
Aplicando Hilt a Login
Descargar estos apuntes

Vamos a aplicar la Inyección de dependencia explicada en el tema, al ejercicio de Login de la
entrega de ejercicios anterior. Debes tener en cuenta que si no has usado el proyecto base
como base de Login, es posible que ocurran errores al añadir las dependencias y los
plugins.

Como se ve en los apuntes tendremos que añadir los plugins necesarios tanto a gradle del
proyecto como al de aplicación. Ademas de descomentar las variables afectadas en el archivo
 libs.versions.toml De forma que:

En libs.versions.toml descomentaremos:

dagger-hilt-android = { ... }

dagger-hilt-android-compiler = { ... }

androidx-hilt-navigation-compose = { ... }

En el build.gradle.kts raíz del proyecto:

plugins {

 ...

 alias(libs.plugins.devtools.ksp) apply false

 alias(libs.plugins.com.google.dagger) apply false

En el build.gradle.kts del la app:

plugins {

 ...

 alias(libs.plugins.devtools.ksp)

 alias(libs.plugins.com.google.dagger)

}

En las dependencias de build.gradle.kts del la app:

1/3 PMDM 2º DAM Tema 3 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/ejercicios/B3_5_Hilt/1_login.pdf

android {

 ...

dependencies {

 ...

 implementation(libs.dagger.hilt.android)

 implementation(libs.androidx.hilt.navigation.compose)

 ksp(libs.dagger.hilt.android.compiler)

 kspAndroidTest(libs.dagger.hilt.android.compiler)

}

IMPORTANTE!! No olvides sincronizar

A partir de ahí tendremos que seguir los siguientes pasos:

1. Deberemos añadir la clase Application como ya hemos hecho en otras ocasiones, pero esta
vez le tendremos que agregar la anotación @HiltAndroidApp

2. Añadiremos la anotación @AndroidEntryPoint a la MainActivity.
3. El siguiente paso sería exponer la inyección de dependencia de los objetos que se inyectan

en los constructores, donde las necesitemos, en nuestro caso en el repositorio
UsuarioRepository del objeto de tipo UsuarioDaoMock.

class UsuarioRepository @Inject constructor(

private val proveedorUsuarios: UsuarioDaoMock)

4. Ahora pasaremos a definir la clase con los métodos proveedores de las instancias, para ello
crearemos el paquete di en la raiz de nuestro proyecto y dentro crearemos la clase
AppModule, como se explica en los apuntes, no olvides etiquetarla como
 @Module InstallIn(SingletonComponent::class) :

 @Module

 @InstallIn(SingletonComponent::class)

 class AppModule {

 ...

 }

Dentro de esta clase crearemos los métodos proveedores de dependencias, en nuestro
caso solo tenemos un repositorio que debe ser inyectado con un UsuarioDaoMock, por lo que
definiremos el método que provee la instancia a inyectar. Y el proveedor de repositorio al que
se le inyecta la instancia del UsuarioDaoMock

2/3 PMDM 2º DAM Tema 3 IES Doctor Balmis

 @Provides

 @Singleton

 fun provideUsuarioDaoMock():UsuarioDaoMock= UsuarioDaoMock()

 @Provides

 @Singleton

 fun provideUsuarioRepository(

 usuarioDaoMock: UsuarioDaoMock

): UsuarioRepository =

 UsuarioRepository(usuarioDaoMock)

5. Para finalizar nos faltaría etiquetar con @HiltViewModel los ViewModel y en el constructor de
estos inyectaremos mediante Hilt las instancias de los objetos colaboradores (repositorios),
ya no crearemos las instancias de los repositorios dentro del ViewModel.

 @HiltViewModel

 class LoginViewModel @Inject constructor(private val usuarioRepository: UsuarioReposit

3/3 PMDM 2º DAM Tema 3 IES Doctor Balmis

