
Tema 4.1 - Scaffold
Descargar estos apuntes pdf o html

Índice
Introducción

Diseño basado en ranuras
Scaffold

Barras superiores
Barras de aplicación superiores (TopAppBars)

Barras de pestañas (TabRow)
Barras inferiores

Barra de navegación o NavigationBar
Barra de aplicación inferior o BottomAppBar

Menús desplegables
Snackbars

Hojas desplegables
Navigation Drawer
Hoja desplegable inferior (Bottom Sheet)

1/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_1_scaffold.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/Tema_4_1_scaffold.html

Introducción
Aunque en temas anteriores hemos visto cómo maquetar componentes con los los layouts de la
capa 'Foundation', como Surface , Box , Column , Row , etc. en este tema vamos a ver un
componente que nos facilita la maquetación de la pantalla, el Scaffold.

 Scaffold es un componente de la capa Material y por tanto vendrá definido en la librería de
Material 3.

Diseño basado en ranuras
Documentación oficial: Slot-based layouts

Aunque al final del Tema 3.2 ya se comentó. En este tema se va a profundizar en el concepto de
Ranuras o 'Slots'. Es en lo que se basa el diseño de Scaffold y me permite definir componentes
de maquetación con Marcos o 'Frames' relacionados y que pueden colaborar entre sí a través de
estados.

Veamos un ejemplo definiendo el típico layout de una pantalla con una cabecera, un pié de página,
un menú lateral y un contenido central o cuerpo.

En primer lugar definimos un componente que nos permita definir un 'Frame' o marco dentro de
una maquetación personalizada. Este componente será un Surface con un borde y un radio de
esquina que le dará un aspecto de marco y emitirá un composable contenido en su interior.

@Composable

fun ScaffoldFrame(

 modifier: Modifier = Modifier,

 contenido: @Composable () -> Unit,

) {

 Surface(

 modifier = modifier.then(

 Modifier

 .fillMaxSize().padding(2.dp)

 .border(2.dp, MaterialTheme.colorScheme.inverseSurface)

 .clip(RoundedCornerShape(10.dp)))

) {

 contenido()

 }

}

2/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/scaffold?hl=es-419
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Scaffold(androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,androidx.compose.material3.FabPosition,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/jetpack/compose/layouts/basics#slot-based-layouts

Posteriormente definimos el componente MiScaffold que nos permitirá definir un layout
personalizado con una cabecera, un menú, un cuerpo y un pié de página. Siendo cada uno de
ellos un ScaffoldFrame que emitirá un contenido que se recibe en el parámetro de tipo
 @Composable () -> Unit que será lo que denominaremos Ranura o 'Slot'.

Por último, vamos a definir un preview de nuestro componente
 MiScaffold para ver cómo se comporta, emitiendo en cada ranura
un texto con el nombre de la ranura y un padding.

@Composable

fun MiScaffold(

 cabecera: @Composable () -> Unit = {},

 menu: @Composable () -> Unit = {},

 cuerpo: @Composable () -> Unit = {},

 pie: @Composable () -> Unit = {}

) {

 Column(

 modifier = Modifier.fillMaxSize()

) {

 ScaffoldFrame(modifier = Modifier.weight(1f)) { cabecera() }

 Row(modifier = Modifier

 .weight(10f)

 .fillMaxSize()

) {

 ScaffoldFrame(modifier = Modifier.weight(2f)) { menu() }

 ScaffoldFrame(modifier = Modifier.weight(10f)) { cuerpo() }

 }

 ScaffoldFrame(modifier = Modifier.weight(1f)) { pie() }

 }

}

3

6

11

16

17

19

3/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Preview(showBackground = true)

@Composable

fun MiScaffoldPreview() {

 EjemplosScaffoldTheme {

 MiScaffold(

 cabecera = { Text(text = "Cabecera",

 modifier = Modifier.padding(5.dp)) },

 menu = { Text(text = "Menu",

 modifier = Modifier.padding(5.dp)) },

 cuerpo = { Text(text = "Cuerpo",

 modifier = Modifier.padding(5.dp)) },

 pie = { Text(text = "Pie",

 modifier = Modifier.padding(5.dp)) }

)

 }

}

4/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Scaffold
Enlaces de interés sobre Scaffold

Documentación oficial: Scaffold
Material 3 Jetpack Compose: Scaffold
Material 3 Jetpack Compose: BottomSheetScaffold
Video Tutorial (Inglés) Philipp Lackner

En Material Design, un 'scaffold' o andamiaje es una estructura fundamental que proporciona una
plataforma estandarizada para interfaces de usuario complejas. Mantiene diferentes partes de la
IU, como las barras de la app y los botones de acción flotantes, lo que les da a las apps un
aspecto coherente.

Este componente proporciona una API para reunir varios componentes materiales para construir
su pantalla, asegurando una estrategia de diseño adecuada para ellos y recopilando los datos
necesarios para que estos componentes funcionen juntos correctamente. Por ejemplo, si aparece
un mensaje en un Snackbar, Scaffold se asegura de que el mensaje se muestre correctamente en
la pantalla desplazando otros componentes como podría ser un botón flotante.

Estos componentes que se pueden añadir al Scaffold también definidos en Material 3 son:

Barras de aplicación:
Superiores TopAppBar , CenterAlignedTopAppBar , MediumTopAppBar o LargeTopAppBar
Inferiores como BottomAppBar o NavigationBar

Barras de mensaje o estado (SnackBar)
Botones flotantes de acción (Fab)
Layouts desplegables inferiores no modales (BottomSheets)

Puesto que todo está definido en el sistema de diseño de Material, los componentes se combinan
de forma coherente y se comportan de forma predecible y siguen las directrices de 'layout'
descritas en Material, en nuestro caso para pantallas compactas.

Además, dispones de la App para Android denominada Now in Android que te permite ver cómo
se comportan los diferentes componentes de Material 3 en un dispositivo real. Puedes descargarla

Info

Puedes descargar el código usado para todos los ejemplo de este tema del siguiente enlace:
Proyecto ejemplos scaffolding



5/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/scaffold?hl=es-419
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Scaffold(androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,androidx.compose.material3.FabPosition,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomSheetScaffold(kotlin.Function1,androidx.compose.ui.Modifier,androidx.compose.material3.BottomSheetScaffoldState,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,kotlin.Function0,kotlin.Boolean,kotlin.Function0,kotlin.Function1,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1)
https://www.youtube.com/watch?v=VxgWUdOKgtI
https://m3.material.io/foundations/layout/understanding-layout/parts-of-layout
https://m3.material.io/foundations/layout/applying-layout/compact
https://github.com/android/nowinandroid?tab=readme-ov-file
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B4_Navegacion_y_Menus/assets/codigo/tema_4_1/ejemplos_scaffolding_recurso.zip

desde Google Play.

En el prototipo de de la función composable Scaffold podemos apreciar las diferentes ranuras o
'slots' que nos permite definir:

Disponemos de otra función de prototipo BottomSheetScaffold que nos permite definir un layout
con un contenido principal y un contenido secundario que se muestra en una hoja inferior
desplegable no modal. Del protipo de la función composable BottomSheetScaffold deducir las
diferentes ranuras o 'slots' que nos permite definir que este tipo de Scaffold no es compatible con
barras inferiores como BottomAppBar o NavigationBar , ni con botones flotantes de acción (Fab).

@Composable

fun Scaffold(

 modifier: Modifier = Modifier,

 topBar: @Composable () -> Unit = {},

 bottomBar: @Composable () -> Unit = {},

 snackbarHost: @Composable () -> Unit = {},

 floatingActionButton: @Composable () -> Unit = {},

 floatingActionButtonPosition: FabPosition = FabPosition.End,

 containerColor: Color = MaterialTheme.colorScheme.background,

 contentColor: Color = contentColorFor(containerColor),

 contentWindowInsets: WindowInsets = ScaffoldDefaults.contentWindowInsets,

 content: @Composable (PaddingValues) -> Unit

)

4

7

6/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://play.google.com/store/apps/details?id=com.google.samples.apps.nowinandroid&pli=1

@Composable

fun BottomSheetScaffold(

 sheetContent: @Composable ColumnScope.() -> Unit,

 modifier: Modifier = Modifier,

 scaffoldState: BottomSheetScaffoldState = rememberBottomSheetScaffoldState(),

 sheetPeekHeight: Dp = BottomSheetDefaults.SheetPeekHeight,

 sheetMaxWidth: Dp = BottomSheetDefaults.SheetMaxWidth,

 sheetShape: Shape = BottomSheetDefaults.ExpandedShape,

 sheetContainerColor: Color = BottomSheetDefaults.ContainerColor,

 sheetContentColor: Color = contentColorFor(sheetContainerColor),

 sheetTonalElevation: Dp = BottomSheetDefaults.Elevation,

 sheetShadowElevation: Dp = BottomSheetDefaults.Elevation,

 sheetDragHandle: (@Composable () -> Unit)? = { BottomSheetDefaults.DragHandle() },

 sheetSwipeEnabled: Boolean = true,

 topBar: (@Composable () -> Unit)? = null,

 snackbarHost: @Composable (SnackbarHostState) -> Unit = { SnackbarHost(it) },

 containerColor: Color = MaterialTheme.colorScheme.surface,

 contentColor: Color = contentColorFor(containerColor),

 content: @Composable (PaddingValues) -> Unit

): Unit

3

5

15

16

7/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barras superiores
Cómo su nombre indica pueden ir situadas en la parte superior de la pantalla.

Barras de aplicación superiores (TopAppBars)

Enlaces de interés de Barras de aplicación superiores
Material 3 Jetpack Compose: TopAppBar
Material 3 Jetpack Compose: CenterAlignedTopAppBar
Material 3 Jetpack Compose: MediumTopAppBar
Material 3 Jetpack Compose: LargeTopAppBar
Video Tutorial (Inglés) Stevdza-San
Video Tutorial (Inglés) Philipp Lackner

Especificaciones de uso en el sistema de diseño de Material 3:

1. Contiene un título y acciones relacionadas con la pantalla actual. Por ejemplo, puede
contener un botón de navegación para volver a la pantalla anterior, un menú desplegable
para mostrar acciones adicionales y acciones para realizar tareas relacionadas con la
pantalla actual.

2. Al desplazarse, aplica un color de relleno del contenedor para separar la barra de la aplicación
del contenido del cuerpo, deben tener el mismo ancho que la ventana del dispositivo y no
deben superponerse con el contenido del cuerpo.

3. Tendremos cuatro tipos: regular (o pequeño), alineado al centro, mediano y grande. Aunque
en dispositivos Compactos solo se recomienda el uso de los dos primeros TopAppBar y
 CenterAlignedTopAppBar .

En EjemploToAppBar.kt de uso de TopAppBar en el cual le pasamos un parámetro de tipo
 TopAppBarScrollBehavior donde le definimos como se tiene que comportar ante un scroll en el
contenido principal en el Scaffold.

En nuestro caso será de tipo ...

val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()

que hará que se quede 'pinneada' (fija) en la parte superior de la pantalla cuando se haga scroll,
pero de acuerdo al sistema de Material cambie ligeramente su color de fondo indicando si tenemos
scroll o no.

Otros valores pueden ser: enterAlwaysScrollBehavior() y exitUntilCollapsedScrollBehavior()

8/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#TopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#CenterAlignedTopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#MediumTopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#LargeTopAppBar(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function1,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.TopAppBarColors,androidx.compose.material3.TopAppBarScrollBehavior)
https://www.youtube.com/watch?v=hQJpd78RUVg
https://www.youtube.com/watch?v=EqCvUETekjk

Fíjate que nos ofrece Ranuras o 'Slots' para definir el título, el icono de navegación y las acciones.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun BarraAplicacion(

 comportamientoAnteScroll: TopAppBarScrollBehavior

) = TopAppBar(

 title = {

 // El texto en TopAppBar solo puede tener una línea

 Text("Título de una línea", maxLines = 1, overflow = TextOverflow.Ellipsis)

 },

 navigationIcon = {

 IconButton(onClick = { }) {

 Icon(painter = painterResource(R.drawable.menu_24px), contentDescription = null)

 }

 },

 actions = {

 IconButton(onClick = { }) {

 Icon(painter = painterResource(R.drawable.first_page_24px), contentDescription =

 }

 IconButton(onClick = { }) {

 Icon(painter = painterResource(R.drawable.refresh_24px), contentDescription = nul

 }

 },

 scrollBehavior = comportamientoAnteScroll

)

El contenido del Scaffold será un LazyColumn que nos permitirá hacer scroll.

Importante

Fíjate que ContenidoPrincipalScaffold recibe un modificador, esto es porque el lambda que
emite el contenido del Scaffold recibe un parámetro de tipo PaddingValues que ajustará este
contenido respecto al resto de componentes del mismo.



9/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun ContenidoPrincipalScaffold(

 modifier: Modifier = Modifier

) {

 val colors = remember { listOf(Color(0xFF50A2E4), Color(0xFFFFFFFF)) }

 LazyColumn(modifier = modifier) {

 items(count = 25) {

 Box(

 Modifier

 .fillMaxWidth().background(colors[it % colors.size])

) {

 Text(text = "Item $it", modifier = Modifier.padding(16.dp))

 }

 }

 }

}

La variable comportamientoAnteScroll que pasamos a la BarraAplicacion la tenemos que pasar el
Scaffold como modificador que indique que debe propagar el evento de scroll través de ella a los
elementos suscritos a ella.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaConScroll() {

 val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()

 Scaffold(

 modifier = Modifier.nestedScroll(comportamientoAnteScroll.nestedScrollConnection

 // Ranura que emite la barra de aplicación

 topBar = { BarraAplicacion(comportamientoAnteScroll) },

 // Ranura que emite el contenido principal qeu recibe el padding

 content = { innerPadding ->

 ContenidoPrincipalScaffold(modifier = Modifier.padding(innerPadding))

 }

)

}

6

10/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Si ejecutamos PantallaConScroll en nuestro dispositivo virtual, veremos que la barra de
aplicación se queda fija en la parte superior de la pantalla cuando hacemos scroll y además se
oscurece ligeramente el color en el scroll.

Aviso

Este comportamiento de escurecimiento no se aprecia en la previsualización de Android
Studio pero sí en el dispositivo virtual.



11/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barras de pestañas (TabRow)
Enlaces de interés sobre Barras pestañas

Material 3 Jetpack Compose: Tab
Material 3 Jetpack Compose: PrimaryTabRow
Material 3 Jetpack Compose: SecondaryTabRow
Video Tutorial (Inglés) Stevdza-San
Video Tutorial (Inglés) Philipp Lackner

Especificaciones de uso en el sistema de diseño de Material 3:

1. Son útiles para agrupar contenido en categorías.
2. Pueden desplazarse horizontalmente con scroll.
3. También pueden utilizarse para navegar entre pantallas horizontales en dispositivos

compactos usando por ejemplo un HorizontalPager y deslizando con el dedo (Swipe). En
este caso no se recomienda Scroll y por tanto tendremos más de 3 o 4 pestañas.

4. Se recomienda usar LazyGrid en el caso de mostrar algún tipo de colección.
5. Si el contenedor principal es scrollable, las pestañas quedarán fijas y no se ocultarán

verticalmente con el contenido.

Tipos de pestañas:

1. Pestañas primarias: Con PrimaryTabRow y
 PrimaryScrollableTabRow

En estas pestañas tendremos un icono y un texto.
Estás están situadas en la parte superior de la pantalla,
justo debajo de la barra de aplicación.
Pueden tener un componente Badge visto en temas
anteriores de forma opcional.

2. Pestañas secundarias: Con SecondaryTabRow y
 SecondaryScrollableTabRow

En estas pestañas tendremos solo un texto.
Pueden estar situadas en contenido intermedio de la
pantalla, separando contenido relacionado de forma
jerárquica.

12/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Tab(kotlin.Boolean,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Boolean,kotlin.Function0,kotlin.Function0,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.foundation.interaction.MutableInteractionSource)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#PrimaryTabRow(kotlin.Int,androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1,kotlin.Function0,kotlin.Function0)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#SecondaryTabRow(kotlin.Int,androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1,kotlin.Function0,kotlin.Function0)
https://www.youtube.com/watch?v=2K3to2puVDM
https://www.youtube.com/watch?v=9r4st6dmyNE

En EjemploTabs.kt tienes una ejemplo de uso de PrimaryTabRow bajo un TopAppBar .

Definimos un componente con nuestras pestañas. Fíjate que necesitamos un estado con un
índice que nos indique la pestaña seleccionada. Esto va ha hacer muy sencillo su uso con
 HorizontalPager .

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun Tabs() {

 var tabIndexState by remember { mutableStateOf(0) }

 val titlesAndIcons = remember {

 listOf(

 "Todos" to R.drawable.filter_1_24px,

 "Pares" to R.drawable.filter_2_24px,

 "Impares" to R.drawable.filter_3_24px

)

 }

 PrimaryTabRow(selectedTabIndex = tabIndexState) {

 titlesAndIcons.forEachIndexed { index, (title, icon) ->

 Tab(

 selected = tabIndexState == index,

 onClick = { tabIndexState = index },

 text = { Text(

 text = title,

 maxLines = 2,

 overflow = TextOverflow.Ellipsis)

 },

 icon = { Icon(painterResource(icon), contentDescription = null) }

)

 }

 }

}

Como sucedía antes, es importante que apliquemos un padding al contenedor principal del
Scaffold para que no se solape con las pestañas. Puedes verlo en el siguiente código...

13/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun ContenidoTabs(

 modifier: Modifier = Modifier

) {

 Column(modifier = modifier) {

 Tabs()

 LazyVerticalGrid(

 columns = GridCells.Adaptive(100.dp)

) {

 items(count = 50) {

 ElevatedCard(

 modifier = Modifier.widthIn(100.dp).padding(4.dp),

) {

 Text(

 text = "Item $it",

 modifier = Modifier.padding(16.dp).fillMaxWidth(),

 textAlign = TextAlign.Center

)

 }

 }

 }

 }

}

También hemos aplicado un nuevo comportamiento de scroll a la barra de aplicación, en este caso
 enterAlwaysScrollBehavior() que hará que la barra de aplicación se oculte cuando hacemos scroll
hacia abajo y se muestre cuando volvemos con el scroll al primer elemento.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaConTabs() {

 val comportamientoAnteScroll = TopAppBarDefaults.exitUntilCollapsedScrollBehavior()

 Scaffold(

 modifier = Modifier.nestedScroll(comportamientoAnteScroll.nestedScrollConnection

 topBar = { BarraAplicacionTabs(comportamientoAnteScroll) },

 content = { innerPadding ->

 ContenidoTabs(modifier = Modifier.padding(innerPadding))

 }

)

}

4

14/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barras inferiores
Son barras cuyo uso puede llevar a confusión ya que están situadas en la misma posición. Por
esta razón, vamos a tratar de extraer unas pautas de uso de la documentación oficial de Material
3.

Barra de navegación o NavigationBar

Enlaces de interés de NavigationBar
Material 3 Jetpack Compose: NavigationBar
Material 3 Jetpack Compose: NavigationBarItem
Material 3 Jetpack Compose: BottomAppBar
Video Tutorial (Inglés) Stevdza-San
Video Tutorial (Inglés) Philipp Lackner

Especificaciones de uso en el sistema de diseño de Material 3:

1. Las barras de navegación ofrecen una forma persistente y correcta de cambiar entre destinos
primarios en una app con layout compacto. Con persistente nos referimos a que siempre
están visibles y además no cambian a lo largo de la ejecución.

2. Solo deben contener de tres a cinco elementos de navegación, cada uno de ellos
representando un destino singular en la misma jerarquía y sin ningún tipo de Scroll.

3. Las posicionaremos en la ranura o 'slot' bottomBar del Scaffold .
4. Aunque se pueden representar solo con un icono, se recomienda que tengan un texto corto

que describa el destino. Además, opcionalmente también pueden representar un Badge.
5. Aunque, como sucede con TabRow , tenemos un índice que nos indica el elemento

seleccionado. No debemos deslizar ('Swipe') y por tanto, no podemos usar HorizontalPager
para navegar entre los elementos de la barra de navegación.

15/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#NavigationBar(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#(androidx.compose.foundation.layout.RowScope).NavigationBarItem(kotlin.Boolean,kotlin.Function0,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Boolean,kotlin.Function0,kotlin.Boolean,androidx.compose.material3.NavigationBarItemColors,androidx.compose.foundation.interaction.MutableInteractionSource)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomAppBar(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://www.youtube.com/watch?v=gg-KBGH9T8s
https://www.youtube.com/watch?v=c8XP_Ee7iqY

En EjemploNavigationBar.kt tienes un ejemplo sencillo de cómo implementar este componente.

Puesto que no vamos a implementar una navegación como tal, vamos ha hacer que el
componente que muestra el contenido principal del Scaffold reciba un índice que nos indique el
elemento seleccionado de la barra de navegación, cambiando su contenido en función del mismo.

@Composable

fun ContenidoPrincipalNavBar(

 indexScreenState: Int,

 modifier: Modifier = Modifier

) {

 val backgroundColor = when (indexScreenState) {

 0 -> MaterialTheme.colorScheme.primaryContainer

 1 -> MaterialTheme.colorScheme.secondaryContainer

 else -> MaterialTheme.colorScheme.tertiaryContainer

 }

 Box(

 modifier = modifier.then(

 Modifier

 .fillMaxSize()

 .background(color = backgroundColor)

),

 contentAlignment = Alignment.BottomCenter

) {

 Text(

 modifier = Modifier.padding(bottom = 32.dp),

 text = "Pantalla ${indexScreenState + 1}",

 textAlign = TextAlign.Center,

 style = MaterialTheme.typography.headlineLarge

)

 }

}

La barra de navegación, al igual que deberíamos haber hecho con TabRow, recibirá el índice del
elemento seleccionado y un callback que nos permitirá cambiar el índice cuando se pulse sobre un

Nota

Más adelante veremos como gestionar la navegación de forma más adecuada con el
sistema de navegación de Jetpack Compose.



16/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

elemento de la barra de navegación.

@Composable

fun NavBar(

 indexScreenState: Int,

 onNavigateToScreen: (Int) -> Unit

) {

 val titlesAndIcons = remember {

 listOf(

 "Pantalla 1" to R.drawable.filter_1_24px,

 "Pantalla 2" to R.drawable.filter_2_24px,

 "Pantalla 3" to R.drawable.filter_3_24px

)

 }

 NavigationBar {

 titlesAndIcons.forEachIndexed { index, (title, icon) ->

 NavigationBarItem(

 icon = { Icon(painter = painterResource(icon), contentDescription = title) },

 label = { Text(title) },

 selected = indexScreenState == index,

 onClick = { onNavigateToScreen(index) }

)

 }

 }

}

17/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Por último, al componer nuestro Scaffold . En la ranura o 'slot' bottomBar emitiremos nuestro
componente NavBar .

Como puedes ver en las imágenes de abajo donde se muestra un ejemplo de ejecución, el
elemento de la navegación seleccionado se muestra resaltado respecto al resto.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaNavBar() {

 var indexScreenState by remember { mutableStateOf(0) }

 val comportamientoAnteScroll = TopAppBarDefaults.pinnedScrollBehavior()

 Scaffold(

 modifier = Modifier.nestedScroll(comportamientoAnteScroll.nestedScrollConnection

 topBar = { BarraAplicacionNavBar(comportamientoAnteScroll) },

 bottomBar = {

 NavBar(

 indexScreenState = indexScreenState,

 onNavigateToScreen = { indexScreenState = it }

)

 },

 content = { innerPadding ->

 ContenidoPrincipalNavBar(

 indexScreenState = indexScreenState,

 modifier = Modifier.padding(innerPadding)

)

 }

)

}

9

14

18/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Barra de aplicación inferior o BottomAppBar

Enlaces de interés de BottomAppBar
Material 3 Jetpack Compose: BottomAppBar
Video Tutorial (Inglés) Philipp Lackner

Si nos vamos a la documentación oficial de la implementación del sistema de diseño de Material 3
para Jetpack Compose, veremos que hay diferentes sobrecargas de la función composable
 BottomAppBar , resultado de la evolución de este componente en el sistema. Nosotros vamos a
centrarnos en este interfaz que es el que más se ajusta a las especificaciones de Material Design.

En él podemos ver que tenemos una ranura o 'slot' para definir las acciones, otra para definir un
botón flotante de acción y otra para definir el comportamiento ante el scroll en el contenedor
principal del Scaffold huésped.

Fíjate que en otros prototipos de la función composable BottomAppBar como la siguiente, no
tenemos ranura para definir el comportamiento ante el scroll y solo tenemos una ranura o 'slot'
para definir el contenido en un RowScope del componente.

@ExperimentalMaterial3Api

@Composable

fun BottomAppBar(

 actions: @Composable RowScope.() -> Unit,

 modifier: Modifier = Modifier,

 floatingActionButton: (@Composable () -> Unit)? = null,

 containerColor: Color = BottomAppBarDefaults.containerColor,

 contentColor: Color = contentColorFor(containerColor),

 tonalElevation: Dp = BottomAppBarDefaults.ContainerElevation,

 contentPadding: PaddingValues = BottomAppBarDefaults.ContentPadding,

 windowInsets: WindowInsets = BottomAppBarDefaults.windowInsets,

 scrollBehavior: BottomAppBarScrollBehavior? = null

): Unit

4

6

10

12

19/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomAppBar(kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Function0,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.BottomAppBarScrollBehavior)
https://www.youtube.com/watch?v=Dlav7VIAQ3E

Especificaciones de uso en el sistema de diseño de Material 3:

1. Mostrar acciones para la pantalla actual. Algo similar a lo que hacíamos con la TopAppBar ,
pero aquí tenemos más espacio y podríamos mostrar de dos hasta cinco acciones sin dejar
algunas de ellas de forma implícita en un menú desplegable de desbordamiento (overflow
menu) y siendo más accesibles para el usuario con el pulgar.

2. Podemos mostrar un botón flotante de acción FAB que nos permita realizar una acción de
especial relevancia para la pantalla actual. Obviamente si definimos dicho FAB en la ranura o
'slot' floatingActionButton no tiene sentido definirlo en la ranura o 'slot' bottomBar del
 Scaffold .

3. Material permite que alguna de estas acciones desencadenen la navegación a alguna otra
pantalla.

4. Esta permitido un menú desplegable de desbordamiento com más acciones al principio.
5. Si se muestra un SnackBar , este se mostrará por encima de la barra de aplicación inferior y

nunca la ocultará o se mostrará contenido en la misma debajo.
6. Pueden desaparecer al hacer scroll hacia arriba y aparecer al hacer scroll hacia abajo.
7. Están permitidas transiciones entre acciones y FAB según el elemento seleccionado en la

pantalla.

Em EjemploBottomBar.kt tenemos un ejemplo sencillo de cómo usar este componente siguiendo
las especificaciones de Material Design. En él, vamos a implementar un Scaffold sencillo con una
barra de aplicación inferior que tendrá un FAB y unas acciones. Además, el contenido principal del
 Scaffold será un LazyColumn con una lista de items que nos permitirá hacer scroll y cuando
seleccionemos un elemento las acciones y el FAB serán referentes al elemento seleccionado y
cuando no lo estén serán otros generales a la lista de items. Por último, vamos a definir un
comportamiento ante el scroll que hará que la barra de aplicación inferior se oculte cuando
hacemos scroll hacia arriba junto con la barra de aplicación superior.

En las siguientes imágenes puedes ver un ejemplo del funcionamiento descrito anteriormente.

@Composable

fun BottomAppBar(

 modifier: Modifier = Modifier,

 containerColor: Color = BottomAppBarDefaults.containerColor,

 contentColor: Color = contentColorFor(containerColor),

 tonalElevation: Dp = BottomAppBarDefaults.ContainerElevation,

 contentPadding: PaddingValues = BottomAppBarDefaults.ContentPadding,

 windowInsets: WindowInsets = BottomAppBarDefaults.windowInsets,

 content: @Composable RowScope.() -> Unit

): Unit

9

20/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

El contenedor principal, permitirá seleccionar y deseleccionar un elemento de la lista de items.
Para ello, recibirá un estado que nos indique el elemento seleccionado y un callback que nos
permitirá cambiar el estado cuando se pulse sobre un elemento de la lista.

21/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun ContenidoPrincipalScaffoldConBarraAppInferior(

 itemSeleccionadoState: Int?,

 onSeleccionarItem: (Int) -> Unit,

 modifier: Modifier = Modifier

) {

 LazyColumn(modifier = modifier) {

 items(count = 25) {

 Surface(

 color = if (itemSeleccionadoState == it) {

 MaterialTheme.colorScheme.secondary

 } else {

 MaterialTheme.colorScheme.secondaryContainer

 },

 modifier = Modifier

 .fillMaxWidth()

 .clickable { onSeleccionarItem(it) }

 .border(

 width = 1.dp,

 color = MaterialTheme.colorScheme.onSurface.copy(alpha = 0.12f)

)

) {

 Text(

 text = "Item $it",

 modifier = Modifier.padding(16.dp),

 fontWeight = if (itemSeleccionadoState == it) {

 FontWeight.ExtraBold

 } else {

 FontWeight.Normal

 }

)

 }

 }

 }

}

22/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

El componente que muestra el Scaffold gestionará el estado del elemento seleccionado
(recuerda que esto debería 'ascender' algún tipo de ViewModel) así como pasará al scaffold los
observers que notificarán el scroll. Por último, fíjate en la líneas resaltadas que dependiendo de si
hay un elemento seleccionado o no se emitirá un BottomAppBar u otro.

Por último, vamos a ver cómo sería el composable que emite la barra de aplicación inferior cuando
no hay ningún elemento seleccionado. La otra barra de aplicación inferior sería muy similar, pero
con un FAB y unas acciones diferentes.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaConScrollConBarraAppInferior() {

 val comportamientoAnteScrollSup = TopAppBarDefaults.exitUntilCollapsedScrollBehavior

 val comportamientoAnteScrollInf = BottomAppBarDefaults.exitAlwaysScrollBehavior()

 var itemSeleccionadoState: Int? by remember { mutableStateOf(null) }

 val onSeleccionarItem: (Int) -> Unit = {

 itemSeleccionadoState = if (itemSeleccionadoState != it) it else null

 }

 Scaffold(

 modifier = Modifier

 .nestedScroll(comportamientoAnteScrollInf.nestedScrollConnection)

 .nestedScroll(comportamientoAnteScrollSup.nestedScrollConnection),

 topBar = { BarraAppSuperiorConBarraAppInferior(comportamientoAnteScrollSup) },

 bottomBar = {

 if (itemSeleccionadoState == null)

 BarraAppInferiorSinSeleccion(comportamientoAnteScrollInf)

 else

 BarraAppInferiorSeleccion(comportamientoAnteScrollInf)

 },

 content = { innerPadding ->

 ContenidoPrincipalScaffoldConBarraAppInferior(

 itemSeleccionadoState = itemSeleccionadoState,

 onSeleccionarItem = onSeleccionarItem,

 modifier = Modifier.padding(innerPadding)

)

 }

)

}

15

20

23/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun BarraAppInferiorSinSeleccion(

 comportamientoAnteScroll: BottomAppBarScrollBehavior

 = BottomAppBarDefaults.exitAlwaysScrollBehavior()

) {

 val descripcionEIconos = remember {

 listOf(

 "Buscar Items" to R.drawable.search_24px,

 "Filtrar Items" to R.drawable.filter_list_24px,

 "Ordenar Items" to R.drawable.sort_by_alpha_24px

)

 }

 BottomAppBar(

 actions = {

 descripcionEIconos.forEach { (descripcion, icono) ->

 IconButton(

 onClick = { /* do something */ }) {

 Icon(

 painter = painterResource(icono),

 tint = MaterialTheme.colorScheme.secondary,

 contentDescription = descripcion

)

 }

 }

 },

 floatingActionButton = {

 FloatingActionButton(

 onClick = { /* do something */ },

 containerColor = BottomAppBarDefaults.bottomAppBarFabColor,

 contentColor = MaterialTheme.colorScheme.primary,

 elevation = FloatingActionButtonDefaults.bottomAppBarFabElevation()

) {

 Icon(painter = Filled.getAddIcon(), "Localized description")

 }

 },

 scrollBehavior = comportamientoAnteScroll

)

}

24/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Menús desplegables
Enlaces de interés de Menús desplegables

Material 3 Jetpack Compose: DropdownMenu
Material 3 Jetpack Compose: DropdownMenuItem
Video Tutorial (Castellano) Gibrán García
Video Tutorial (Inglés) Philipp Lackner

Es un elemento tradicional de las interfaces de usuario que nos permite mostrar un menú de
acciones/opciones desplegable.

Especificaciones de uso en el sistema de diseño de Material 3:

1. Se pueden dar en diferentes contextos, pero los principales son:
En la TopAppbar: En este caso, el menú desplegable se mostrará en la parte inferior de
la barra de aplicación y se desplegará hacia abajo. Normalmente, se mostrará un menú
desplegable de desbordamiento con acciones que no caben en la barra de aplicación
simbolizado por tres puntos verticales.
De forma contextual: Realizaremos un tap largo sobre un elemento de la interfaz de
usuario y se mostrará un menú desplegable con acciones relacionadas con el elemento
seleccionado.
El tradicional TextField Desplegable: Implementado con el componente
ExposedDropdownMenuBox en el sistema de Material 3. Me permitirá seleccionar un
elemento de una lista de elementos dentro de un campo de texto con un menú
desplegable.
En chips de filtrado: Donde se ofrecerá una serie de opciones de filtrado simple.

2. Pueden tener, de forma opcional, una línea de separación entre grupos de elementos usando
HorizontalDivider

3. Pueden contener submenús desplegables, pero en dispositivos compactos no se recomienda
usarlos.

25/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#DropdownMenu(kotlin.Boolean,kotlin.Function0,androidx.compose.ui.Modifier,androidx.compose.ui.unit.DpOffset,androidx.compose.foundation.ScrollState,androidx.compose.ui.window.PopupProperties,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.foundation.BorderStroke,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#DropdownMenuItem(kotlin.Function0,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,kotlin.Boolean,androidx.compose.material3.MenuItemColors,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.interaction.MutableInteractionSource)
https://www.youtube.com/watch?v=dxBiEXvwSDk
https://www.youtube.com/watch?v=QCSJfMqQY9A
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ExposedDropdownMenuBox(kotlin.Boolean,kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#HorizontalDivider(androidx.compose.ui.Modifier,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Color)

En EjemploDropDownMenu.kt dispones de un ejemplo análogo al que hemos visto en la barra de
aplicación inferior pero en este caso con un menú desplegable de desbordamiento en la barra de
aplicación superior.

Como antes, vamos a tener la posibilidad de seleccionar un item dentro de una lista, si está
seleccionado las acciones y por tanto el menú de desbordamiento serán unas y si no lo está, serán
otras. Tal y como se muestra en el siguiente ejemplo de ejecución.

En primer lugar, para no repetir mucho código vamos a definir un componente reutilizable que
nos permita mostrar un menú desplegable de desbordamiento en la barra de aplicación superior,
de tal manera que la primera acción se muestre directamente en la barra y el resto de forma
elíptica a través del menú desplegable.

En primer lugar, por ejemplo, podemos definir una clase de datos que nos permita definir un item
del menú desplegable de desbordamiento, incluyendo un callback que se ejecutará cuando se
pulse sobre el item.

// Indica a Compose sus objetos son inmutable

// y por tanto puede optimizar su renderizado

@Immutable

data class ItemMenuDesplegable(

 val icono: Int,

 val descripcion: String,

 val onClick: () -> Unit

)

Ahora definiremos un componente AccionesConMenuDesplegable que recibe una lista de
 ItemMenuDesplegable que como precondición debe tener al menos 3 elementos. Esto es, si no hay
3 elementos o más, se lanzará una excepción ya que el menú de desbordamiento no tendría
sentido. Ya que, el primer elemento será el que se muestre en la barra de aplicación y el resto se
mostrarán en el menú desplegable de desbordamiento (al menos 2).

26/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun AccionesConMenuDesplegable(

 itemsMenu : List<ItemMenuDesplegable>

) {

 // Precondición de uso

 if (itemsMenu.count() < 3)

 throw IllegalArgumentException("Se requieren al menos 3 items en el menú desplegable"

 var expandidoState by remember { mutableStateOf(false) }

 val cerrarMenu: () -> Unit = { expandidoState = false }

 IconButton(onClick = itemsMenu[0].onClick) {

 Icon(

 painter = painterResource(itemsMenu[0].icono),

 contentDescription = itemsMenu[0].descripcion

)

 }

 IconButton(onClick = { expandidoState = true }) {

 Icon(painter = painterResource(R.drawable.more_vert_24px), contentDescription = null)

 }

 DropdownMenu(

 expanded = expandidoState,

 onDismissRequest = cerrarMenu

) {

 for (i in 1..<itemsMenu.count()) {

 DropdownMenuItem(

 text = { Text(itemsMenu[i].descripcion) },

 onClick = {

 itemsMenu[i].onClick

 cerrarMenu()

 },

 leadingIcon = {

 Icon(

 painter = painterResource(itemsMenu[i].icono),

 contentDescription = itemsMenu[i].descripcion

)

 })

 }

 }

}

Fíjate que a través de un estado expandidoState controlamos si el menú desplegable está
expandido o no. Además, tenemos un callback cerrarMenu que nos permitirá cerrar el menú

27/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

desplegable cuando se pulse sobre un item del mismo o se pulse fuera del menú desplegable
desechándolo.

Ya podemos usar nuestro componente AccionesConMenuDesplegable en el Scaffold . Para ello
definiremos, dos listas de ItemMenuDesplegable . Una para cuando no hay ningún elemento
seleccionado y otra para cuando hay un elemento seleccionado. Por ejemplo...

@Composable

fun AccionesConMenuDesplegableSinSeleccion() {

 val descripcionEIconos = remember {

 listOf(

 ItemMenuDesplegable(

 icono = R.drawable.search_24px,

 descripcion = "Buscar Item", onClick = { }

),

 ItemMenuDesplegable(

 icono = R.drawable.filter_list_24px,

 descripcion = "Filtrar Item", onClick = { }

),

 ItemMenuDesplegable(

 icono = R.drawable.sort_by_alpha_24px,

 descripcion = "Ordenar Item", onClick = { }

)

)

 }

 return AccionesConMenuDesplegable(itemsMenu = descripcionEIconos)

}

@Composable

fun AccionesConMenuDesplegableSeleccion() { ...}

Por último, dependiendo de si tenemos un elemento seleccionado o no, emitiremos un menú
desplegable u otro.

28/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Snackbars
Enlaces de interés de Snackbars

Material 3 Jetpack Compose: SnackBarHost
Material 3 Jetpack Compose: SnackBar

Las Snackbars proporcionan mensajes breves sobre los procesos de la aplicación en la parte
inferior de la pantalla. Esto es, informan a los usuarios de un proceso que una aplicación ha
realizado o realizará.

Especificaciones de uso en el sistema de diseño de Material 3:

1. Suelen aparecer temporalmente no interrumpiendo la experiencia del usuario. Por tanto no
requerirán de la acción del usuario para desaparecer.

2. La diferencia con un diálogo es que los mensajes son de baja prioridad y como hemos
comentado no requieren de la verificación del usuario.

3. Ocasionalmente pueden contener una sola acción. En este caso no deben autodesaparecer
hasta que el usuario realice otra acción.

4. No deben aparecer más de una Snackbar a la vez.
5. No deben contener más de dos líneas de texto en un display compacto.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun BarraAplicacionConDropDownMenu(

 itemSeleccionadoState: Boolean,

 comportamientoAnteScroll: TopAppBarScrollBehavior

) = TopAppBar(

 title = {

 Text("Ejemplo DropDown", maxLines = 1, overflow = TextOverflow.Ellipsis)

 },

 navigationIcon = {

 IconButton(onClick = { }) {

 Icon(painter = Filled.getArrowBackIosIcon(), contentDescription = null)

 }

 },

 actions = {

 if (itemSeleccionadoState) AccionesConMenuDesplegableSeleccion()

 else AccionesConMenuDesplegableSinSeleccion()

 },

 scrollBehavior = comportamientoAnteScroll

)

15

18

29/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#SnackbarHost(androidx.compose.material3.SnackbarHostState,androidx.compose.ui.Modifier,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Snackbar(androidx.compose.material3.SnackbarData,androidx.compose.ui.Modifier,kotlin.Boolean,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color)

6. No deben contener iconos, ni enlaces.
7. Si tenemos una acción en la Snackbar, esta debe ser una acción de alto nivel. La acción

debe ser una acción que permita al usuario resolver el mensaje y debería ir en la parte
derecha de la Snackbar con un color diferente al del texto de la Snackbar. Por ejemplo, ante
un error podemos mostrar acciones como 'Reintentar' o 'Descartar'.

Aunque es posible emitir un SnackBar con un estado en cualquier jerarquía de compose al igual
que hacíamos con un AlertDialog , lo más habitual es que se emita gestionado dentro de un
 Scaffold . El Scaffold proporciona un SnackbarHost que nos permite emitir un SnackBar con un
estado y se encarga de gestionar su ciclo de vida y la visibilidad respecto a otros componentes
gestionados por el Scaffold por ejemplo:

Apareciendo sobre la barra de aplicación inferior y no ocultándola.
Si tenemos un FAB la Snackbar debe aparecer sobre el FAB y no debe ocultarlo o mostrarse
debajo del mismo.

El uso de SnackbarHost no es inmediato pues tiene múltiples casuísticas y personalizaciones que
se pueden encontrar en la documentación oficial, justo debajo del epígrafe de este apartado.

En EjemploSnackBar.kt tenemos un ejemplo sencillo de cómo usar este componente en los casos
más comunes. Para ello vamos a partir de un Scaffold sencillo con una TopAppBar , un FAB y un
 SnackBarHost . El contenido principal mostrará una lista de items como en otros ejemplos y la hacer
click sobre uno nos mostrará un SnackBar temporal con un mensaje que nos indicará el item
seleccionado. El FAB nos permitirá mostrar un SnackBar de duración indefinida con un icono de
cancelación tal y como se muestra en las siguientes imágenes...

Vamos a ver por partes, el composable que define este Scaffold y que denominaremos
 PantallaConScaffoldYConSnackBar .

Primero podemos considerar la definición de un estado para nuestro SnackBarHost a través de la
clase SnackbarHostState . Este estado nos permitirá emitir un SnackBar a través de la función

30/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

 showSnackbar y nos permitirá gestionar el ciclo de vida del mismo a través de la función
 currentSnackbarData .

Fíjate que al seleccionar un item mostramos el SnackBar con snackbarHostState.showSnackbar
que permitirá mostrarlo con diferentes configuraciones simples.

A continuación emitiremos el Scaffold donde definimos un SnackbarHost(snackbarHostState) por
defecto, que será el encargado de gestionar el ciclo de vida de los SnackBar que emitamos.

La gestión a la hora de mostarlo al pulsa el FAB es similar a la anterior, pero en este caso
usaremos la función showSnackbar con más parámetros para mostrarlo con un icono de
cancelación y con una duración indefinida.

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaConScaffoldYConSnackBar() {

 val comportamientoAnteScrollSup = TopAppBarDefaults.exitUntilCollapsedScrollBehavior

 val snackbarHostState = remember { SnackbarHostState() }

 val scope = rememberCoroutineScope()

 var itemSeleccionadoState: Int? by remember { mutableStateOf(null) }

 val onSeleccionarItem: (Int) -> Unit = {

 itemSeleccionadoState = if (itemSeleccionadoState != it) it else null

 scope.launch {

 if (itemSeleccionadoState != null) {

 snackbarHostState.currentSnackbarData?.dismiss()

 snackbarHostState.showSnackbar(

 message = "Item $itemSeleccionadoState seleccionado",

)

 }

 }

 }

5

10

17

Importante

Si antes de mostrar un SnackBar no llamásemos a
 snackbarHostState.currentSnackbarData?.dismiss() y hubiese un SnackBar mostrándose,
este no se mostraría hasta que el anterior expirase. Con la anterior llamada pues, podemos
forzar la expiración del SnackBar anterior y mostrar el nuevo.



31/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

 Scaffold(

 modifier = Modifier.nestedScroll(

 comportamientoAnteScrollSup.nestedScrollConnection),

 topBar = { BarraAppSuperiorConSnackBar(comportamientoAnteScrollSup) },

 snackbarHost = { SnackbarHost(snackbarHostState) },

 floatingActionButton = {

 FloatingActionButton(

 onClick = {

 scope.launch {

 if (itemSeleccionadoState != null) {

 snackbarHostState.currentSnackbarData?.dismiss()

 snackbarHostState.showSnackbar(

 message = "Item $itemSeleccionadoState borrado",

 withDismissAction = true,

 duration = SnackbarDuration.Indefinite

)

 }

 }

 }

) {

 Icon(imageVector = Icons.Filled.Delete, contentDescription = null)

 }

 },

 content = { innerPadding ->

 ContenidoPrincipalScaffoldConSnackBar(

 itemSeleccionadoState = itemSeleccionadoState,

 onSeleccionarItem = onSeleccionarItem,

 modifier = Modifier.padding(innerPadding)

)

 }

)

}

5

11

16

32/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Hojas desplegables

Navigation Drawer
Enlaces de interés de Navigation Drawer

Material 3 Jetpack Compose: ModalNavigationDrawer
Material 3 Jetpack Compose: ModalDrawerSheet
Material 3 Jetpack Compose: NavigationDrawerItem
Video Tutorial (Inglés) Philipp Lackner
Vídeo Tutorial (Castellano): Gibrán García

El Navigation Drawer o Cajón de Navegación es un componente que nos permite mostrar un
menú de navegación lateral. Este componente se puede mostrar de varias formas, pero por
simplificar nosotros nos vamos a centrar en el funcionamiento como hoja modal en el cual se
muestra como una hoja que ocupa casi toda la pantalla y que se puede mostrar y ocultar con un
gesto de deslizamiento hacia la derecha o hacia la izquierda. Este es el comportamiento
recomendado por Material Design para dispositivos compactos.

En el caso de Cajón de Navegación , será el
componente superior en la jerarquía de nuestra UI
por encima del Scaffold . Por tanto, será el
componente 'andamiaje' de orden superior que
emitirá el Scaffold y no al revés como sucedía con
el resto de componentes que hemos visto hasta
ahora.

ModalNavigationDrawer

ModalDrawerSheet Scaffold

NavigationDrawerItem

5..*

TopAppBar

Especificaciones de uso en el sistema de diseño de Material 3:

1. Aplicaciones con 5 o más destinos de nivel superior. En caso contrario, se recomienda usar
una barra de navegación inferior.

2. Aplicaciones con 2 o más niveles en la jerarquía de navegación.
3. Es el componente adecuado en pantallas grandes quedando fijo en la parte derecha.

En EjemploNavigationDrawer.kt disponemos de un ejemplo sencillo de uso como el que se ilustra
a continuación. En el cual tenemos un ModalNavigationDrawer que emite un ModalDrawerSheet con
3 opciones de navegación y un Scaffold con un TopAppBar .

33/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ModalNavigationDrawer(kotlin.Function0,androidx.compose.ui.Modifier,androidx.compose.material3.DrawerState,kotlin.Boolean,androidx.compose.ui.graphics.Color,kotlin.Function0)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ModalDrawerSheet(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.foundation.layout.WindowInsets,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#NavigationDrawerItem(kotlin.Function0,kotlin.Boolean,kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Function0,kotlin.Function0,androidx.compose.ui.graphics.Shape,androidx.compose.material3.NavigationDrawerItemColors,androidx.compose.foundation.interaction.MutableInteractionSource)
https://www.youtube.com/watch?v=aYSarwALlpI
https://www.youtube.com/watch?v=8sVYyUcuJgI

El ModalDrawerSheet se mostrará al deslizar hacia la derecha desde el borde izquierdo de la
pantalla 1️⃣ o al hacer click en el icono de menú colapsado de la TopAppBar 2️⃣. Para ocultarse
podemos deslizar a la izquierda 1️⃣ o hacer tap en la parte que aún queda visible del Scaffold
2️⃣. También se ocultará al hacer click sobre una de las opciones de navegación, desencadenando
la navegación a la pantalla correspondiente y quedando seleccionada para la próxima vez que se
muestre el ModalDrawerSheet .

Para gestionar las opciones del menú y guardar el estado de la opción seleccionada, podemos
definir por ejemplo un tipo enumerado como el siguiente:

enum class ItemMenuEjemploNavDrawer(

 val index: Int,

 val icono: Int,

 val nombre: String

) {

 Pantalla1(index = 0, icono = R.drawable.filter_1_24px, nombre = "Pantalla 1"),

 Pantalla2(index = 1, icono = R.drawable.filter_2_24px, nombre = "Pantalla 2"),

 Pantalla3(index = 2, icono = R.drawable.filter_3_24px, nombre = "Pantalla 3")

}

Definimos en primer lugar un ModalDrawerSheet que tiene dos ranuras o 'slots'. Una para el
contenido principal y otra para el contenido del cajón de navegación.

Este va a ser el nivel superior en nuestro ejemplo y por tanto será aquí donde definamos los
estados y los callback que lo modifican. (En un ejemplo real, estos deberían estar en un
ViewModel).

1. Mediante el estado de tipo DrawerState , podremos controlar cuando se muestra y cuando se
oculta el cajón de navegación mediante los métodos de suspendidos open() y close() .

2. selectedItem será un estado del nuestro tipo ItemMenuEjemploNavDrawer que nos indicará la
opción seleccionada en el menú.

34/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

@Composable

fun PantallaConNavDrawer() {

 val drawerState = rememberDrawerState(DrawerValue.Closed)

 var selectedItem by remember { mutableStateOf(ItemMenuEjemploNavDrawer.Pantalla1) }

 val scope = rememberCoroutineScope()

 val onItemSelected: (ItemMenuEjemploNavDrawer) -> Unit = {

 scope.launch { drawerState.close() }

 selectedItem = it

 }

 val onClickActionMenu: () -> Unit = {

 scope.launch { drawerState.open() }

 }

 ModalNavigationDrawer(

 drawerState = drawerState,

 drawerContent = {

 ContenidoNavDrawer(

 selecteItemState = selectedItem,

 onItemSelected = onItemSelected

)

 },

 content = {

 ScaffoldDentroNavDrawer(

 selecteItemState = selectedItem,

 onClickActionMenu = onClickActionMenu,

)

 }

)

}

35/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

El componente con el contenido del la hoja modal de navegación ModalDrawerSheet vemos que se
encarga de emitir un NavigationDrawerItem por cada opción de navegación. Para ello, pasando un
icono, un texto y un callback que se ejecutará cuando se pulse sobre el elemento de navegación.
Además, indicaremos si el elemento está seleccionado o no mediante el estado selecteItemState .

@Composable

fun ContenidoNavDrawer(

 selecteItemState: ItemMenuEjemploNavDrawer,

 onItemSelected: (ItemMenuEjemploNavDrawer) -> Unit,

 modifier: Modifier = Modifier

) {

 val items = remember {

 listOf(

 ItemMenuEjemploNavDrawer.Pantalla1,

 ItemMenuEjemploNavDrawer.Pantalla2,

 ItemMenuEjemploNavDrawer.Pantalla3)

 }

 ModalDrawerSheet(modifier = modifier) {

 Spacer(Modifier.height(12.dp))

 items.forEach { item ->

 NavigationDrawerItem(

 icon = {

 Icon(

 painter = painterResource(item.icono),

 contentDescription = item.nombre

)

 },

 label = { Text(item.nombre) },

 selected = item.index == selecteItemState.index,

 onClick = { onItemSelected(item) },

 modifier = Modifier.padding(NavigationDrawerItemDefaults.ItemPadding)

)

 }

 }

}

36/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Hoja desplegable inferior (Bottom Sheet)
Enlaces de interés de Bottom Sheets

Material 3 Jetpack Compose: BottomSheetScaffold
Material 3 Jetpack Compose: rememberBottomSheetScaffoldState
Material 3 Jetpack Compose: ModalBottomSheet
Material 3 Jetpack Compose: rememberModalBottomSheetState
Video Tutorial (Inglés): Philipp Lackner
Vídeo Tutorial (Castellano): Gibrán García

Especificaciones de uso en el sistema de diseño de Material 3:

1. Tenemos dos tipos:
Standard (BottomSheetScaffold): Se usa para mostrar contenido secundario o
adicional que no requiere de la interacción del usuario para continuar con la tarea
principal. Podemos usarlo como componente superior en la jerarquía de nuestra UI y es
preferible usar para la navegación un Navigation Drawer frente a un Bottom App Bar.
En este caso la hoja no se debería ocultar completamente.
Modal (ModalBottomSheet): Se usa para mostrar contenido secundario o adicional que
requiere de la interacción del usuario para continuar con la tarea principal. Puede
ocultarse por completo y activarse con alguna acción en la top app bar o en el contenido
principal.
En este caso la hoja se podrá ocultar completamente.

2. Las hojas desplegables inferiores son un componente versátil que puede contener una
amplia variedad de información y diseños, por ejemplo:

Información adicional con imágenes y media.
Elementos de menú (en diseños de lista o cuadrícula).
Acciones (Modal).
Opciones de filtrado (Modal).
Incluso puede tener diferentes grupos separadas por una línea de separación u
 HorizontalDivider .

En EjemploBottomSheet.kt tenemos un ejemplos de uso de un BottomSheetScaffold , en el cual,
tendremos una lista de elementos y al pulsar sobre uno de ellos el contenido del hoja inferior
mostrará "información adicional" sobre el elemento seleccionado y se expandirá automáticamente
si estuviese colapsado.

Para colapsar, o deseleccionamos el elemento o deslizamos (Swipe) hacia abajo el manejador
de arrastre (Drag Handle) que aparece en la parte superior de la hoja inferior (Bottom Sheet).

37/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#BottomSheetScaffold(kotlin.Function1,androidx.compose.ui.Modifier,androidx.compose.material3.BottomSheetScaffoldState,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.unit.Dp,kotlin.Function0,kotlin.Boolean,kotlin.Function0,kotlin.Function1,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#rememberBottomSheetScaffoldState(androidx.compose.material3.SheetState,androidx.compose.material3.SnackbarHostState)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#ModalBottomSheet(kotlin.Function0,androidx.compose.ui.Modifier,androidx.compose.material3.SheetState,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Shape,androidx.compose.ui.graphics.Color,androidx.compose.ui.graphics.Color,androidx.compose.ui.unit.Dp,androidx.compose.ui.graphics.Color,kotlin.Function0,androidx.compose.foundation.layout.WindowInsets,androidx.compose.material3.ModalBottomSheetProperties,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#rememberModalBottomSheetState(kotlin.Boolean,kotlin.Function1)
https://www.youtube.com/watch?v=VxgWUdOKgtI
https://www.youtube.com/watch?v=MmRpQ_fsM00

Si deseleccionamos un elemento aparecerá un Snackbar gestionado por el BottomSheetScaffold
avisándonos y la hoja inferior ya no emitirá ningún contenido.

Puedes ver un ejemplo de funcionamiento en las siguientes imágenes...

Vamos a definir la función de composición PantallaConBottomSheetScaffold donde usaremos un
 BottomSheetScaffold como componente superior en la jerarquía de nuestra UI. Este componente
nos permite definir un BottomSheetScaffoldState que nos permitirá gestionar 2 cosas:

1. El ciclo de vida de la hoja inferior, así como expandirla y colapsarla a través de métodos de
suspensión.

2. Nos permitirá emitir un Snackbar a través de su propiedad snackbarHostState .

@OptIn(ExperimentalMaterial3Api::class)

@Composable

fun PantallaConBottomSheetScaffold() {

 val comportamientoAnteScrollSup = TopAppBarDefaults.pinnedScrollBehavior()

 val scaffoldState = rememberBottomSheetScaffoldState()

 val scope = rememberCoroutineScope()

 var itemSeleccionadoState: Int? by remember { mutableStateOf(null) }

 val onSeleccionarItem: (Int) -> Unit = {

 itemSeleccionadoState = if (itemSeleccionadoState != it) it else null

 scope.launch {

 if (itemSeleccionadoState == null)

 // Colapsar si ya no hay seleccion.

 scaffoldState.bottomSheetState.show()

 else

 // Expandir ante una nueva selección.

 scaffoldState.bottomSheetState.expand()

 }

 }

6

14

17

38/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

Ya podemos definir el BottomSheetScaffold que tendrá diferentes parámetros y ranuras para
definir el contenido principal:

1. Recibirá el scaffoldState que como hemos comentado controla BottomSheet y Snackbar .
2. Permite emitir una TopBars pero NO BottomBars ni FAB.
3. Podemos definir un SnackbarHost pero su estado debe ser scaffoldState.snackbarHostState .
4. El contenido de la hoja inferior sheetContent se emite a través de una ranura.
5. Otros parámetros de configuración de la hoja inferior como la altura de la hoja inferior, su

forma, etc.

 BottomSheetScaffold(

 scaffoldState = scaffoldState,

 modifier = Modifier.nestedScroll(comportamientoAnteScrollSup.nestedScrollConnect

 topBar = {

 BarraAppSuperiorBottomSheet(comportamientoAnteScrollSup)

 },

 snackbarHost = { SnackbarHost(scaffoldState.snackbarHostState) },

 sheetContent = {

 if (itemSeleccionadoState != null) {

 Text(

 modifier = Modifier.fillMaxWidth().padding(16.dp),

 text = "Item $itemSeleccionadoState seleccionado",

 style = MaterialTheme.typography.titleLarge,

 textAlign = TextAlign.Center

)

 }

 },

 sheetPeekHeight = 45.dp,

 sheetShape = BottomSheetDefaults.ExpandedShape,

 content = { innerPadding ->

 ContenidoPrincipalBottomSheetScaffold(

 itemSeleccionadoState = itemSeleccionadoState,

 onSeleccionarItem = onSeleccionarItem,

 modifier = Modifier.padding(innerPadding)

)

 }

)

}

2

8

17

39/39 PMDM 2º DAM Tema 4.1 - Scaffold Rev. 06/01/2025 IES Doctor Balmis

