Definiendo ButtonLike recetas

Descargar estos apuntes

Ejercicio

Vamos a anadir al ejercicio card donde se visualiza la
informacion de una receta la I6gica para elevar el estado
al viewModel . En el preview se muestra el card
siguiendo los convenios de Material Design 3 (M3).

Magdalemas de la abuela

Fabulosas magdalenas con pepitas de chocolate y
un suave sabor a naranja.

Carlos Arguifano Q
Otro usuario pulsa Like

Siguiendo la arquitectura propuesta para nuestras aplicaciones, la estructura de paquetes y

contenido de los mismos con sus correspondientes archivos .kt es la siguiente:

S v CBapp
> manifests
v IEVE]
v [E3 com.pmdm.recetas
v [ data
v (@ mocks
= RecipeDaoMock
= RecipeMock
= RecipeRepository
[ RepositoryConverter.kt
v [E3 models
= Recipe
v i
v [&J composables.buttonlike
[X ButtonLike.kt

v [ features.recipe

z RecipeEvent
[X RecipeScreen.kt
= RecipeUiState
= RecipeViewModel
> [ theme
[X MainActivity.kt
=z MyApplication

1/4 PMDM 2° DAM Tema 3 IES Doctor Balmis



file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/ejercicios/B3_4_ViewModel/2_Definiendo_ButtonLike_Recetas.pdf

2/4

Paso 1: Definiendo el model

En el paquete com.pmdm.recetas vamos a crear el paquete models donde segun la
arquitectura propuesta en el curso, se definiran los modelos de datos de nuestra app . Dentro
crearemos el fichero Recipe.kt

data class Recipe(
val name: String,
val description: String,
val chef: String,
val photo: ImageBitmap?,
val likes: Int,

val islLiked: Boolean

Estamos simplificando bastante la solucién del ejercicio, por eso vamos a suponer que el
atributo isLiked pertenece al objeto receta. En una aplicacion mas desarrollada este atributo

perteneceria a una relacion existente entre el usuario concreto y la receta.

Paso 2: Definiendo el paquete data.mocks

En el paquete com.pmdm.recetas.data.mocks vamos a crear dos archivos: RecipeDaoMock.kt

(una class )y RecipeMock.kt (un data class ).

La clase RecipebaoMock.kt sSolo contendra una objeto de tipo receta con los métodos que me
permitiran obtener la receta y actualizar la receta (cuando se modifique a través de la accion
del ButtonLike ):

PMDM 2° DAM Tema 3 IES Doctor Balmis



class RecipeDaoMock {

private var recipe =
RecipeMock(
name = "Magdalenas de la abuela",
description = "Fabulosas magdalenas con pepitas de chocolate y un suave sabo
chef = "Carlos Arguinano",
photo = null,
8,
isLiked = false

likes

fun get(): RecipeMock =recipe
fun updateRecipe(recipeRemote:RecipeMock){
recipe=recipeRemote

El 'data class' RecipeMock.kt es similar en su definicidn a la clase de nuestro modelo

Recipe.kt .

Dentro del paquete data , pero no dentro de data.mocks , definimos los archivos

RecipeRepository.kt (una class )y RepositoryCoverter.kt .

Con los conocimientos adquiridos en ejercicios previos debéis poder definir estos dos
elementos.

Paso 3: Definiendo el estado de la vista

Para manejar el estado de nuestra vista definiremos el archivo RecipeUiState.kt :

data class RecipeUiState(
val recipeName: String,
val recipeDescription: String,
val recipeChef: String,
var recipeFoto: ImageBitmap?,
val numberOfLikes: Int,

val ilLike: Boolean

Con todos estos elementos definidos, es el momento de que definais el viewModel .

3/4 PMDM 2° DAM Tema 3 IES Doctor Balmis



A tener en cuenta en esta definicion es que a través de RecipeEvent vamos a gestionar todos
los eventos sobre el card . En nuestro caso solo sera uno, pero mantenemos esta estructura
de funcionamiento, que ya hemos utilizado en ejemplos anteriores, para fijar en nuestra mente
esta forma de procesar eventos.

4/4

PMDM 2° DAM Tema 3 IES Doctor Balmis




