
Aplicando ViewModel a Login
Descargar estos apuntes

Ejercicio
En el siguiente ejercicio partiremos del ejercicio 3 del Tema 3.3 donde definíamos los elementos composables para crear el LoginScreen. Ahora
vamos a ir un paso más allá y añadir la clases necesarias para llevar la lógica de la aplicación al ViewModel además de incluir una fuente de
datos que no teníamos en el ejercicio del que partimos. Para ello vamos a añadir toda la estructura de paquetes correspondientes a data y a
model necesarios para seguir con la arquitectura que hemos propuesto en este curso.

Paquete Data y Model

Como ya hemos visto en ejercicios anteriores, debemos separar las fuentes de datos de la lógica de empresa, por
lo que nos crearemos los paquetes necesarios y que ya conocemos sobradamente, con la data class
UsuarioMock (login y password de tipo string), con la clase UsuarioDaoMock (en la que tendremos una lista de
usuarios con algunos usuarios para pruebas), la clase para el repository y la clase para los mapeados de datos.
Además, dentro del paquete models crearemos nuestra clase modelo Usuario con las mismas propiedades que
UsuarioMock.

Android
[com.pmdm.login]
[data]
[mocks.usuario]
UsuarioDaoMock
UsuarioMock

UsuarioRepository
RepositoryConverter.kt
[models]
Usuario
[ui]
[utilities]

LoginApplication.kt

1/2 PMDM 2º DAM Tema 3 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/ejercicios/B3_4_ViewModel/3_login.pdf
file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/assets/codigo/ejercicios3_4/ejercicio3/3_Login_v0_recurso.zip

Paquete Ui

Dentro del paquete ui.features.login vamos a añadir las clases necesarias para crear la lógica de negocia con la
ayuda de ViewModel. Para ello comenzaremos creando la interface sellada LoginEnvent que permite centralizar
los eventos que ocurren en el Screen, por ejemplo:

LoginChanged
PasswordChanged
OnClickLogearse

En la data class LoginUiState añadiremos el boolean estaLogeado a las propiedades del modelo Usuario.

Vomos a crear una clase que se utilizará para encapsular los states de las validaciones y la llamaremos data class
ValidacionLoginUiState que heredará de la interfaz Validacion que ya conocemos de ejercicios anteriores, y que
para que tengáis una primera aproximación os pasamos el código:

Android
[com.pmdm.login]

[data]
[models]
[ui]

[composables]
CheckBoxCommon.kt
FieldTextCommon.kt
FilterChipCommon.kt
[features]

[login]
LoginEvent
LoginScreen
LoginUiState
LoginViewModel
ValidacionLoginUiState

[views]
MainActivity

LoginApplication.kt

data class ValidacionLoginUiState(

 val validacionLogin: Validacion = object : Validacion {},

 val validacionPassword: Validacion = object : Validacion {},

) : Validacion {

 override val hayError: Boolean

 get() = validacionLogin.hayError || validacionPassword.hayError

 override val mensajeError: String?

 get() = if (validacionLogin.hayError) validacionLogin.mensajeError

 else if (validacionPassword.hayError) validacionPassword.mensajeError

 else ""

}

💡 Tips: Tendremos que modificar la función LoginScreen para que tenga la siguiente entrada de argumentos:
 fun LoginScreen(usuarioUiState: LoginUiState, validacionLoginUiState: ValidacionLoginUiState, onLoginEvent: (LoginEvent) -> U

Y por último crearemos la clase estrella de este ejercicio LoginViewModel, en la que tendremos la lógica de la aplicación y que nos hará de
nexo entre las fuentes de datos y la interface de usuario. Recuerda que deberemos crear un objeto de tipo UsuarioRepository para acceder a la
fuente de datos y poder usar las funciones CRUD de esta. En este ejercicio será mas bien de consulta, ya que solo podremos logearnos con
alguno de los usuarios que ya tengamos en nuestros datos (no tenemos funcionalidad para crear nuevos usuarios).
En esta clase además, deberemos tener todas las variables StateFul necesarias, para seguir la lógica de state-hoisting (elevación de estado)
vista en los temas. Y el método onLoginEvent para gestionar los eventos.
Además será aconsejable crear dos métodos validaPassword y validaLogin que se encargarán de cambiar los estados de la validación para las
entradas de los TextField.

⚠️ Aviso: Para mostrar los avisos de entrar a la aplicación si hemos introducido un login y password correcto o en caso incorrecto indicar que
no existe el login o password. Podemos usar un layout Box que envuelva todo nuestro contenido y un texto alineado en la parte inferior que se
muestre o no con el mensaje correspondiente, puede desaparecer cuando detecte algún cambio en los TextField .

2/2 PMDM 2º DAM Tema 3 IES Doctor Balmis

