Tema 3.8 - Intents y Contracts

Descargar estos apuntes pdf o html

indice

» [ntroduccién
V¥ Tipos de Intents
V¥ Intents Explicitos
= Abriendo otra aplicacion desde nuestra aplicacion
¥ Intents Implicitos
= Enviar un correo electronico escogiendo la aplicacion
= Abrir una localizacion en Google Maps
» Obtener el resultado de un Intent registrando un 'contrato'
= Registrando contratos dentro de un @Composable
¥ Gestion de Permisos
» Gestionar intent implicito de llamada telefénica
= Gestionar intent implicito para hacer un foto
» Gestionar registro hacer foto con TakePicture
» Gestionar registro para obtener una imagen de la galeria
= Conclusion

= ®& Caso de estudio: Obtener el teléfono de un contacto

1/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_8_intents_y_contracts.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_8_intents_y_contracts.html

Introduccion

e Intents
o Documentacion oficial: Intents
o Documentacion oficial: Interactuando con otras Apps
o Video Intents: Philipp Lackner (Inglés)
» Permissions
o Documentacion oficial: Permisos
o Video Permisos 1: Android Developers
o Video Permisos 2: Android Developers
o Video Permisos: Philipp Lackner (Inglés)
* Permissions in Compose con Accompanist Library (Experimental)
o Video: Martin Kiperszmid (Castellano)
o Video: Stevdza-San (Inglés)
o Documentacién libreria: Accompanist

Una Intent es un objeto de mensajeria que puedes usar para solicitar una accion de otro
componente de una app. Si bien las intents facilitan la comunicacién entre componentes de varias

formas, existen tres casos de uso principales:

1. Iniciar una actividad de la propia app o de otra app.
2. Iniciar un servicio.
3. Transmitir una emision o broadcast.

Nosotros en este tema vamos a centrarnos en el primer caso de uso que es, Iniciar una

actividad. Como se puede deducir es una funcionalidad del API de Android que nos permite iniciar
una actividad desde otra actividad incluso si la actividad pertenece a otra aplicacion diferente como
por ejemplos hacer una llamada telefénica, enviar un correo electronico, abrir una pagina web, etc.

= Resumen

Por expresarlo con otras palabras, podemos decir que una Intent es un objeto que
proporciona en su interior una descripcion de la operacidon que queremos 'intentar' ya sea de
forma implicita o explicita y ademas podemos pasarle datos que se usaran en la operacion.
Cuidado puede parecernos que es la intent la que lanza una actividad pero no es asi,
contiene solo la descripcion de la operacion y los datos necesarios para realizarla.

¢’ Dercarga: El proyecto con el codigo de los ejemplos de este tema en el siguiente enlace

2/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/guide/components/intents-filters?hl=es-419
https://developer.android.com/training/basics/intents?hl=es-419
https://www.youtube.com/watch?v=2hIY1xuImuQ
https://developer.android.com/guide/topics/permissions/overview?hl=es-419
https://www.youtube.com/watch?v=zCAx4WZ98rs
https://www.youtube.com/watch?v=x38dYUm7tCY
https://www.youtube.com/watch?v=D3JCtaK8LSU
https://www.youtube.com/watch?v=imFJZ4Kbv_g
https://www.youtube.com/watch?v=uO6igFsa5y0
https://google.github.io/accompanist/permissions/
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_8/intents_ejemplos_apuntes_recurso.zip

3/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Tipos de Intents

Intents Explicitos

Especifican qué aplicacion las administrara, ya sea incluyendo el nombre del paquete de la app
de destino o el nombre de clase del componente completamente calificado. Normalmente, el
usuario usa una intent explicita para iniciar un componente en su propia aplicacion porque conoce
el nombre de clase de la actividad o el servicio que desea iniciar. Por ejemplo, puedes utilizarla
para iniciar una actividad nueva en respuesta a una accion del usuario o iniciar un servicio para

descargar un archivo en segundo plano.

Abriendo otra aplicacion desde nuestra aplicacion

Para abrir otra aplicacion desde nuestra aplicacion, debemos crear un objeto Intent y especificar el
nombre del paquete de la aplicacidon de destino. Por ejemplo, si queremos abrir la aplicacion de
Chrome desde nuestra aplicacion, debemos crear un objeto Intent y especificar el nombre del
paquete de la aplicacidon de destino que en este caso es com.android.chrome . Para ello usaremos
el método setPackage() del objeto Intent. Una vez creado el objeto Intent lo pasaremos como
parametro al método startActivity() . Como el método startActivity() es un meétodo de la
clase Context, necesitamos un objeto de esta clase para poder llamar al método. Para ello
usaremos el LocalContext.current que nos proporciona Jetpack Compose. El cddigo seria el
siguiente...

4/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

// IntentExplicito.kt

fun Context.openChrome() {
// Creamos un Intent con la accion ACTION_MAIN
// que es abrir una actividad principal de la aplicacidén Chrome.
Intent(Intent.ACTION_MAIN).also {
it. package® = "com.android.chrome"

// Lanza ActivityNotFoundException si no esta instalada la aplicacion.
startActivity(it)

}
@Composable

fun IntentOpenChrome() {
val context = LocalContext.current
Box(modifier = Modifier.fillMaxSize(),
contentAlignment = androidx.compose.ui.Alignment.Center) {
Button(onClick = { context.openChrome() }) {
Text(text = "Open Chrome")

Saber el nombre del paquete de la app de destino

Para saber el nombre del paquete de la app de destino, podemos usar la herramienta adb.exe
(Android Debug Bridge) instalada junto al SDK de Android. Para ello debemos abrir una consola de
comandos e ir a la carpeta platform-tools donde esté instalado el SDK para nuestro usuario. (Ej:
C:\Users\alumno\AppData\Local\Android\Sdk\platform-tools>). Otras opcion es afadir esta carpeta
al Path de nuestro usuario para que podamos ejecutar los comandos desde cualquier ubicacion,
incluso desde la ventana del terminal de AndroidStudio.

Una vez tenemos acceso a la herramienta adb.exe seguiremos estos pasos:

1. Arrancaremos la maquina virtual de nuestro emulador de Android desde el mismo Android
Studio o desde un terminal si sabemos el nombre de la maquina. Por ejemplo, si nuestro
emulador se llama Pixel_3a_API_33 ejecutaremos el comando:

C:\Users\alumno\AppData\Local\Android\Sdk\tools\emulator.exe -avd Pixel 3a_API 33

2. Con el emulador arrancado, ejecutaremos el comando adb shell para acceder a la consola
del emulador. Por ejemplo:

5/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/studio/command-line/adb?hl=es-419

C:\Users\alumno\AppData\Local\Android\Sdk\platform-tools>adb shell

emubdx:/ $

3. Ahora ejecutaremos el comando pm list packages para listar todos los paquetes de

aplicaciones instaladas en el emulador y si queremos buscar una aplicacion en concreto

podemos usar el comando grep . Por ejemplo, si queremos saber el nombre del paquete de la

app de Chrome, ejecutaremos el comando:

emu6dx:/ $ pm list packages | grep chrome

package:com.android.chrome

emubdx:/ $

Otra forma mas sencilla es a través de Android
Studio. Una vez arrancado el emulador,
abriremos la ventana Device File Explorer
situado a la derecha como se muestra en la
imagen de ejemplo y navegaremos hasta la
carpeta data/data donde se encuentran todas
las aplicaciones instaladas en el emulador. Ahora
solo tenemos que buscar la carpeta de la
aplicacién que nos interese que se corresponde
con el nombre del paquete de la aplicacion.

Device Explorer

Pixel 3a API 33 Android 13.0 ("Tiramisu")

Files

Name

Processes

[acct

[apex

[cache
[J config
Od

> [0 app

>
>
> [bin
>
>
>

b

[T android

[0 android.auto_generated_rro_produ
[android.auto_generated_rro_vendo
[J com.android.backupconfirm

[J com.android.bips

[com.android.bips.auto_generated_|
[J com.android.bluetooth

[0 com.android.bluetoothmidiservice

[com.android.bookmarkprovider

[com.android.calllogbackup

[J com.android.camera2

[com.android.cameraextensions

[com.android.carrierconfig

[J com.android.carrierconfig.auto_ger
[com.android.carrierconfig.auto_ger
[0 com.android.carrierdefaultapp

[J com.android.cellbroadcastreceiver

[J com.android.certinstaller

(2]

[com.android.chrome |

6/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

[com.android.companiondeviceman;
[J com.android.cts.ctsshim
[com.android.cts.priv.ctsshim

IES Doctor Balmis

Permissions

drwxr-xr-x
drwxr-xr-x
Irw-r=-r--
drwxrwx---
drwxr-xr-x
Irw-r--r--
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx=-x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx--x
drwxrwx=-x

drwxrwx--x

Size
4 KB
1,2 K
1B
4 KB
0B
178
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB
4 KB

Iy

&

|T1

Intents Implicitos

Son los que mas interesantes para nosotros. Puesto que no siempre sabemos que aplicaciones
vamos a tener instaladas.

No nombran el componente especifico, pero en cambio declaran una accion general para realizar,
lo cual permite que un componente de otra aplicacién la maneje. Por ejemplo, si quieres enviar un
correo electrénico no necesitas saber qué aplicacién de correo electronico tiene el usuario
instalada, simplemente debes enviar una intent implicita para que cualquier aplicacion de correo
electronico pueda responderla. Es mas, puedes preguntarle al sistema si existe una actividad que
pueda responder a tu intent antes de iniciarla y ofrecerle la posibilidad al usuario de elegir qué

aplicacion usar.

Enviar un correo electronico escogiendo la aplicacion

Veamos un ejemplo de un Intent implicito para solicitar al sistema enviar un correo electrénico
con un texto plano. Ademas, al Intent le pasaremos una serie de parametros como el asunto, el
texto del correo y los destinatarios. Para ello usaremos el método putextra() del objeto Intent. El
codigo seria el siguiente...

Aunque no es necesario, podemos indicar a Android que tipo de intents vamos a usar en nuestra
aplicacion al final de Manifest de la aplicacion con la etiqueta <queries> .

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<queries>
<intent>
<action android:name="android.intent.action.SEND" />
<data android:mimeType="text/plain” />
</intent>
</queries>

</manifest>

7/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

fun Context.sendMail(
correos: Array<String>,
asunto: String,
texto: String,
forzarEleccion: Boolean = false
) {
val intent = Intent(Intent.ACTION_SEND).apply {
type = "text/plain”

putExtra(Intent.EXTRA_EMAIL, correos)
putExtra(Intent.EXTRA SUBJECT, asunto)
putExtra(Intent.EXTRA _TEXT, texto)

val chooser = if (forzarEleccion) {
val title: String = resources.getString(R.string.enviar_correo)
Intent.createChooser(intent, title)

}

else null

if (intent.resolveActivity(packageManager) != null) {
startActivity(chooser ?: intent)

@Composable
fun IntentSendMail() {
val context = LocalContext.current
Box(modifier = Modifier.fillMaxSize(),
contentAlignment = androidx.compose.ui.Alignment.Center) {
Button(onClick = { context.sendMail(

correos = arrayOf("correo@alu.edu.gva.es"),

asunto = "Asunto del correo",
texto = "Texto del correo”
)) A

Text(text = "Send Mail")

8/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Al usar ACTION_SEND con esos parametros. Android nos ofrecera
varias opciones para enviar el correo. Si seleccionamos Gmail +
Always la siguiente vez que queramos enviar un correo, no nos

. - - Share
Realmente el sistema Android busca el componente apropiado

M Gmail

para iniciar comparando el contenido de la intent con los filtros de

= Nearby Share

intents declarados en el archivo de manifiesto de otras aplicaciones

% Bluetooth

en el dispositivo. Si la intent coincide con un filtro de intents, el

sistema inicia ese componente y le entrega el objeto Intent. Si varios

Justonce Always

filtros de intents son compatibles, el sistema muestra un cuadro

de dialogo para que el usuario pueda elegir la aplicacion que se debe
usar.

En nuestro caso, la App debe tener una actividad que acepte los parametros que le pasamos y
tener un filtro similar al siguiente:

<activity android:name=".ClaseQueDefinelLaActividad">
<android:exported="true"> <!-- Necesario para que otras apps puedan usarla -->
<intent-filter>
<action android:name="android.intent.action.SEND" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="text/plain" />
</intent-filter>

</activity>

Puedes consultar la documentacion oficial para mas informacién.

€ Nota: Si no declaras ningun filtro de intent para una actividad, esta solo se puede iniciar
con un intent explicito.

Texlo del corren

Si queremos que el sistema nos pregunte siempre que aplicacion
queremos usar para enviar el correo independientemente de si la
hemos predeterminado o no. Deberemos usar el método

No recommended people o share with

createChooser() del objeto Intent como se ve en el cddigo de
ejemplo.

M 3 & @

Gmail Bluetooth Drive Messages

9/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/intent-filter-element?hl=es-419
https://developer.android.com/guide/topics/manifest/intent-filter-element?hl=es-419
https://developer.android.com/guide/components/intents-filters?hl=es-419#Receiving

Abrir una localizaciéon en Google Maps

Veamos algunos ejemplos mas de Intents implicitos extraidos de la documentacién oficial aqui o
aqui ...

En este caso vamos a visualizar una geolocalizacion y la aplicacion de Maps tiene un filtro que

acepta este tipo de intents. Fijate que en este caso hemos controlado la excepcidn

ActivityNotFoundException que se lanza si no tenemos instalada la aplicacion de maps mostrando
un mensaje temporal.

fun Context.buscakEnMaps(lugar: String) {

val intent = Intent(Intent.ACTION_VIEW).apply {
data = Uri.parse("geo:0,0?g=$lugar")
}

try {
startActivity(intent)

} catch (e: ActivityNotFoundException) {
Toast.makeText(this, "No se puede abrir Maps", Toast.LENGTH_SHORT).show()

@Composable
fun IntentBuscaEnMaps() {

10/30

val context = LocalContext.current
Button(onClick = {
context.buscaEnMaps("I.E.S Doctor Balmis, +Alicante")

H A
Text(text = "Ver Balmis en Maps")

PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/guide/components/intents-common?hl=es-419
https://developer.android.com/training/basics/intents/sending?hl=es-419

Obtener el resultado de un Intent registrando un 'contrato’

Iniciar otra actividad, ya sea dentro de tu app o desde otra, no tiene por qué ser una operacion
unidireccional, también puedes iniciar una actividad y recibir un resultado. Por ejemplo, tu app
puede iniciar una app de camara y recibir la foto tomada como resultado. También puedes
iniciar la app de Contactos para que el usuario seleccione un contacto y, luego, recibir los
detalles correspondientes como resultado.

Deberemos tener en cuenta que:

o El resultado no es inmediato y deberemos definir algun tipo de callback para recibirlo.

e La gestidon de ese callback debera ser asincrona y no bloquear la Ul.

o Este callback debe estar ligado al ciclo de vida de la actividad que lo recibe. Esto es, si
lanzamos un Intent con respuesta desde una actividad, el callback no se debe gestionar si
esta ha finalizado.

Para gestionar todo esto Android ha definido una serie de clases.

Para simplificar, vamos a realizar este proceso creando un Intent lanzar otra Activity de nuestra
propia aplicacion de ejemplo que recibira un texto y ademas nos devolvera otro intent con el
texto introducido.

< Nota: Si el intent lo hiciéramos sobre una actividad de otra aplicacién el proceso de
comunicacion sera el mismo de nuestro ejemplo.

Para ello, nos situamos sobre el paquete views seleccionamos boton derecho y crear una nueva
clase que represente una actividad llamada ActivityQueProduceUnTexto . Recuerda que para usar
compose debe heredar de la clase componentActivity . El codigo seria el siguiente...

11/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/training/basics/intents/result?hl=es-419#launch

class ActivityQueProduceUnTexto : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
EjemplosIntentsTheme {
Surface(
modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

)

Ademas, en el manifest.xml vamos a afiadir la actividad que acabamos de crear. El cédigo seria
el siguiente, dentro de la etiqueta <application> bajo la etiqueta <activity> que define nuestro

MainActivity ...

¢ Nota: Fijate que hemos definido el recurso cadena title_activity que_produce_un_texto .
Haz ctrl+. para definirlo con el texto "ActivityQueProduceUnTexto"

<activity

android:name=".ui.views.ActivityQueProduceUnTexto"

android:exported="true"

android:label="@string/title_activity_que_produce_un_texto"

android:theme="@style/Theme.EjemplosIntents">

<intent-filter>
<action android:name="android.intent.action.SEND" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="text/plain” />

</intent-filter>

</activity>

2 Importante: Fijate ademas, que hemos afiadido el atributo android:exported="true" . Esto
es necesario para que otras aplicaciones puedan usar esta actividad y ademas hemos
expuesto a Android que podemos recibir intents de tipo SEND con datos de tipo text/plain
para que nos ofrezca a otras Apps en ese caso.

12/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Podemos ahora definir la siguiente Ul con Compose para ActivityQueProduceUnTexto en la cual
mostramos el dato de texto recibido desde el MainActivity y ademas tenemos un campo de texto
para que el usuario introduzca un texto y lo devuelva al MainActivity a través del manejador
onClickbevolver . El codigo puede ser el siguiente...

@Composable
fun PideTexto(
textoRecibidoPorLlamador: String = "Sin llamador",
onClickDevolver: (String) -> Unit = {}
) o
var texto by rememberSaveable { mutableStateOf("") }
Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center) {
Text(
text = textoRecibidoPorlLlamador,
modifier = Modifier
.padding(10.dp)
.fillMaxWidth(),
style = MaterialTheme.typography.titlelLarge,
textAlign = TextAlign.Center
)
Spacer(modifier = Modifier.height(16.dp))
OutlinedTextField(
label = { Text(text = "Texto a devolver") },
value = texto,
onValueChange = { texto = it }
)
Spacer(modifier = Modifier.height(16.dp))
Button(onClick = { onClickDevolver(texto) }) {

Text(text = "Devolver texto")

Veamos ahora como quedaria el cédigo definitivo de ActivityQueProduceUnTexto .

13/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

class ActivityQueProduceUnTexto : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
// Recuperamos el texto que nos ha pasado el llamador y que esta en
// la propiedad intent de la actividad que contiene los datos
// que se han pasado desde el llamador.
// Los asignamos en un estado usado por la interfaz en la composicion.
val textoRecibidoPorLlamador by mutableStateOf(
intent.getStringExtra("TEXTO") ?: ""

val onClickDevolver: (String) -> Unit = { texto ->
// Para devolver datos al llamador, los empaquetamos en un
// Intent le anadimos los datos y lo pasamos como parametro
// al método setResult, que crea un objeto ActivityResult que
// es lo que espera recibir el llamador en su 'contrato'.
Intent().also {intento ->
intento.putExtra("TEXTODEVUELTO", texto)
setResult(RESULT_OK, intento)
}
// Finalizamos la actividad tras poner los datos de resultado en el intent
finish()

setContent {
EjemplosIntentsTheme {
Surface(
modifier = Modifier.fillMaxSize(),

color = MaterialTheme.colorScheme.background

) {
PideTexto(
textoRecibidoPorLlamador = textoRecibidoPorLlamador,
onClickDevolver = onClickDevolver
)
}

Veamos ahora como seria el proceso de llamar a ActivityQueProduceUnTexto con un Intent
explicito con un texto y recibir el resultado en otro intent envuelto en un ActivityResult .

14/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

En primer lugar definimos una interfaz @Composable en MainActivity (fuera de la clase) que nos
permita lanzar la actividad y gestionar su respuesta denominado

InterfaceParalLanzarActivityQueProduceUnTexto

@Composable

fun InterfaceParalLanzarActivityQueProduceUnTexto(
textoDevueltoPorIntent: String = "No has llamado aun",
onClickLanzar: () -> Unit = {}

) A

Column(modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center) {
Button(onClick = onClickLanzar) {

Text(text = "Llama a ActivityQueProduceUnTexto")

}
Text(
text = textoDevueltoPorIntent,
modifier = Modifier
.padding(10.dp)
.fillMaxWidth(),
style = MaterialTheme.typography.titlelLarge,
textAlign = TextAlign.Center
)

Ahora usarmos el método registerForActivityResult() de la clase ComponentActivity para
registrar un ActivityResultLauncher que se encargara de gestionar la respuesta del intent. El
cbdigo seria el siguiente:

15/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

class MainActivity : ComponentActivity() {

private var textoDevueltoPorIntent by mutableStateOf("No has llamdo aun")
// Definimos un lanzador con el contrato ActivityResultContracts.StartActivityForResult
// que recibira (ENTRADA) el intent explicito sobre la actividad secuendaria
// y devolvera (SALIDA) un objeto ActivityResult que contiene el intent de respuesta
private val launcherActivityQueProduceUnTexto: ActivityResultlLauncher<Intent> =

registerForActivityResult(ActivityResultContracts.StartActivityForResult())

{ result ->

if (result.resultCode == Activity.RESULT OK) {
textoDevueltoPorIntent = result.data?.getStringExtra("TEXTODEVUELTO")

?: "Nada retornado"

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
EjemplosIntentsTheme {
Surface(modifier = Modifier.fillMaxSize()) {
val context = LocalContext.current
InterfaceParalanzarActivityQueProduceUnTexto(
textoDevueltoPorIntent = textoDevueltoPorIntent,
onClickLanzar = {
// En lanzado con el contrato encargado de gestionar una
// respuesta ActivityResult. Para ello crea el
// Intent explicito pasandole un texto como parametro
// indicandole por quien es llamada.
// El contexto se puede sacar de LocalContext.current y también
// claururando el propio contexto de la actividad.
launcherActivityQueProduceUnTexto.launch(
Intent(context, ActivityQueProduceUnTexto::class.java)

-apply {
putExtra("TEXTO", "Te llamo desde MainActivity")

16/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Vemos con mas detalle el cddigo de la llamada ...

private val launcherActivityQueProduceUnTexto: ActivityResultlLauncher<Intent> =
registerForActivityResult(ActivityResultContracts.StartActivityForResult())
{ result ->
if (result.resultCode == Activity.RESULT_OK) {
textoDevueltoPorIntent = result.data?.getStringExtra("TEXTODEVUELTO")
?: "Nada retornado"

Vamos a separar la respuesta de la llamada porque después de acabar la actividad se destruira.

e Paso 1: Crearemos un objeto ActivityResultLauncher mediante el método
registerForActivityResult() de la clase ComponentActivity . Este método recibe dos
parametros:

public final <I, 0> ActivityResultLauncher<I> registerForActivityResult(
@NonNull ActivityResultContract<I, 0> contract,
@NonNull ActivityResultCallback<O> callback) {

return registerForActivityResult(contract, mActivityResultRegistry, callback);

Donde ...

o ActivityResultContract es un 'contrato' que especifica que una actividad se puede llamar
con una entrada de tipo | y producir una salida de tipo O. Aunque se pueden crear
contratos personalizados, la API proporciona contratos predeterminados para acciones de
intent basicas, como tomar una foto, solicitar permisos, etc.

Por ejemplo, ActivityResultContracts.StartActivityForResult() es una contrato que
especifica que una actividad se puede llamar con una entrada de tipo Intent y producir
una salida de tipo ActivityResult .

o ActivityResultCallback es un callback al que le llega un objeto de tipo O, para nuestro

contrato un ActivityResult Yy hace una determinada accion sin retornar o 'producir’ nada.

result : ActivityResult -> void

Aviso

Los registerForActivityResult deben hacerse en el onCreate de la actividad.

17/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

e Paso 2: Crearemos un Intent con los datos y el nombre de la Activity como siempre y después
con el objeto launcherActivityQueProduceUnTexto lanzaremos en Intent segun lo establecido
en el contrato del lanzador. El cédigo seria el siguiente:

launcherActivityQueProduceUnTexto.launch(
Intent(context, ActivityQueProduceUnTexto::class.java).apply {
putExtra("TEXTO", "Te llamo desde MainActivity")

Registrando contratos dentro de un @composable

La APl de rememberLauncherForActivityResult €S analoga a registerForActivityResult pero
permite registrar un contrato dentro de un @composable Yy guardarlo como un estado que sobrevive
a las recomposiciones. Veamos el siguiente ejemplo extrado de la documentacion oficial ...

@Composable
fun GetContentExample() {
var imageUri by remember { mutableStateOf<Uri?>(null) }
val launcher = rememberLauncherForActivityResult(GetContent()) { uri: Uri? ->

imageUri = uri

}
Column {
Button(onClick = { launcher.launch("image*") }) {
Text(text = "Load Image")
}
Image(
painter = rememberImagePainter(imageUri),
contentDescription = "My Image"
)
}

GetContent() es un contrato que especifica que se puede llamar a una actividad de seleccién de
imagenes con una entrada de tipo string , que es la ruta de donde escogerlas y producir una
salida de tipo uri que es la ruta a ella.

18/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/libraries?hl=es-419#activity_result

Gestion de Permisos

Para realizar lanzar algunos intents sobre actividades y servicios del sistema necesitaremos de
ciertos permisos. Por ejemplo, para abrir la camara, para leer la agenda de contactos, etc.

La forma de gestionar los permisos ha cambiado en las ultimas versiones de Android. En versiones
anteriores a Android 6.0 (API nivel 23), los usuarios concedian todos los permisos solicitados en
el manifiesto por una app en el momento de la instalacion.

Ahora en Android, el sistema gestiona los permisos de las apps mientras se ejecutan y los
usuarios pueden revocar cualquier permiso en cualquier momento.

El esquema para definir permisos es:

1. Definiremos los requerimientos de permisos en el AndroidManifest.xml de la aplicacion.

2. Registraremos un contrato de solicitud de permisos
ActivityResultContracts.RequestPermission() con el método registerForActivityResult O
rememberLauncherForActivityResult de la clase ComponentActivity .

El manejador del resultado de los permisos creara el intent para el servicio o activity y se
pueden dar dos casos:
i. Que el servicio no retorne nada por ejemplo una llamada telefénica.
En este caso, desde el manejador si el permiso ha sido concedido lanzaremos el intent de
llamada con el método startActivity() como ya hemos visto.
ii. Que el servicio retorne un resultado por ejemplo una foto.
En este caso, desde el manejador si el permiso ha sido concedido lanzaremos el launch
de del registro de un contrato que se encargara de gestionar la respuesta con el

resultado.

19/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar intent implicito de llamada telefonica

1. Anadimos en el AndroidManifest.xml el permiso CALL_PHONE . Estas etiquetas iran dentro de la
etiqueta <manifest> :

<uses-feature
android:name="android.hardware.telephony"
android:required="true" />

<uses-permission android:name="android.permission.CALL_PHONE"/>

2. Por ejemplo, si queremos que el método de registro sea @Composable haremos.

@Composable
fun registroLlamarPorTelefonoIntent(
telefono: String
): ManagedActivityResultLauncher<String, Boolean> {
val context = LocalContext.current
return rememberLauncherForActivityResult(
ActivityResultContracts.RequestPermission()
) { success ->
if (success) {
Intent(Intent.ACTION_CALL).also {
callIntent ->
callIntent.data = Uri.parse("tel:$telefono™)
context.startActivity(callIntent)

Posteriormente podemos hacer ...

@Composable
fun IntentlLlamadaConPermisos(telefono: String) {
val launcherTelefono = registrolLlamarPorTelefonoIntent(telefono)
Button(onClick = {
launcherTelefono.launch(android.Manifest.permission.CALL_PHONE)

A
Text(text = "Llamar al $telefono")

20/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar intent implicito para hacer un foto

1. Anadimos en el AndroidManifest.xml el permiso CAMERA . Estas etiquetas iran dentro de la
etiqueta <manifest> :

<uses-feature
android:name="android.hardware.camera.any"
android:required="true" />

<uses-permission android:name="android.permission.CAMERA"/>

2. Por ejemplo, si queremos que el método de registro sea @Composable haremos.

@Composable
fun registroHacerFotoConIntent(
onFotoCambiada: (ImageBitmap) -> Unit
): ManagedActivityResultLauncher<String, Boolean> {
val cameralLauncher =
rememberLauncherForActivityResult(ActivityResultContracts
.StartActivityForResult()) { result ->
if (result.resultCode == Activity.RESULT_OK) {
val androidBitmap = result.data?.extras?.get("data") as Bitmap

onFotoCambiada(androidBitmap!!.asImageBitmap())

return rememberLauncherForActivityResult(
ActivityResultContracts.RequestPermission()
) { success ->
if (success) {
val cameraIntent = Intent(MediaStore.ACTION_IMAGE_CAPTURE_SECURE)

cameralLauncher.launch(cameraIntent)

21/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Posteriormente podemos hacer ...

@Composable
fun IntentFotoConPermisos(

onFotoCambiada: (ImageBitmap) -> Unit

) {
val launcherHacerFoto = registroHacerFotoConIntent(onFotoCambiada)
Button(onClick = {
launcherHacerFoto.launch(android.Manifest.permission.CAMERA)
1 A
Text(text = "Hacer foto")
}
}

22/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar registro hacer foto con TakePicture

Esta forma de hacer fotos nos permitira guardarla foto en una caché local como JPG y lo que
recibira el callback serd la ruta de la foto.

1. Ademas de anadir los permisos de acceso a la camara como hemos hecho antes. Aiiadimos

en el AndroidManifest.xml un proveedor de ficheros para que la aplicacion pueda acceder a la
caché de la aplicacion. Estas etiquetas iran dentro de la etiqueta <application> :

<application»>

<provider
android:name="androidx.core.content.FileProvider"
android:authorities="${applicationId}.provider"
android:exported="false"
android:grantUriPermissions="true">
<meta-data
android:name="android.support.FILE_PROVIDER_ PATHS"
android:resource="@xml/path_provider" />
</provider>

</application>

2. Definiremos el recurso XML path_provider.xml en res/xml . Donde definimos que las
imagenes se guardaran en la carpeta cache de la aplicacién situada en

/sdcard/Android/data/<package_name>/cache . En esta ubicacion encontraremos los JPG que
se vayan generando.

<?xml version="1.0" encoding="utf-8"?>
<paths>
<external-cache-path
name="my_images"
path="/" />
</paths>

3. Ya solo nos queda definir el contrato ActivityResultContracts.TakePicture() cuyo callback, a
través del frileProvider definido nos permitira obtener la ruta de la foto en la caché.

23/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

private fun Context.toImageBitmap(uri: Uri): ImageBitmap {
val contextResolver = this.contentResolver
val source = ImageDecoder.createSource(contextResolver, uri)

return ImageDecoder.decodeBitmap(source).asImageBitmap()

@Composable
fun registroHacerFotoConTakePicture(
onFotoCambiada: (ImageBitmap) -> Unit

): ManagedActivityResultLauncher<String, Boolean> {

val context = LocalContext.current

val ficheroTemporal = File.createTempFile(
"JPEG_${SimpleDateFormat("yyyyMMdd HHmmss").format(Date())} ",
".jpg",
context.externalCacheDir

val uri = FileProvider.getUriForFile(
context,
"${context.packageName}.provider",

ficheroTemporal

val cameralLauncher =
rememberLauncherForActivityResult(
ActivityResultContracts.TakePicture()) { success ->
if (success) {

onFotoCambiada(context.toImageBitmap(uri))

}

return rememberLauncherForActivityResult(
ActivityResultContracts.RequestPermission()
) { success ->
if (success) {

cameralLauncher.launch(uri)

24/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar registro para obtener una imagen de la galeria

En el punto Registrando contratos dentro de un @Composable ya hemos visto un ejemplo de como
hacerlo. Veamos como concretarlo para seguir el mismo esquema que hemos seguido en los
ejemplos anteriores.

1. Definimos el contrato ActivityResultContracts.GetContent() que especifica que que se puede
llamar a una actividad de seleccidén de imagenes con una entrada de tipo String que es la
ruta de donde escogerlas y producir una salida de tipo uri que es ruta a ella.

@Composable
fun registroSelectorDeImagenesConGetContent(
onFotoCambiada: (ImageBitmap) -> Unit
): ManagedActivityResultLauncher<String, Uri?> {
val context = LocalContext.current
return rememberLauncherForActivityResult(
ActivityResultContracts.GetContent()) { uri ->
uri?.let {

onFotoCambiada(context.toImageBitmap(uri))

2. Posteriormente podemos hacer ...

@Composable
fun IntentImagenGaleria(
onFotoCambiada: (ImageBitmap) -> Unit
) A
val launcherFotoGaleria = registroSelectorDeImagenesConGetContent(onFotoCambiada)
Button(onClick = {
launcherFotoGaleria.launch("image

25/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Conclusion

Como has podido observar gestionar permisos y lanzar intents es un proceso que puede ser
complejo y que requiere de un conocimiento profundo de la APl de Android. Por ello, en ocasiones
es recomendable utilizar librerias de terceros que nos faciliten el trabajo. Por ejemplo dispones de
la libreria accompanist que ofrece compatibilidad con Compose para gestionar permisos y lanzar
intents.

Nosotros en el mdédulo hemos creado una libreria que puedes usar para gestionar los permisos y
lanzar intents de una forma mas sencilla. Ahadiendo algunos los mas comunes vistos en el tema o
usado en los ejercicios.

Para usarlos debes afadir o comprobar si tienes afiadidas la dependencia de la libreria:

En 1ibs.version.toml :

pmdm-ies-balmis-utilities

= { group = "com.github.pmdmiesbalmis", name = "utilities", version.ref = "pmdmIesBalmisVersi
En build.gradle.kts del modulo app:

dependencies { implementation(libs.pmdm.ies.balmis.utilities) }
Em el fuente donde vayas a usar los métodos de la libreria debes anadir el import:

import com.github.pmdmiesbalmis.utilities.device.*

26/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://google.github.io/accompanist/permissions/

® Caso de estudio: Obtener el teléfono de un
contacto

Partiendo de la de las utilidades de la libreria com.github.pmdmiesbalmis.utilities.device
vamos a anadir un caso mas que nos permita obtener el teléfono de un contacto de la
agenda del dispositivo.

¢ Descarga: Si no consigues hacerlo, puedes descargar el cdédigo de este caso de estudio
en el siguiente enlace: intents_permisos_caso_estudio

Para ello vamos a adaptar el tutorial de la documentacion oficial:
Seleccionar datos de un contacto especifico para hacerlo.

Paso 1: Asegurate de tener una cuenta de pruebas en el dispositivo y haber afiadido al menos
un contacto con un teléfono.

Paso 2: Puesto que vamos a usar la agenda de contactos, debemos afadir el permiso
READ_CONTACTS en el AndroidManifest.xml . Estas etiquetas iran dentro de la etiqueta

<manifest> :
<uses-permission android:name="android.permission.READ_CONTACTS"/>
Paso 3: Analiza el cédigo de registroSelectorTelefonoContacto en la libreria

com.github.pmdmiesbalmis.utilities.device que nos permitira obtener el teléfono de un

contacto de la agenda. El codigo seria el siguiente:

27/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_8/intents_permisos_caso_estudio_recurso.zip
https://developer.android.com/guide/components/intents-common?hl=es-419#PickContactDat

28/30

@Composable
fun registroSelectorTelefonoContacto(
onSeleccionNumeroContacto: (String) -> Unit

): ManagedActivityResultLauncher<String, Boolean> {

val contexto = LocalContext.current
val registroObtenerTelefono = rememberLauncherForActivityResult(

contract = ActivityResultContracts.StartActivityForResult(),
onResult = { result ->

if (result.resultCode == Activity.RESULT OK) {
val contactUri: Uri? = result.data?.data

val projection = arrayOf(ContactsContract.CommonDataKinds.Phone.NUMBER)
if (contactUri != null) {

contexto.contentResolver
.query(contactUri, projection, null, null, null)
.use { cursor ->
if (cursor != null && cursor.moveToFirst()) {
val numberIndex =
cursor.getColumnIndex(ContactsContract.CommonDataKin
.Phone .NUMBER)
val number =
if (numberIndex >= @)
cursor.getString(numberIndex)
else "NO NUMBER"

onSeleccionNumeroContacto(number)

})

return rememberLauncherForActivityResult(
ActivityResultContracts.RequestPermission()
) { success ->
if (success) {
val intent = Intent(Intent.ACTION_PICK).apply {

type = ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE
}

registroObtenerTelefono.launch(intent)

PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

La funcion composable registroSelectorTelefonoContacto recibe un callback que se
ejecutara cuando se seleccione un contacto de la agenda y recibirda como parametro una
cadena con el teléfono el mismo.¢

Para ello, registramos y devolveremos el contrato de permisos
ActivityResultContracts.RequestPermission() que nos permitira lanzar un intent de seleccion
de contactos Intent.ACTION_PICK Yy que nos devolvera un uri con el contacto seleccionado.
Para ello le pasamos el tipo de MIME CommonDataKinds.Phone.CONTENT_TYPE que nos devolvera
un contacto con un teléfono.

Nota

Como se indica en la documentacion, tenemos otros tipos de MIME para obtener
contactos con un correo electrénico como CommonDataKinds.Email.CONTENT_TYPE O una
direccion postal como CommonDataKinds.StructuredPostal.CONTENT_TYPE .

Paso 4: Por ultimo, podemos usar la funcion composable registroSelectorTelefonoContacto
para obtener el teléfono de un contacto. En el mismo nivel que definamos el estado del
teléfono, definiremos el registro del contrato y la llamada al mismo. El cédigo seria el
siguiente:

29/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
EjemploIntentsTheme {
var telefono by rememberSaveable { mutableStateOf("")}
val registroSeleccionContacto = registroSelectorTelefonoContacto {

telefono = it

}
Surface(
modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background
) {
PruebaIntentsScreen(telefono) {
registroSeleccionContacto.launch(
android.Manifest.permission.READ_CONTACTS)
}
}
}
}
}
}
@Composable

fun PruebaIntentsScreen(
telefono: String,

onSeleccionContacto: () -> Unit

) A
Column(
modifier = Modifier.fillMaxSize(),
verticalArrangement = Arrangement.Center,
horizontalAlignment = Alignment.CenterHorizontally
) A
Button(onClick = onSeleccionContacto) { Text("Seleccionar contacto") }
Text(telefono)
}
}

30/30 PMDM 2° DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

