
Definiendo ButtonLike recetas
Descargar estos apuntes

Ejercicio

Vamos a añadir al ejercicio Card donde se visualiza la
información de una receta la lógica para elevar el estado
al ViewModel . En el preview se muestra el card
siguiendo los convenios de Material Design 3 (M3).

Siguiendo la arquitectura propuesta para nuestras aplicaciones, la estructura de paquetes y
contenido de los mismos con sus correspondientes archivos .kt es la siguiente:

1/4 PMDM 2º DAM Tema 3 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B3_Capa_UI/ejercicios/B3_4_ViewModel/2_Definiendo_ButtonLike_Recetas.pdf

Paso 1: Definiendo el model

En el paquete com.pmdm.recetas vamos a crear el paquete models donde según la
arquitectura propuesta en el curso, se definirán los modelos de datos de nuestra app . Dentro
crearemos el fichero Recipe.kt

data class Recipe(

 val name: String,

 val description: String,

 val chef: String,

 val photo: ImageBitmap?,

 val likes: Int,

 val isLiked: Boolean

)

Estamos simplificando bastante la solución del ejercicio, por eso vamos a suponer que el
atributo isLiked pertenece al objeto receta. En una aplicación más desarrollada este atributo
pertenecería a una relación existente entre el usuario concreto y la receta.

Paso 2: Definiendo el paquete data.mocks

En el paquete com.pmdm.recetas.data.mocks vamos a crear dos archivos: RecipeDaoMock.kt
(una class) y RecipeMock.kt (un data class).

La clase RecipeDaoMock.kt solo contendrá una objeto de tipo receta con los métodos que me
permitirán obtener la receta y actualizar la receta (cuando se modifique a través de la acción
del ButtonLike):

2/4 PMDM 2º DAM Tema 3 IES Doctor Balmis

class RecipeDaoMock {

 //solo tengo una receta

 private var recipe =

 RecipeMock(

 name = "Magdalenas de la abuela",

 description = "Fabulosas magdalenas con pepitas de chocolate y un suave sabo

 chef = "Carlos Arguiñano",

 photo = null,

 likes = 8,

 isLiked = false

)

 fun get(): RecipeMock =recipe

 fun updateRecipe(recipeRemote:RecipeMock){

 recipe=recipeRemote

 }

}

El 'data class' RecipeMock.kt es similar en su definición a la clase de nuestro modelo
 Recipe.kt .

Dentro del paquete data , pero no dentro de data.mocks , definimos los archivos
 RecipeRepository.kt (una class) y RepositoryCoverter.kt .

Con los conocimientos adquiridos en ejercicios previos debéis poder definir estos dos
elementos.

Paso 3: Definiendo el estado de la vista

Para manejar el estado de nuestra vista definiremos el archivo RecipeUiState.kt :

data class RecipeUiState(

 val recipeName: String,

 val recipeDescription: String,

 val recipeChef: String,

 var recipeFoto: ImageBitmap?,

 val numberOfLikes: Int,

 val iLike: Boolean

)

Con todos estos elementos definidos, es el momento de que defináis el ViewModel .

3/4 PMDM 2º DAM Tema 3 IES Doctor Balmis

A tener en cuenta en esta definición es que a través de RecipeEvent vamos a gestionar todos
los eventos sobre el Card . En nuestro caso solo será uno, pero mantenemos esta estructura
de funcionamiento, que ya hemos utilizado en ejemplos anteriores, para fijar en nuestra mente
esta forma de procesar eventos.

4/4 PMDM 2º DAM Tema 3 IES Doctor Balmis

