom = 32.dp),
text = "Pantalla ${indexScreenState + 1}",
textAlign = TextAlign.Center,
style = MaterialTheme.typography.headlinelLarge
)
}
}

La barra de navegacion, al igual que deberiamos haber hecho con TabRow, recibira el indice del
elemento seleccionado y un callback que nos permitira cambiar el indice cuando se pulse sobre un

16/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

elemento de la barra de navegacion.

@Composable
fun NavBar(
indexScreenState: Int,

onNavigateToScreen: (Int) -> Unit

) {
val titlesAndIcons = remember {
listOf(
"Pantalla 1" to R.drawable.filter_1_24px,
"Pantalla 2" to R.drawable.filter_2 24px,
"Pantalla 3" to R.drawable.filter_3 24px
)
}
NavigationBar {
titlesAndIcons.forEachIndexed { index, (title, icon) ->
NavigationBarItem(
icon = { Icon(painter = painterResource(icon), contentDescription = title) },
label = { Text(title) },
selected = indexScreenState == index,
onClick = { onNavigateToScreen(index) }
)
}
}
}

17/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Por ultimo, al componer nuestro Scaffold . En la ranura o 's/of' bottomBar emitiremos nuestro

componente NavBar .

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun PantallaNavBar() {
var indexScreenState by remember { mutableStateOf(@) }
val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()
Scaffold(
modifier = Modifier.nestedScroll(comportamientoAnteScroll.nestedScrollConnection
topBar = { BarraAplicacionNavBar(comportamientoAnteScroll) },
bottomBar = {
NavBar(
indexScreenState = indexScreenState,

onNavigateToScreen = { indexScreenState = it }

¥
content = { innerPadding ->
ContenidoPrincipalNavBar(

indexScreenState = indexScreenState,

modifier = Modifier.padding(innerPadding)

Como puedes ver en las imagenes de abajo donde se muestra un ejemplo de ejecucion, el
elemento de la navegacion seleccionado se muestra resaltado respecto al resto.

Pantalla 1 Pantalla 3
(& & & @ (B (B
Pantalla 1 Pantalla 2 Pantalla 3 Pantalla 1 Pantalla 2 Pantalla 3

18/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barra de aplicacion inferior o BottomAppBar

e Enlaces de interés de BottomAppBar

o Material 3 Jetpack Compose: BottomAppBar
o Video Tutorial (Inglés) Philipp Lackner

Si nos vamos a la documentacion oficial de la implementacion del sistema de disefio de Material 3

para Jetpack Compose, veremos que hay diferentes sobrecargas de la funcién composable

BottomAppBar , resultado de la evolucidon de este componente en el sistema. Nosotros vamos a

centrarnos en este interfaz que es el que mas se ajusta a las especificaciones de Material Design.

@ExperimentalMaterial3Api
@Composable
fun BottomAppBar(

actions: @Composable RowScope.() -> Unit,

modifier: Modifier = Modifier,

floatingActionButton: (@Composable () -> Unit)? = null,
containerColor: Color = BottomAppBarDefaults.containerColor,
contentColor: Color = contentColorFor(containerColor),
tonalElevation: Dp = BottomAppBarDefaults.ContainerElevation,
contentPadding: PaddingValues = BottomAppBarDefaults.ContentPadding,
windowInsets: WindowInsets = BottomAppBarDefaults.windowInsets,

scrollBehavior: BottomAppBarScrollBehavior? = null

: Unit

En él podemos ver que tenemos una ranura o 'slot' para definir las acciones, otra para definir un

botdn flotante de accidn y otra para definir el comportamiento ante el scroll en el contenedor

principal del Scaffold huésped.

Fijate que en otros prototipos de la funcién composable BottomAppBar como la siguiente, no

tenemos ranura para definir el comportamiento ante el scroll y solo tenemos una ranura o 'slof'

para definir el contenido en un RowScope del componente.

19/39

PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomAppBar(kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Function0,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.BottomAppBarScrollBehavior)
https://www.youtube.com/watch?v=Dlav7VIAQ3E

@Composable

fun BottomAppBar(
modifier: Modifier = Modifier,
containerColor: Color = BottomAppBarDefaults.containerColor,
contentColor: Color = contentColorFor(containerColor),
tonalElevation: Dp = BottomAppBarDefaults.ContainerElevation,
contentPadding: PaddingValues = BottomAppBarDefaults.ContentPadding,
windowInsets: WindowInsets = BottomAppBarDefaults.windowInsets,
content: @Composable RowScope.() -> Unit

): Unit

Especificaciones de uso en el sistema de disefio de Material 3:

1. Mostrar acciones para la pantalla actual. Algo similar a lo que haciamos con la TopAppBar ,
pero aqui tenemos mas espacio y podriamos mostrar de dos hasta cinco acciones sin dejar
algunas de ellas de forma implicita en un menu desplegable de desbordamiento (overflow
menu) y siendo mas accesibles para el usuario con el pulgar.

2. Podemos mostrar un botén flotante de accién FAB que nos permita realizar una accion de
especial relevancia para la pantalla actual. Obviamente si definimos dicho FAB en la ranura o
'slof' floatingActionButton no tiene sentido definirlo en la ranura o 's/otf' bottomBar del
Scaffold .

3. Material permite que alguna de estas acciones desencadenen la navegacion a alguna otra
pantalla.

4. Esta permitido un menu desplegable de desbordamiento com mas acciones al principio.

5. Si se muestra un SnackBar , este se mostrara por encima de la barra de aplicacion inferior y
nunca la ocultara o se mostrara contenido en la misma debajo.

6. Pueden desaparecer al hacer scroll hacia arriba y aparecer al hacer scroll hacia abajo.

7. Estan permitidas transiciones entre acciones y FAB segun el elemento seleccionado en la
pantalla.

Em EjemploBottomBar.kt tenemos un ejemplo sencillo de cobmo usar este componente siguiendo
las especificaciones de Material Design. En él, vamos a implementar un scaffold sencillo con una
barra de aplicacion inferior que tendra un FAB y unas acciones. Ademas, el contenido principal del
Scaffold sera un LazyColumn con una lista de items que nos permitira hacer scroll y cuando
seleccionemos un elemento las acciones y el FAB seran referentes al elemento seleccionado y
cuando no lo estén seran otros generales a la lista de items. Por ultimo, vamos a definir un
comportamiento ante el scroll que hara que la barra de aplicacion inferior se oculte cuando
hacemos scroll hacia arriba junto con la barra de aplicacién superior.

En las siguientes imagenes puedes ver un ejemplo del funcionamiento descrito anteriormente.

20/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

707 % © @ v4n 708 % O @ *an 7009 O @ *oN
Item 3

= Ejemplo BottomBar = Ejemplo BottomBar

Item 4
Item 0 Item 0

Item §
Item 1 tem 1

Item 6
Item 2 Item 2

Item 7
Item 3 Item 3

Item 8
Item 4 Item 4
Item 5 Item 5 _

Item 10
Item 6 Item 6

Item 11
Item 7 Item 7

Item 12
Item 8 Item 8

Item 13
Item 9

Item 14

ltem 10 item 10
item 15

Q& Az + i < 7’
item 16

El contenedor principal, permitira seleccionar y deseleccionar un elemento de la lista de items.
Para ello, recibira un estado que nos indique el elemento seleccionado y un callback que nos
permitira cambiar el estado cuando se pulse sobre un elemento de la lista.

21/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun ContenidoPrincipalScaffoldConBarraAppInferior(
itemSeleccionadoState: Int?,
onSeleccionarItem: (Int) -> Unit,

modifier: Modifier = Modifier

) 1
LazyColumn(modifier = modifier) {
items(count = 25) {
Surface(
color = if (itemSeleccionadoState == it) {
MaterialTheme.colorScheme.secondary
} else {
MaterialTheme.colorScheme.secondaryContainer
s
modifier = Modifier
.fillMaxWidth()
.clickable { onSeleccionarItem(it) }
.border(
width = 1.dp,
color = MaterialTheme.colorScheme.onSurface.copy(alpha = 0.12f)
)
) A{
Text(
text = "Item $it",
modifier = Modifier.padding(16.dp),
fontWeight = if (itemSeleccionadoState == it) {
FontWeight.ExtraBold
} else {
FontWeight.Normal
}
)
}
}
}
}

22/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

El componente que muestra el scaffold gestionara el estado del elemento seleccionado
(recuerda que esto deberia 'ascender algun tipo de ViewModel) asi como pasara al scaffold los
observers que notificaran el scroll. Por ultimo, fijate en la lineas resaltadas que dependiendo de si

hay un elemento seleccionado o no se emitira un BottomAppBar U otro.

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun PantallaConScrollConBarraAppInferior() {
val comportamientoAnteScrollSup = TopAppBarDefaults.exitUntilCollapsedScrollBehavior

val comportamientoAnteScrolllInf

BottomAppBarDefaults.exitAlwaysScrollBehavior()
var itemSeleccionadoState: Int? by remember { mutableStateOf(null) }

val onSeleccionarItem: (Int) -> Unit = {

itemSeleccionadoState = if (itemSeleccionadoState != it) it else null
}
Scaffold(
modifier = Modifier
.nestedScroll(comportamientoAnteScrollInf.nestedScrollConnection)
.nestedScroll(comportamientoAnteScrollSup.nestedScrollConnection),
topBar = { BarraAppSuperiorConBarraAppInferior(comportamientoAnteScrollSup) },
bottomBar = {
if (itemSeleccionadoState == null)
BarraAppInferiorSinSeleccion(comportamientoAnteScrollInf)
else
BarraAppInferiorSeleccion(comportamientoAnteScrollInf)
s
content = { innerPadding ->
ContenidoPrincipalScaffoldConBarraAppInferior(
itemSeleccionadoState = itemSeleccionadoState,
onSeleccionarItem = onSeleccionarItem,
modifier = Modifier.padding(innerPadding)
)
}
)

Por ultimo, vamos a ver como seria el composable que emite la barra de aplicacién inferior cuando
no hay ningun elemento seleccionado. La otra barra de aplicacion inferior seria muy similar, pero
con un FAB y unas acciones diferentes.

23/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun BarraAppInferiorSinSeleccion(

comportamientoAnteScroll: BottomAppBarScrollBehavior

= BottomAppBarDefaults.exitAlwaysScrollBehavior()

) 1
val descripcionEIconos = remember {
listOf(
"Buscar Items" to R.drawable.search_24px,
"Filtrar Items" to R.drawable.filter_list_24px,
"Ordenar Items" to R.drawable.sort_by alpha_24px
)
}
BottomAppBar(
actions = {
descripcionEIconos.forEach { (descripcion, icono) ->
IconButton(
onClick = { 1 {
Icon(
painter = painterResource(icono),
tint = MaterialTheme.colorScheme.secondary,
contentDescription = descripcion
)
}
}
s
floatingActionButton = {
FloatingActionButton(
onClick = { },
containerColor = BottomAppBarDefaults.bottomAppBarFabColor,
contentColor = MaterialTheme.colorScheme.primary,
elevation = FloatingActionButtonDefaults.bottomAppBarFabElevation()
) {
Icon(painter = Filled.getAddIcon(), "Localized description™)
}
s
scrollBehavior = comportamientoAnteScroll
)
}

24/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Menus desplegables

e Enlaces de interés de Menus desplegables
o Material 3 Jetpack Compose: DropdownMenu
o Material 3 Jetpack Compose: DropdownMenultem
o Video Tutorial (Castellano) Gibran Garcia
o Video Tutorial (Inglés) Philipp Lackner

Es un elemento tradicional de las interfaces de usuario que nos permite mostrar un menu de
acciones/opciones desplegable.

Especificaciones de uso en el sistema de disefio de Material 3:

1. Se pueden dar en diferentes contextos, pero los principales son:

» En la TopAppbar: En este caso, el menu desplegable se mostrara en la parte inferior de
la barra de aplicacién y se desplegara hacia abajo. Normalmente, se mostrara un menu
desplegable de desbordamiento con acciones que no caben en la barra de aplicacion
simbolizado por tres puntos verticales.

» De forma contextual: Realizaremos un tap largo sobre un elemento de la interfaz de
usuario y se mostrara un menu desplegable con acciones relacionadas con el elemento
seleccionado.

« El tradicional TextField Desplegable: Implementado con el componente
ExposedDropdownMenuBox en el sistema de Material 3. Me permitira seleccionar un
elemento de una lista de elementos dentro de un campo de texto con un menu
desplegable.

e En chips de filtrado: Donde se ofrecera una serie de opciones de filtrado simple.

2. Pueden tener, de forma opcional, una linea de separacion entre grupos de elementos usando
HorizontalDivider
3. Pueden contener submenus desplegables, pero en dispositivos compactos no se recomienda

usarlos.

25/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#DropdownMenu(kotlin.Boolean,kotlin.Function0,androidx.compose.ui.Modifier,androidx.compose.ui.unit.DpOffset,androidx.compose.foundation.ScrollState,androidx.compose.ui.window.PopupProperties,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.foundation.BorderStroke,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#DropdownMenuItem(kotlin.Function0,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,kotlin.Boolean,androidx.compose.material3.MenuItemColors,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.interaction.MutableInteractionSource)
https://www.youtube.com/watch?v=dxBiEXvwSDk
https://www.youtube.com/watch?v=QCSJfMqQY9A
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ExposedDropdownMenuBox(kotlin.Boolean,kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#HorizontalDivider(androidx.compose.ui.Modifier,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Color)

En EjemplobropDownMenu.kt dispones de un ejemplo analogo al que hemos visto en la barra de
aplicacioén inferior pero en este caso con un menu desplegable de desbordamiento en la barra de
aplicacién superior.

Como antes, vamos a tener la posibilidad de seleccionar un item dentro de una lista, si esta
seleccionado las acciones y por tanto el menu de desbordamiento seran unas y si no lo esta, seran
otras. Tal y como se muestra en el siguiente ejemplo de ejecucion.

10:49 @ V4l 10:50 @ 40
< Ejemplo DropDown Qi < Ejemplo DropDown [
ltem 0 |_|Z| Filtrar ltem ltem 0 @ Ccompletar Item

AZ Ordenar ltem i Descargar Item
Item 1 i Item 1

< Editar Item

Item 2
Item 3 Item 3

En primer lugar, para no repetir mucho cddigo vamos a definir un componente reutilizable que
nos permita mostrar un menu desplegable de desbordamiento en la barra de aplicacion superior,
de tal manera que la primera accion se muestre directamente en la barra y el resto de forma
eliptica a través del menu desplegable.

En primer lugar, por ejemplo, podemos definir una clase de datos que nos permita definir un item
del menu desplegable de desbordamiento, incluyendo un callback que se ejecutara cuando se
pulse sobre el item.

// Indica a Compose sus objetos son inmutable
// y por tanto puede optimizar su renderizado
@Immutable
data class ItemMenuDesplegable(

val icono: Int,

val descripcion: String,

val onClick: () -> Unit

Ahora definiremos un componente AccionesConMenuDesplegable que recibe una lista de
ItemMenuDesplegable que como precondicion debe tener al menos 3 elementos. Esto es, si no hay
3 elementos 0 mas, se lanzara una excepcion ya que el menu de desbordamiento no tendria
sentido. Ya que, el primer elemento sera el que se muestre en la barra de aplicacion y el resto se
mostraran en el menu desplegable de desbordamiento (al menos 2).

26/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable
fun AccionesConMenuDesplegable(

itemsMenu : List<ItemMenuDesplegable>

)

// Precondiciodn de uso
if (itemsMenu.count() < 3)

throw IllegalArgumentException("Se requieren al menos 3 items en el menu desplegable'
var expandidoState by remember { mutableStateOf(false) }

val cerrarMenu: () -> Unit = { expandidoState = false }

IconButton(onClick = itemsMenu[©].onClick) {
Icon(
painter = painterResource(itemsMenu[@].icono),

contentDescription = itemsMenu[@].descripcion

}
IconButton(onClick = { expandidoState = true }) {

Icon(painter = painterResource(R.drawable.more_vert 24px), contentDescription = null)

DropdownMenu (
expanded = expandidoState,
onDismissRequest = cerrarMenu
) A
for (i in 1..<itemsMenu.count()) {
DropdownMenuItem(
text = { Text(itemsMenu[i].descripcion) },
onClick = {
itemsMenu[i].onClick
cerrarMenu()
¥
leadingIcon = {
Icon(
painter = painterResource(itemsMenu[i].icono),

contentDescription = itemsMenu[i].descripcion

1}

Fijate que a través de un estado expandidoState controlamos si el menu desplegable esta

expandido o no. Ademas, tenemos un callback cerrarMenu que nos permitira cerrar el menu

27/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

desplegable cuando se pulse sobre un item del mismo o se pulse fuera del menu desplegable
desechandolo.

Ya podemos usar nuestro componente AccionesConMenuDesplegable en el Scaffold . Para ello
definiremos, dos listas de ItemMenuDesplegable . Una para cuando no hay ningun elemento
seleccionado y otra para cuando hay un elemento seleccionado. Por ejemplo...

@Composable
fun AccionesConMenuDesplegableSinSeleccion() {

val descripcionEIconos = remember {

listOf(
ItemMenuDesplegable(
icono = R.drawable.search_24px,
descripcion = "Buscar Item", onClick = { }
)>
ItemMenuDesplegable(
icono = R.drawable.filter_list 24px,
descripcion = "Filtrar Item", onClick = { }
)>
ItemMenuDesplegable(
icono = R.drawable.sort_by alpha_24px,
descripcion = "Ordenar Item", onClick = { }
)
)
}
return AccionesConMenuDesplegable(itemsMenu = descripcionEIconos)
}
@Composable
fun AccionesConMenuDesplegableSeleccion() { ...}

Por ultimo, dependiendo de si tenemos un elemento seleccionado o no, emitiremos un menu
desplegable u otro.

28/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun BarraAplicacionConDropDownMenu(
itemSeleccionadoState: Boolean,
comportamientoAnteScroll: TopAppBarScrollBehavior

) = TopAppBar(
title = {

Text("Ejemplo DropDown", maxLines = 1, overflow = TextOverflow.Ellipsis)

¥
navigationIcon = {
IconButton(onClick = { }) {

Icon(painter = Filled.getArrowBackIosIcon(), contentDescription

}s

actions = {
if (itemSeleccionadoState) AccionesConMenuDesplegableSeleccion()

else AccionesConMenuDesplegableSinSeleccion()

}s
scrollBehavior = comportamientoAnteScroll
)
Snackbars

e Enlaces de interés de Snackbars
o Material 3 Jetpack Compose: SnackBarHost
o Material 3 Jetpack Compose: SnackBar

= null)

Las Snackbars proporcionan mensajes breves sobre los procesos de la aplicacion en la parte

inferior de la pantalla. Esto es, informan a los usuarios de un proceso que una aplicacion ha

realizado o realizara.

Especificaciones de uso en el sistema de disefio de Material 3:

1. Suelen aparecer temporalmente no interrumpiendo la experiencia del usuario. Por tanto no

requeriran de la accién del usuario para desaparecer.

2. La diferencia con un dialogo es que los mensajes son de baja prioridad y como hemos

comentado no requieren de la verificacion del usuario.

3. Ocasionalmente pueden contener una sola accion. En este caso no deben autodesaparecer

hasta que el usuario realice otra accion.
4. No deben aparecer mas de una Snackbar a la vez.
5. No deben contener mas de dos lineas de texto en un display compacto.

29/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#SnackbarHost(androidx.compose.material3.SnackbarHostState,androidx.compose.ui.Modifier,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Snackbar(androidx.compose.material3.SnackbarData,androidx.compose.ui.Modifier,kotlin.Boolean,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color)

6. No deben contener iconos, ni enlaces.

7. Si tenemos una accién en la Snackbar, esta debe ser una accion de alto nivel. La accion
debe ser una accion que permita al usuario resolver el mensaje y deberia ir en la parte
derecha de la Snackbar con un color diferente al del texto de la Snackbar. Por ejemplo, ante
un error podemos mostrar acciones como 'Reintentar o 'Descartar .

Aunque es posible emitir un snackBar con un estado en cualquier jerarquia de compose al igual
gue haciamos con un AlertDialog , |0 mas habitual es que se emita gestionado dentro de un
Scaffold . E|l Scaffold proporciona un SnackbarHost que nos permite emitir un SnackBar con un
estado y se encarga de gestionar su ciclo de vida y la visibilidad respecto a otros componentes
gestionados por el scaffold por ejemplo:

e Apareciendo sobre la barra de aplicacion inferior y no ocultandola.
» Sitenemos un FAB la Snackbar debe aparecer sobre el FAB y no debe ocultarlo o mostrarse
debajo del mismo.

El uso de snackbarHost no es inmediato pues tiene multiples casuisticas y personalizaciones que
se pueden encontrar en la documentacion oficial, justo debajo del epigrafe de este apartado.

En EjemploSnackBar.kt tenemos un ejemplo sencillo de como usar este componente en los casos
mas comunes. Para ello vamos a partir de un Scaffold sencillo con una TopAppBar , un FAB Yy un
SnackBarHost . El contenido principal mostrara una lista de items como en otros ejemplos y la hacer
click sobre uno nos mostrara un SnackBar temporal con un mensaje que nos indicara el item
seleccionado. El FAB nos permitirda mostrar un snackBar de duracion indefinida con un icono de
cancelacion tal y como se muestra en las siguientes imagenes...

Item 9 Item 9

Item 8 borrado x

Item 11 = Item 11 =
[] [|

Vamos a ver por partes, el composable que define este scaffold y que denominaremos
PantallaConScaffoldYConSnackBar .

Primero podemos considerar la definicién de un estado para nuestro SnackBarHost a través de la
clase snackbarHostState . Este estado nos permitira emitir un snackBar a través de la funcion

30/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

showSnackbar Yy nos permitira gestionar el ciclo de vida del mismo a través de la funcion

currentSnackbarData .

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun PantallaConScaffoldYConSnackBar() {
val comportamientoAnteScrollSup = TopAppBarDefaults.exitUntilCollapsedScrollBehavior
val snackbarHostState = remember { SnackbarHostState() }
val scope = rememberCoroutineScope()
var itemSeleccionadoState: Int? by remember { mutableStateOf(null) }
val onSeleccionarItem: (Int) -> Unit = {
itemSeleccionadoState = if (itemSeleccionadoState != it) it else null
scope.launch {
if (itemSeleccionadoState != null) {
snackbarHostState.currentSnackbarData?.dismiss()
snackbarHostState.showSnackbar(

message = "Item $itemSeleccionadoState seleccionado”,

Fijate que al seleccionar un item mostramos el SnackBar con snackbarHostState.showSnackbar
que permitira mostrarlo con diferentes configuraciones simples.

¢) Importante

Si antes de mostrar un snackBar No llamasemos a

snackbarHostState. currentSnackbarData?.dismiss() Yy hubiese un SnackBar mostrandose,
este no se mostraria hasta que el anterior expirase. Con la anterior lamada pues, podemos
forzar la expiracion del snackBar anterior y mostrar el nuevo.

A continuacién emitiremos el Scaffold donde definimos un SnackbarHost(snackbarHostState) por
defecto, que sera el encargado de gestionar el ciclo de vida de los snackBar que emitamos.

La gestion a la hora de mostarlo al pulsa el FAB es similar a la anterior, pero en este caso
usaremos la funcion showSnackbar con mas parametros para mostrarlo con un icono de
cancelacién y con una duracién indefinida.

31/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Scaffold(
modifier = Modifier.nestedScroll(
comportamientoAnteScrollSup.nestedScrollConnection),
topBar = { BarraAppSuperiorConSnackBar(comportamientoAnteScrollSup) },
snackbarHost = { SnackbarHost(snackbarHostState) },
floatingActionButton = {
FloatingActionButton(
onClick = {
scope.launch {
if (itemSeleccionadoState != null) {
snackbarHostState.currentSnackbarData?.dismiss ()
snackbarHostState.showSnackbar(
message = "Item $itemSeleccionadoState borrado”,
withDismissAction = true,

duration = SnackbarDuration.Indefinite

) A

Icon(imageVector = Icons.Filled.Delete, contentDescription = null)

s
content = { innerPadding ->
ContenidoPrincipalScaffoldConSnackBar(
itemSeleccionadoState = itemSeleccionadoState,
onSeleccionarItem = onSeleccionarItem,

modifier = Modifier.padding(innerPadding)

32/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Hojas desplegables

Navigation Drawer

e Enlaces de interés de Navigation Drawer

o

Material 3 Jetpack Compose: ModalNavigationDrawer

(o]

Material 3 Jetpack Compose: ModalDrawerSheet

[e]

Material 3 Jetpack Compose: NavigationDrawerltem
Video Tutorial (Inglés) Philipp Lackner

(e]

(o]

Video Tutorial (Castellano): Gibran Garcia

El Navigation Drawer o Cajén de Navegacién es un componente que nos permite mostrar un
menu de navegacion lateral. Este componente se puede mostrar de varias formas, pero por
simplificar nosotros nos vamos a centrar en el funcionamiento como hoja modal en el cual se
muestra como una hoja que ocupa casi toda la pantalla y que se puede mostrar y ocultar con un
gesto de deslizamiento hacia la derecha o hacia la izquierda. Este es el comportamiento
recomendado por Material Design para dispositivos compactos.

En el caso de Cajén de Navegacién , sera el [ModalNavigationDrawer]
componente superior en la jerarquia de nuestra Ul /

por encima del scaffold . Por tanto, sera el \

componente 'andamiaje' de orden superior que [ModalDrawerSheet] [Scaffold]
emitira el scaffold Yy no al revés como sucedia con .

el resto de componentes que hemos visto hasta v Y

ahora. [NavigationDrawerItem] [TopAppBar]

Especificaciones de uso en el sistema de disefio de Material 3:

1. Aplicaciones con 5 o mas destinos de nivel superior. En caso contrario, se recomienda usar
una barra de navegacion inferior.

2. Aplicaciones con 2 o mas niveles en la jerarquia de navegacion.

3. Es el componente adecuado en pantallas grandes quedando fijo en la parte derecha.

En EjemploNavigationDrawer.kt disponemos de un ejemplo sencillo de uso como el que se ilustra
a continuacién. En el cual tenemos un ModalNavigationDrawer que emite un ModalDrawerSheet con

3 opciones de navegacion y un Scaffold con un TopAppBar .

33/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ModalNavigationDrawer(kotlin.Function0,androidx.compose.ui.Modifier,androidx.compose.material3.DrawerState,kotlin.Boolean,androidx.compose.ui.graphics.Color,kotlin.Function0)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ModalDrawerSheet(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#NavigationDrawerItem(kotlin.Function0,kotlin.Boolean,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,androidx.compose.ui.graphics.Shape,androidx.compose.material3.NavigationDrawerItemColors,androidx.compose.foundation.interaction.MutableInteractionSource)
https://www.youtube.com/watch?v=aYSarwALlpI
https://www.youtube.com/watch?v=8sVYyUcuJgI

El ModalbrawerSheet se mostrara al deslizar hacia la derecha desde el borde izquierdo de la
pantalla B o al hacer click en el icono de menu colapsado de la TopAppBar [EJ. Para ocultarse
podemos deslizar a la izquierda EJ o hacer tap en la parte que aun queda visible del Scaffold

E) . También se ocultara al hacer click sobre una de las opciones de navegacion, desencadenando
la navegacion a la pantalla correspondiente y quedando seleccionada para la proxima vez que se
muestre el ModalDrawerSheet .

12214 0 ¢ A *4 12214 0 ¢ @ v4 12224 0 ¢ @ *4
= Ejemplo Nav Drawer Q (@ Pantalia Y = Ejemplo Nav Drawer Q
@ Pantalla 2 2
Pantalla 1 Pantalla 3
@ Pantalla 3
Swipe
@
o Swine

Para gestionar las opciones del menu y guardar el estado de la opcidn seleccionada, podemos
definir por ejemplo un tipo enumerado como el siguiente:

enum class ItemMenuEjemploNavDrawer(
val index: Int,
val icono: Int,

val nombre: String

) {
Pantallal(index = @, icono = R.drawable.filter 1 24px, nombre = "Pantalla 1"),
Pantalla2(index = 1, icono = R.drawable.filter 2 24px, nombre = "Pantalla 2"),
Pantalla3(index = 2, icono = R.drawable.filter_3_ 24px, nombre = "Pantalla 3")
}

Definimos en primer lugar un ModalDrawerSheet que tiene dos ranuras o 'slots'. Una para el
contenido principal y otra para el contenido del cajon de navegacion.

Este va a ser el nivel superior en nuestro ejemplo y por tanto sera aqui donde definamos los
estados y los callback que lo modifican. (En un ejemplo real, estos deberian estar en un
ViewModel).

1. Mediante el estado de tipo DrawerState , podremos controlar cuando se muestra y cuando se
oculta el cajon de navegacién mediante los métodos de suspendidos open() Y close() -
2. selectedItem sera un estado del nuestro tipo ItemMenuEjemploNavDrawer que nos indicara la

opcién seleccionada en el menu.

34/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable
fun PantallaConNavDrawer() {
val drawerState = rememberDrawerState(DrawerValue.Closed)
var selectedItem by remember { mutableStateOf(ItemMenuEjemploNavDrawer.Pantallal) }
val scope = rememberCoroutineScope()
val onItemSelected: (ItemMenuEjemploNavDrawer) -> Unit = {
scope.launch { drawerState.close() }

selectedItem = it

val onClickActionMenu: () -> Unit = {

scope.launch { drawerState.open() }

}

ModalNavigationDrawer(
drawerState = drawerState,
drawerContent = {
ContenidoNavDrawer(
selecteItemState = selectedItem,

onItemSelected = onItemSelected

s
content = {
ScaffoldDentroNavDrawer (
selecteItemState = selectedItem,

onClickActionMenu = onClickActionMenu,

35/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

El componente con el contenido del la hoja modal de navegacion ModalDrawerSheet vemos que se
encarga de emitir un NavigationDrawerItem por cada opcion de navegacion. Para ello, pasando un
icono, un texto y un callback que se ejecutara cuando se pulse sobre el elemento de navegacion.

Ademas, indicaremos si el elemento esta seleccionado o no mediante el estado selecteItemState .

@Composable
fun ContenidoNavDrawer(
selecteItemState: ItemMenuEjemploNavDrawer,
onItemSelected: (ItemMenuEjemploNavDrawer) -> Unit,
modifier: Modifier = Modifier
) {
val items = remember {
listOf(
ItemMenuEjemploNavDrawer.Pantallal,
ItemMenuEjemploNavDrawer.Pantalla2,
ItemMenuEjemploNavDrawer.Pantalla3)
}
ModalDrawerSheet(modifier = modifier) {
Spacer(Modifier.height(12.dp))
items.forEach { item ->
NavigationDrawerItem(
icon = {
Icon(
painter = painterResource(item.icono),

contentDescription = item.nombre

bs
label = { Text(item.nombre) },
selected = item.index == selecteltemState.index,

onClick = { onItemSelected(item) },
modifier = Modifier.padding(NavigationDrawerItemDefaults.ItemPadding)

36/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Hoja desplegable inferior (Bottom Sheet)

e Enlaces de interés de Bottom Sheets

(o]

Material 3 Jetpack Compose: BottomSheetScaffold

[e]

Material 3 Jetpack Compose: rememberBottomSheetScaffoldState

(o]

Material 3 Jetpack Compose: ModalBottomSheet

(o]

Material 3 Jetpack Compose: rememberModalBottomSheetState

o

Video Tutorial (Inglés): Philipp Lackner

(o]

Video Tutorial (Castellano): Gibran Garcia
Especificaciones de uso en el sistema de disefio de Material 3:

1. Tenemos dos tipos:

o Standard (BottomSheetScaffold): Se usa para mostrar contenido secundario o
adicional que no requiere de la interaccion del usuario para continuar con la tarea
principal. Podemos usarlo como componente superior en la jerarquia de nuestra Ul y es
preferible usar para la navegacion un Navigation Drawer frente a un Bottom App Bar.
En este caso la hoja no se deberia ocultar completamente.

» Modal (ModalBottomSheet): Se usa para mostrar contenido secundario o adicional que
requiere de la interaccion del usuario para continuar con la tarea principal. Puede
ocultarse por completo y activarse con alguna accion en la top app bar o en el contenido
principal.

En este caso la hoja se podra ocultar completamente.
2. Las hojas desplegables inferiores son un componente versatil que puede contener una
amplia variedad de informacion y disefos, por ejemplo:

 Informacion adicional con imagenes y media.

Elementos de menu (en disefios de lista o cuadricula).
Acciones (Modal).

Opciones de filtrado (Modal).

Incluso puede tener diferentes grupos separadas por una linea de separacion u

HorizontalDivider .

En EjemploBottomSheet.kt tenemos un ejemplos de uso de un BottomSheetScaffold , en el cual,
tendremos una lista de elementos y al pulsar sobre uno de ellos el contenido del hoja inferior
mostrara "informacioén adicional” sobre el elemento seleccionado y se expandira automaticamente

si estuviese colapsado.

Para colapsar, o deseleccionamos el elemento o deslizamos (Swipe) hacia abajo el manejador
de arrastre (Drag Handle) que aparece en la parte superior de la hoja inferior (Bottom Sheet).

37/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomSheetScaffold(kotlin.Function1,androidx.compose.ui.Modifier,androidx.compose.material3.BottomSheetScaffoldState,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,kotlin.Function0,kotlin.Boolean,kotlin.Function0,kotlin.Function1,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#rememberBottomSheetScaffoldState(androidx.compose.material3.SheetState,androidx.compose.material3.SnackbarHostState)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ModalBottomSheet(kotlin.Function0,androidx.compose.ui.Modifier,androidx.compose.material3.SheetState,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Color,kotlin.Function0,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.ModalBottomSheetProperties,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#rememberModalBottomSheetState(kotlin.Boolean,kotlin.Function1)
https://www.youtube.com/watch?v=VxgWUdOKgtI
https://www.youtube.com/watch?v=MmRpQ_fsM00

Si deseleccionamos un elemento aparecera un Snackbar gestionado por el BottomSheetScaffold

avisandonos Yy la hoja inferior ya no emitira ningun contenido.

Puedes ver un ejemplo de funcionamiento en las siguientes imagenes...

Item 8 Item 8
Item 10 Drag Handle e | : |
; Deslizarpara |
__ltem 11 . i ocultar E
5 | i Item 9 seleccionado |

Vamos a definir la funcion de composicion PantallaConBottomSheetScaffold donde usaremos un
BottomSheetScaffold como componente superior en la jerarquia de nuestra Ul. Este componente
nos permite definir un BottomSheetScaffoldState que nos permitira gestionar 2 cosas:

1. El ciclo de vida de la hoja inferior, asi como expandirla y colapsarla a través de métodos de
suspension.

2. Nos permitira emitir un Snackbar a través de su propiedad snackbarHostState .

@OptIn(ExperimentalMaterial3Api::class)
@Composable
fun PantallaConBottomSheetScaffold() {
val comportamientoAnteScrollSup = TopAppBarDefaults.pinnedScrollBehavior()

val scaffoldState = rememberBottomSheetScaffoldState()

val scope = rememberCoroutineScope()

var itemSeleccionadoState: Int? by remember { mutableStateOf(null) }
val onSeleccionarItem: (Int) -> Unit = {
itemSeleccionadoState = if (itemSeleccionadoState != it) it else null
scope.launch {
if (itemSeleccionadoState == null)
// Colapsar si ya no hay seleccion.
scaffoldState.bottomSheetState.show()
else
// Expandir ante una nueva seleccion.
scaffoldState.bottomSheetState.expand()

38/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Ya podemos definir el BottomSheetScaffold que tendra diferentes parametros y ranuras para

definir el contenido principal:

1. Recibira el scaffoldState que como hemos comentado controla BottomSheet Yy Snackbar .

2. Permite emitir una TopBars pero NO BottomBars ni FAB.

3. Podemos definir un snackbarHost pero su estado debe ser scaffoldState.snackbarHostState .

4. El contenido de la hoja inferior sheetContent se emite a través de una ranura.

5. Otros parametros de configuracion de la hoja inferior como la altura de la hoja inferior, su
forma, etc.

BottomSheetScaffold(
scaffoldState = scaffoldState,

modifier = Modifier.nestedScroll(comportamientoAnteScrollSup.nestedScrollConnect

topBar = {
BarraAppSuperiorBottomSheet (comportamientoAnteScrollSup)
s
snackbarHost = { SnackbarHost(scaffoldState.snackbarHostState) },
sheetContent = {
if (itemSeleccionadoState != null) {
Text(
modifier = Modifier.fillMaxWidth().padding(16.dp),
text = "Item $itemSeleccionadoState seleccionado”,
style = MaterialTheme.typography.titlelLarge,
textAlign = TextAlign.Center
)
}
s

sheetPeekHeight = 45.dp,
sheetShape = BottomSheetDefaults.ExpandedShape,
content = { innerPadding ->
ContenidoPrincipalBottomSheetScaffold(
itemSeleccionadoState = itemSeleccionadoState,
onSeleccionarItem = onSeleccionarItem,

modifier = Modifier.padding(innerPadding)

39/39 PMDM 2° DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

