Aplicando ViewModel a Login

Descargar estos apuntes

Ejercicio
En el siguiente ejercicio partiremos del ejercicio 3 del Tema 3.3 donde definiamos los elementos composables para crear el LoginScreen. Ahora
vamos a ir un paso mas alla y afadir la clases necesarias para llevar la I6gica de la aplicacion al viewModel ademas de incluir una fuente de

datos que no teniamos en el ejercicio del que partimos. Para ello vamos a afiadir toda la estructura de paquetes correspondientes a data y a
model necesarios para seguir con la arquitectura que hemos propuesto en este curso.

Paquete Data y Model
[Android_[v]

. =m[com.pmdm.login]
Como ya hemos visto en ejercicios anteriores, debemos separar las fuentes de datos de la légica de empresa, por -+ wm[data]
1 m[mocks.usuario]

lo que nos crearemos los paquetes necesarios y que ya conocemos sobradamente, con la data class t UsuarioDaoMock

UsuarioMock (login y password de tipo string), con la clase UsuarioDaoMock (en la que tendremos una lista de U;Jusaur?;szﬂp%c;mry
usuarios con algunos usuarios para pruebas), la clase para el repository y la clase para los mapeados de datos. RepositoryConverter.kt
Ademas, dentro del paquete models crearemos nuestra clase modelo Usuario con las mismas propiedades que 71"_{;23‘:?:2]
UsuarioMock. - m[ui]

[~ m[utilities]

— LoginApplication.kt

1/2 PMDM 2° DAM Tema 3 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/ejercicios/B3_4_ViewModel/3_login.pdf
file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/assets/codigo/ejercicios3_4/ejercicio3/3_Login_v0_recurso.zip

Paquete Ui

Dentro del paquete ui.features.login vamos a afnadir las clases necesarias para crear la l6gica de negocia con la [Android_[v]
m[com.pmdm.login]

ayuda de ViewModel. Para ello comenzaremos creando la interface sellada LoginEnvent que permite centralizar t =[data]
los eventos que ocurren en el Screen, por ejemplo: &[models]
7 m[ui]
[

e LoginChanged CheckBoxCommon.kt
FieldTextCommon.kt

E—'[composables]
FilterChipCommon.kt

+ PasswordChanged

¢ OnClickLogearse *L‘-‘[_f_eatu'res]
1 m[login]
LoginEvent
En la data class LoginUiState afadiremos el boolean estalLogeado a las propiedades del modelo Usuario. LoginScreen

LoginUiState
LoginViewModel

Vomos a crear una clase que se utilizara para encapsular los states de las validaciones y la llamaremos data class ValidacionLoginUiState
. . . . z q q g q oA a — m[views

ValidacionLoginUiState que heredara de la interfaz Validacion que ya conocemos de ejercicios anteriores, y que L',[\;;inWAlﬁvity

para que tengais una primera aproximaciéon os pasamos el codigo: — LoginApplication.kt

data class ValidacionLoginUiState(
val validacionLogin: Validacion = object : Validacion {},
val validacionPassword: Validacion = object : Validacion {},
) : Vvalidacion {
override val hayError: Boolean
get() = validacionLogin.hayError || validacionPassword.hayError
override val mensajeError: String?
get() = if (validacionLogin.hayError) validacionLogin.mensajeError

else if (validacionPassword.hayError) validacionPassword.mensajeError

allem OO
}
Tips: Tendremos que modificar la funcién LoginScreen para que tenga la siguiente entrada de argumentos:
fun LoginScreen(usuarioUiState: LoginUiState, validacionlLoginUiState: ValidacionlLoginUiState, onLoginEvent: (LoginEvent) ->

Y por ultimo crearemos la clase estrella de este ejercicio LoginViewModel, en la que tendremos la logica de la aplicacién y que nos hara de
nexo entre las fuentes de datos y la interface de usuario. Recuerda que deberemos crear un objeto de tipo UsuarioRepository para acceder a la
fuente de datos y poder usar las funciones CRUD de esta. En este ejercicio sera mas bien de consulta, ya que solo podremos logearnos con
alguno de los usuarios que ya tengamos en nuestros datos (no tenemos funcionalidad para crear nuevos usuarios).

En esta clase ademas, deberemos tener todas las variables StateFul necesarias, para seguir la légica de state-hoisting (elevacion de estado)
vista en los temas. Y el método onLoginEvent para gestionar los eventos.

Ademas sera aconsejable crear dos métodos validaPassword y validaLogin que se encargaran de cambiar los estados de la validacion para las
entradas de los TextField.

i, Aviso: Para mostrar los avisos de entrar a la aplicacién si hemos introducido un login y password correcto o en caso incorrecto indicar que
no existe el login o password. Podemos usar un layout Box que envuelva todo nuestro contenido y un texto alineado en la parte inferior que se
muestre o no con el mensaje correspondiente, puede desaparecer cuando detecte alglin cambio en los TextField .

212

PMDM 2° DAM Tema 3 IES Doctor Balmis

