

1/4 Ejercicio Intents Agenda

Añadir corrutinas e intents a nuestra
agenda
Descargar estos apuntes

Vamos a partir de la solución del ejercicio 3 del tema 3.6 3_formulario_add_contacto_agenda . Si no
dispones de una solución del mismo puedes pedírsela al profesor. Una vez copiado vamos a
renombrarlo a 2_intents_agenda

Realizando peticiones al repositorio de forma
síncrona

Paso 1: Modificar el repositorio para que las peticiones sean
asíncronas
En primer lugar vamos ha hacer que los métodos en ContactoRepository simulen un retardo
aleatorio entre 0 y 1 segundo. Para ello vamos a crear un método privado retardoAleatorio() que
nos lo genere.

private fun retardoAleatorio() = Thread.sleep((Math.random() * 1000).toLong())

Al introducir este retardo los métodos de CRUD ahora deberán ser asíncronos y ejecutarse en el
contexto de un hilo secundario. Para ello vamos a utilizar withContext(Dispatchers.IO) siguiendo
el siguiente esquema.

suspend fun get(): MutableList<Contacto> = withContext(Dispatchers.IO) {
 retardoAleatorio()
 dao.get().map { it.toContacto() }.toMutableList()
}

Cambia el resto de métodos de ContactoRepository para que sigan el mismo esquema.

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/ejercicios/B3_8_Intents_y_contracts/2_intents_agenda.pdf

2/4 Ejercicio Intents Agenda

Paso 2: Modificar los ViewModel para usar peticiones
asíncronas
Vamos ahora a modificar .ui.features.formcontacto.ContactoViewModel para que use los métodos
asíncronos del repositorio.

fun setContactoState(idContacto: Int) {
 viewModelScope.launch {
 ...
 }
}

 ...
 is ContactoEvent.OnSaveContacto -> {
 ...
 runBlocking {
 if (editandoContactoExistenteState) {
 contactoRepository.update(c)
 } else {
 contactoRepository.insert(c)
 }
 }
 ...
 }
 ...

✋ Importante: Fíjate que el insert y el update se ejecutan dentro de un bloque
 runBlocking . Esto es para crear un contexto de corrutina bloqueante para evitar efectos
colaterales al volver posteriormente a la pantalla de de listar contactos. Esto sucede porque
cómo esto pude tardar un tiempo, si lo hacemos totalmente asíncrono puede suceder que se
cargue la lista antes de la inserción o actualización y no se vea reflejados los cambio. Por eso,
hasta que no termine el proceso no saldremos de la pantalla bloqueado el hilo principal.
Aunque no los vamos aver, usando Flows se solucionará el problema y podremos hacerlo de
forma totalmente asíncrona.
También, podríamos utilizar algún tipo de componente que nos indique espera como
 CircularProgressIndicator de Material Design.

Vamos ahora a modificar ahora .ui.features.vercontactos.ListaContactosViewModel para que use
los métodos asíncronos del repositorio.

Marcaremos como suspendido el método privado getContactos() y su llamada en el constructor.
Por esa razón ya no podremos llamarla directamente en la definición de la propiedad sino en una
función init quedando un código similar al siguiente.

3/4 Ejercicio Intents Agenda

private var _listaContactosState by mutableStateOf(mutableListOf<ContactoUiState>())
val listaContactosState: List<ContactoUiState>
 get() = _listaContactosState

private suspend fun getContactos(): MutableList<ContactoUiState> =
contactoRepository.get().map { it.toContactoUiState() }.toMutableList()

init {
 viewModelScope.launch {
 _listaContactosState = getContactos()
 }
}

Por último, debes realizar las operaciones de borrado y actualización de contactos de forma
asíncrona en su callback usando viewModelScope.launch { ... } .

Usando intents para llamar, enviar correo y cambiar
el avatar

Paso 1: Cambiar el avatar al añadir o editar un contacto
Siguiendo los pasos vistos en el tema y ayudándonos de las utilidades definidas en
 RegistroContratosCompose.kt vamos primero a añadir los permisos necesarios a
 AndroidManifest.xml y después vamos a .ui.features.formcontacto.FormContactoScreen y en la
función de composición CabeceraFoto vamos a definir registrar los contratos para hacer las
operaciones definidas en los OutlinedIconButton para cambiar el avatar.

📌 Nota: Si ves que no se actualiza el componente ImagenContacto. Posiblemente es porque
no se recompone al cambiar el valor de la propiedad foto . Para solucionarlo puedes usar
 remember indicándole que se recompute cuando cambie el valor de foto . Por ejemplo:

val imagenSinFoto = rememberVectorPainter(image = Icons.Filled.Face2)
var painterFoto = remember(foto) {
 foto?.let { BitmapPainter(it) } ?: imagenSinFoto
}

4/4 Ejercicio Intents Agenda

Paso 2: Añadir la funcionalidad de llamar y enviar correo
Para ello vamos a .ui.features.vercontactos.ContactoListItem donde definimos la tarjeta donde
se muestran en la lista los datos de un contacto.

Fíjate que en la función de composición AccionesContacto donde aparecen los botones de icono
con las posibles acciones a realizar sobre el contacto seleccionado nos faltan por definir dos
callbacks para las acciones de llamar onLlamarClicked y enviar correo onCorreoClicked .

Siguiendo los pasos vistos en el tema y ayudándonos de las utilidades definidas en
 RegistroContratosCompose.kt vamos a definir dichos callbacks.

