Anadir corrutinas e intents a nuestra
agenda

Descargar estos apuntes

Vamos a partir de la solucion del ejercicio 3 del tema 3.6 3_formulario_add_contacto_agenda . Si no
dispones de una solucion del mismo puedes pedirsela al profesor. Una vez copiado vamos a

renombrarlo a 2_intents_agenda

Realizando peticiones al repositorio de forma
sincrona

Paso 1: Modificar el repositorio para que las peticiones sean
asincronas

En primer lugar vamos ha hacer que los métodos en ContactoRepository simulen un retardo
aleatorio entre 0 y 1 segundo. Para ello vamos a crear un método privado retardoAleatorio() que
nos lo genere.

private fun retardoAleatorio() = Thread.sleep((Math.random() * 1000).toLong())
Al introducir este retardo los métodos de CRUD ahora deberan ser asincronos y ejecutarse en el
contexto de un hilo secundario. Para ello vamos a utilizar withContext(Dispatchers.I0) siguiendo

el siguiente esquema.

suspend fun get(): MutableList<Contacto> = withContext(Dispatchers.I0) {
retardoAleatorio()
dao.get().map { it.toContacto() }.toMutableList()

Cambia el resto de métodos de cContactoRepository para que sigan el mismo esquema.

1/4 Ejercicio Intents Agenda


file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/ejercicios/B3_8_Intents_y_contracts/2_intents_agenda.pdf

Paso 2: Modificar los ViewModel para usar peticiones
asincronas

Vamos ahora a modificar .ui.features.formcontacto.ContactoViewModel para que use los métodos
asincronos del repositorio.

fun setContactoState(idContacto: Int) {
viewModelScope.launch {

is ContactoEvent.OnSaveContacto -> {

runBlocking {
if (editandoContactoExistenteState) {
contactoRepository.update(c)
} else {
contactoRepository.insert(c)

% Importante: Fijate que el insert y el update se ejecutan dentro de un bloque
runBlocking . Esto es para crear un contexto de corrutina bloqueante para evitar efectos
colaterales al volver posteriormente a la pantalla de de listar contactos. Esto sucede porque
como esto pude tardar un tiempo, si lo hacemos totalmente asincrono puede suceder que se
cargue la lista antes de la insercién o actualizacidén y no se vea reflejados los cambio. Por eso,
hasta que no termine el proceso no saldremos de la pantalla bloqueado el hilo principal.
Aunque no los vamos aver, usando Flows se solucionara el problema y podremos hacerlo de
forma totalmente asincrona.
También, podriamos utilizar algun tipo de componente que nos indique espera como
CircularProgressIndicator de Material Design.

Vamos ahora a modificar ahora .ui.features.vercontactos.ListaContactosViewModel para que use

los métodos asincronos del repositorio.

Marcaremos como suspendido el método privado getContactos() Y Su llamada en el constructor.
Por esa razén ya no podremos llamarla directamente en la definicion de la propiedad sino en una
funcion init quedando un codigo similar al siguiente.

2/4 Ejercicio Intents Agenda



private var _listaContactosState by mutableStateOf(mutableListOf<ContactoUiState>())
val listaContactosState: List<ContactoUiState>
get() = _listaContactosState

private suspend fun getContactos(): MutableList<ContactoUiState> =
contactoRepository.get().map { it.toContactoUiState() }.toMutablelList()

init {
viewModelScope.launch {
_listaContactosState = getContactos()

Por ultimo, debes realizar las operaciones de borrado y actualizacion de contactos de forma

asincrona en su callback usando viewModelScope.launch { ... }.

Usando intents para llamar, enviar correo y cambiar
el avatar

Paso 1: Cambiar el avatar al anadir o editar un contacto

Siguiendo los pasos vistos en el tema y ayudandonos de las utilidades definidas en
RegistroContratosCompose.kt vamos primero a anadir los permisos necesarios a
AndroidManifest.xml y después vamos a .ui.features.formcontacto.FormContactoScreen Yy en la
funcién de composicidon cabeceraFoto vamos a definir registrar los contratos para hacer las
operaciones definidas en los oOutlinedIconButton para cambiar el avatar.

< Nota: Si ves que no se actualiza el componente ImagenContacto. Posiblemente es porque
no se recompone al cambiar el valor de la propiedad foto . Para solucionarlo puedes usar

remember indicandole que se recompute cuando cambie el valor de foto . Por ejemplo:

val imagenSinFoto = rememberVectorPainter(image = Icons.Filled.Face2)
var painterFoto = remember(foto) {
foto?.let { BitmapPainter(it) } ?: imagenSinFoto

3/4 Ejercicio Intents Agenda



Paso 2: Anadir la funcionalidad de llamar y enviar correo

Para ello vamos a .ui.features.vercontactos.ContactoListItem donde definimos la tarjeta donde

se muestran en la lista los datos de un contacto.

Fijate que en la funcidon de composicion AccionesContacto donde aparecen los botones de icono

con las posibles acciones a realizar sobre el contacto seleccionado nos faltan por definir dos
callbacks para las acciones de llamar onLlamarClicked Yy enviar correo onCorreoClicked .

Siguiendo los pasos vistos en el tema y ayudandonos de las utilidades definidas en
RegistroContratosCompose.kt vamos a definir dichos callbacks.

4/4 Ejercicio Intents Agenda



