Aplicando Hilt a Login

Descargar estos apuntes

Vamos a aplicar la Inyecciéon de dependencia explicada en el tema, al ejercicio de Login de la
entrega de ejercicios anterior. Debes tener en cuenta que si no has usado el proyecto base

como base de Login, es posible que ocurran errores al anadir las dependencias y los
plugins.

Como se ve en los apuntes tendremos que afadir los plugins necesarios tanto a gradle del

proyecto como al de aplicacién. Ademas de descomentar las variables afectadas en el archivo
libs.versions.toml De forma que:

En 1libs.versions.toml descomentaremos:

dagger-hilt-android = { ... }
dagger-hilt-android-compiler = { ... }

androidx-hilt-navigation-compose = { ... }

En el build.gradle.kts raiz del proyecto:

plugins {

alias(libs.plugins.devtools.ksp) apply false
alias(libs.plugins.com.google.dagger) apply false

En el build.gradle.kts della app:

plugins {

alias(libs.plugins.devtools.ksp)
alias(libs.plugins.com.google.dagger)

En las dependencias de build.gradle.kts della app:

1/3 PMDM 2° DAM Tema 3 IES Doctor Balmis


file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/ejercicios/B3_5_Hilt/1_login.pdf

android {

dependencies {

implementation(libs.dagger.hilt.android)
implementation(libs.androidx.hilt.navigation.compose)
ksp(libs.dagger.hilt.android.compiler)
kspAndroidTest(libs.dagger.hilt.android.compiler)

IMPORTANTE!! No olvides sincronizar

A partir de ahi tendremos que seguir los siguientes pasos:

2/3

1. Deberemos afnadir la clase Application como ya hemos hecho en otras ocasiones, pero esta

vez le tendremos que agregar la anotacion @HiltAndroidApp

. Afadiremos la anotacion @AndroidEntryPoint a la MainActivity.
. El siguiente paso seria exponer la inyeccion de dependencia de los objetos que se inyectan

en los constructores, donde las necesitemos, en nuestro caso en el repositorio

UsuarioRepository del objeto de tipo UsuarioDaoMock.

class UsuarioRepository @Inject constructor(

private val proveedorUsuarios: UsuarioDaoMock)

. Ahora pasaremos a definir la clase con los métodos proveedores de las instancias, para ello

crearemos el paquete di en la raiz de nuestro proyecto y dentro crearemos la clase
AppModule, como se explica en los apuntes, no olvides etiquetarla como

@Module InstallIn(SingletonComponent::class) :

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

Dentro de esta clase crearemos los métodos proveedores de dependencias, en nuestro
caso solo tenemos un repositorio que debe ser inyectado con un UsuarioDaoMock, por lo que
definiremos el método que provee la instancia a inyectar. Y el proveedor de repositorio al que
se le inyecta la instancia del UsuarioDaoMock

PMDM 2° DAM Tema 3 IES Doctor Balmis



@Provides
@Singleton

fun provideUsuarioDaoMock():UsuarioDaoMock= UsuarioDaoMock()

@Provides
@Singleton
fun provideUsuarioRepository(
usuarioDaoMock: UsuarioDaoMock
): UsuarioRepository =

UsuarioRepository(usuariobDaoMock)

5. Para finalizar nos faltaria etiquetar con @HiltviewModel los ViewModel y en el constructor de
estos inyectaremos mediante Hilt las instancias de los objetos colaboradores (repositorios),
ya no crearemos las instancias de los repositorios dentro del ViewModel.

@HiltViewModel

class LoginViewModel @Inject constructor(private val usuarioRepository: UsuarioReposi-

3/3 PMDM 2° DAM Tema 3 IES Doctor Balmis



