
Tema 3.8 - Intents y Contracts
Descargar estos apuntes pdf o html

Índice
Introducción
Tipos de Intents

Intents Explícitos
Abriendo otra aplicación desde nuestra aplicación

Intents Implícitos
Enviar un correo electrónico escogiendo la aplicación
Abrir una localización en Google Maps
Obtener el resultado de un Intent registrando un 'contrato'
Registrando contratos dentro de un @Composable

Gestion de Permisos
Gestionar intent implícito de llamada telefónica
Gestionar intent implícito para hacer un foto
Gestionar registro hacer foto con TakePicture
Gestionar registro para obtener una imagen de la galería

Conclusión
🎓 Caso de estudio: Obtener el teléfono de un contacto

1/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_8_intents_y_contracts.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_8_intents_y_contracts.html

Introducción
Intents

Documentación oficial: Intents
Documentación oficial: Interactuando con otras Apps
Vídeo Intents: Philipp Lackner (Inglés)

Permissions
Documentación oficial: Permisos
Vídeo Permisos 1: Android Developers
Vídeo Permisos 2: Android Developers
Vídeo Permisos: Philipp Lackner (Inglés)

Permissions in Compose con Accompanist Library (Experimental)
Vídeo: Martin Kiperszmid (Castellano)
Vídeo: Stevdza-San (Inglés)
Documentación librería: Accompanist

Una Intent es un objeto de mensajería que puedes usar para solicitar una acción de otro
componente de una app. Si bien las intents facilitan la comunicación entre componentes de varias
formas, existen tres casos de uso principales:

1. Iniciar una actividad de la propia app o de otra app.
2. Iniciar un servicio.
3. Transmitir una emisión o broadcast.

Nosotros en este tema vamos a centrarnos en el primer caso de uso que es, Iniciar una
actividad. Como se puede deducir es una funcionalidad del API de Android que nos permite iniciar
una actividad desde otra actividad incluso si la actividad pertenece a otra aplicación diferente como
por ejemplos hacer una llamada telefónica, enviar un correo electrónico, abrir una página web, etc.

Resumen

Por expresarlo con otras palabras, podemos decir que una Intent es un objeto que
proporciona en su interior una descripción de la operación que queremos 'intentar' ya sea de
forma implícita o explícita y además podemos pasarle datos que se usarán en la operación.
Cuidado puede parecernos que es la intent la que lanza una actividad pero no es así,
contiene solo la descripción de la operación y los datos necesarios para realizarla.

🔗 Dercarga: El proyecto con el código de los ejemplos de este tema en el siguiente enlace



2/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/guide/components/intents-filters?hl=es-419
https://developer.android.com/training/basics/intents?hl=es-419
https://www.youtube.com/watch?v=2hIY1xuImuQ
https://developer.android.com/guide/topics/permissions/overview?hl=es-419
https://www.youtube.com/watch?v=zCAx4WZ98rs
https://www.youtube.com/watch?v=x38dYUm7tCY
https://www.youtube.com/watch?v=D3JCtaK8LSU
https://www.youtube.com/watch?v=imFJZ4Kbv_g
https://www.youtube.com/watch?v=uO6igFsa5y0
https://google.github.io/accompanist/permissions/
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_8/intents_ejemplos_apuntes_recurso.zip

3/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Tipos de Intents

Intents Explícitos
Especifican qué aplicación las administrará, ya sea incluyendo el nombre del paquete de la app
de destino o el nombre de clase del componente completamente calificado. Normalmente, el
usuario usa una intent explícita para iniciar un componente en su propia aplicación porque conoce
el nombre de clase de la actividad o el servicio que desea iniciar. Por ejemplo, puedes utilizarla
para iniciar una actividad nueva en respuesta a una acción del usuario o iniciar un servicio para
descargar un archivo en segundo plano.

Abriendo otra aplicación desde nuestra aplicación

Para abrir otra aplicación desde nuestra aplicación, debemos crear un objeto Intent y especificar el
nombre del paquete de la aplicación de destino. Por ejemplo, si queremos abrir la aplicación de
Chrome desde nuestra aplicación, debemos crear un objeto Intent y especificar el nombre del
paquete de la aplicación de destino que en este caso es com.android.chrome . Para ello usaremos
el método setPackage() del objeto Intent. Una vez creado el objeto Intent lo pasaremos como
parámetro al método startActivity() . Como el método startActivity() es un método de la
clase Context, necesitamos un objeto de esta clase para poder llamar al método. Para ello
usaremos el LocalContext.current que nos proporciona Jetpack Compose. El código sería el
siguiente...

4/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

// IntentExplicito.kt

fun Context.openChrome() {

 // Creamos un Intent con la acción ACTION_MAIN

 // que es abrir una actividad principal de la aplicación Chrome.

 Intent(Intent.ACTION_MAIN).also {

 it.`package` = "com.android.chrome"

 // Lanza ActivityNotFoundException si no está instalada la aplicación.

 startActivity(it)

 }

}

@Composable

fun IntentOpenChrome() {

 val context = LocalContext.current

 Box(modifier = Modifier.fillMaxSize(),

 contentAlignment = androidx.compose.ui.Alignment.Center) {

 Button(onClick = { context.openChrome() }) {

 Text(text = "Open Chrome")

 }

 }

}

Saber el nombre del paquete de la app de destino

Para saber el nombre del paquete de la app de destino, podemos usar la herramienta adb.exe
(Android Debug Bridge) instalada junto al SDK de Android. Para ello debemos abrir una consola de
comandos e ir a la carpeta platform-tools donde esté instalado el SDK para nuestro usuario. (Ej:
 C:\Users\alumno\AppData\Local\Android\Sdk\platform-tools>). Otras opción es añadir esta carpeta
al Path de nuestro usuario para que podamos ejecutar los comandos desde cualquier ubicación,
incluso desde la ventana del terminal de AndroidStudio.
Una vez tenemos acceso a la herramienta adb.exe seguiremos estos pasos:

1. Arrancaremos la máquina virtual de nuestro emulador de Android desde el mismo Android
Studio o desde un terminal si sabemos el nombre de la máquina. Por ejemplo, si nuestro
emulador se llama Pixel_3a_API_33 ejecutaremos el comando:

C:\Users\alumno\AppData\Local\Android\Sdk\tools\emulator.exe -avd Pixel_3a_API_33

2. Con el emulador arrancado, ejecutaremos el comando adb shell para acceder a la consola
del emulador. Por ejemplo:

5/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/studio/command-line/adb?hl=es-419

C:\Users\alumno\AppData\Local\Android\Sdk\platform-tools>adb shell

emu64x:/ $

3. Ahora ejecutaremos el comando pm list packages para listar todos los paquetes de
aplicaciones instaladas en el emulador y si queremos buscar una aplicación en concreto
podemos usar el comando grep . Por ejemplo, si queremos saber el nombre del paquete de la
app de Chrome, ejecutaremos el comando:

Otra forma más sencilla es a través de Android
Studio. Una vez arrancado el emulador,
abriremos la ventana Device File Explorer
situado a la derecha como se muestra en la
imagen de ejemplo y navegaremos hasta la
carpeta data/data donde se encuentran todas
las aplicaciones instaladas en el emulador. Ahora
solo tenemos que buscar la carpeta de la
aplicación que nos interese que se corresponde
con el nombre del paquete de la aplicación.

emu64x:/ $ pm list packages | grep chrome

package:com.android.chrome

emu64x:/ $

2

6/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Intents Implícitos
Son los que más interesantes para nosotros. Puesto que no siempre sabemos que aplicaciones
vamos a tener instaladas.

No nombran el componente específico, pero en cambio declaran una acción general para realizar,
lo cual permite que un componente de otra aplicación la maneje. Por ejemplo, si quieres enviar un
correo electrónico no necesitas saber qué aplicación de correo electrónico tiene el usuario
instalada, simplemente debes enviar una intent implícita para que cualquier aplicación de correo
electrónico pueda responderla. Es más, puedes preguntarle al sistema si existe una actividad que
pueda responder a tu intent antes de iniciarla y ofrecerle la posibilidad al usuario de elegir qué
aplicación usar.

Enviar un correo electrónico escogiendo la aplicación

Veamos un ejemplo de un Intent implícito para solicitar al sistema enviar un correo electrónico
con un texto plano. Además, al Intent le pasaremos una serie de parámetros como el asunto, el
texto del correo y los destinatarios. Para ello usaremos el método putExtra() del objeto Intent. El
código sería el siguiente...

Aunque no es necesario, podemos indicar a Android que tipo de intents vamos a usar en nuestra
aplicación al final de Manifest de la aplicación con la etiqueta <queries> .

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 ...

 <queries>

 <intent>

 <action android:name="android.intent.action.SEND" />

 <data android:mimeType="text/plain" />

 </intent>

 </queries>

</manifest>

7/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

// IntentsImplicitos.kt

fun Context.sendMail(

 correos: Array<String>,

 asunto: String,

 texto: String,

 forzarEleccion: Boolean = false

) {

 val intent = Intent(Intent.ACTION_SEND).apply {

 type = "text/plain"

 // Añadimos los datos del correo.

 putExtra(Intent.EXTRA_EMAIL, correos)

 putExtra(Intent.EXTRA_SUBJECT, asunto)

 putExtra(Intent.EXTRA_TEXT, texto)

 }

 val chooser = if (forzarEleccion) {

 val title: String = resources.getString(R.string.enviar_correo)

 Intent.createChooser(intent, title)

 }

 else null

 if (intent.resolveActivity(packageManager) != null) {

 startActivity(chooser ?: intent)

 }

}

@Composable

fun IntentSendMail() {

 val context = LocalContext.current

 Box(modifier = Modifier.fillMaxSize(),

 contentAlignment = androidx.compose.ui.Alignment.Center) {

 Button(onClick = { context.sendMail(

 correos = arrayOf("correo@alu.edu.gva.es"),

 asunto = "Asunto del correo",

 texto = "Texto del correo"

) }) {

 Text(text = "Send Mail")

 }

 }

}

8/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Al usar ACTION_SEND con esos parámetros. Android nos ofrecerá
varias opciones para enviar el correo. Si seleccionamos Gmail +
 Always la siguiente vez que queramos enviar un correo, no nos
preguntará.

Realmente el sistema Android busca el componente apropiado
para iniciar comparando el contenido de la intent con los filtros de
intents declarados en el archivo de manifiesto de otras aplicaciones
en el dispositivo. Si la intent coincide con un filtro de intents, el
sistema inicia ese componente y le entrega el objeto Intent. Si varios
filtros de intents son compatibles, el sistema muestra un cuadro
de diálogo para que el usuario pueda elegir la aplicación que se debe
usar.

En nuestro caso, la App debe tener una actividad que acepte los parámetros que le pasamos y
tener un filtro similar al siguiente:

<activity android:name=".ClaseQueDefineLaActividad">

 <android:exported="true"> <!-- Necesario para que otras apps puedan usarla -->

 <intent-filter>

 <action android:name="android.intent.action.SEND" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="text/plain" />

 </intent-filter>

</activity>

Puedes consultar la documentación oficial para más información.

📌 Nota: Si no declaras ningún filtro de intent para una actividad, esta solo se puede iniciar
con un intent explícito.

Si queremos que el sistema nos pregunte siempre que aplicación
queremos usar para enviar el correo independientemente de si la
hemos predeterminado o no. Deberemos usar el método
 createChooser() del objeto Intent como se ve en el código de
ejemplo.

9/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/intent-filter-element?hl=es-419
https://developer.android.com/guide/topics/manifest/intent-filter-element?hl=es-419
https://developer.android.com/guide/components/intents-filters?hl=es-419#Receiving

Abrir una localización en Google Maps

Veamos algunos ejemplos más de Intents implícitos extraídos de la documentación oficial aquí o
aquí ...

En este caso vamos a visualizar una geolocalización y la aplicación de Maps tiene un filtro que
acepta este tipo de intents. Fíjate que en este caso hemos controlado la excepción
 ActivityNotFoundException que se lanza si no tenemos instalada la aplicación de Maps mostrando
un mensaje temporal.

fun Context.buscaEnMaps(lugar: String) {

 val intent = Intent(Intent.ACTION_VIEW).apply {

 data = Uri.parse("geo:0,0?q=$lugar")

 }

 try {

 startActivity(intent)

 } catch (e: ActivityNotFoundException) {

 Toast.makeText(this, "No se puede abrir Maps", Toast.LENGTH_SHORT).show()

 }

}

@Composable

fun IntentBuscaEnMaps() {

 val context = LocalContext.current

 Button(onClick = {

 context.buscaEnMaps("I.E.S Doctor Balmis, +Alicante")

 }) {

 Text(text = "Ver Balmis en Maps")

 }

}

10/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/guide/components/intents-common?hl=es-419
https://developer.android.com/training/basics/intents/sending?hl=es-419

Obtener el resultado de un Intent registrando un 'contrato'

Iniciar otra actividad, ya sea dentro de tu app o desde otra, no tiene por qué ser una operación
unidireccional, también puedes iniciar una actividad y recibir un resultado. Por ejemplo, tu app
puede iniciar una app de cámara y recibir la foto tomada como resultado. También puedes
iniciar la app de Contactos para que el usuario seleccione un contacto y, luego, recibir los
detalles correspondientes como resultado.

Deberemos tener en cuenta que:

El resultado no es inmediato y deberemos definir algún tipo de callback para recibirlo.
La gestión de ese callback deberá ser asíncrona y no bloquear la UI.
Este callback debe estar ligado al ciclo de vida de la actividad que lo recibe. Esto es, si
lanzamos un Intent con respuesta desde una actividad, el callback no se debe gestionar si
esta ha finalizado.

Para gestionar todo esto Android ha definido una serie de clases.

Para simplificar, vamos a realizar este proceso creando un Intent lanzar otra Activity de nuestra
propia aplicación de ejemplo que recibirá un texto y además nos devolverá otro intent con el
texto introducido.

📌 Nota: Si el intent lo hiciéramos sobre una actividad de otra aplicación el proceso de
comunicación será el mismo de nuestro ejemplo.

Para ello, nos situamos sobre el paquete views seleccionamos botón derecho y crear una nueva
clase que represente una actividad llamada ActivityQueProduceUnTexto . Recuerda que para usar
compose debe heredar de la clase ComponentActivity . El código sería el siguiente...

11/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/training/basics/intents/result?hl=es-419#launch

class ActivityQueProduceUnTexto : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 EjemplosIntentsTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 }

 }

 }

 }

}

Además, en el manifest.xml vamos a añadir la actividad que acabamos de crear. El código sería
el siguiente, dentro de la etiqueta <application> bajo la etiqueta <activity> que define nuestro
 MainActivity ...

📌 Nota: Fíjate que hemos definido el recurso cadena title_activity_que_produce_un_texto .
Haz Ctrl+. para definirlo con el texto "ActivityQueProduceUnTexto"

<activity

 android:name=".ui.views.ActivityQueProduceUnTexto"

 android:exported="true"

 android:label="@string/title_activity_que_produce_un_texto"

 android:theme="@style/Theme.EjemplosIntents">

 <intent-filter>

 <action android:name="android.intent.action.SEND" />

 <category android:name="android.intent.category.DEFAULT" />

 <data android:mimeType="text/plain" />

 </intent-filter>

</activity>

✋ Importante: Fíjate además, que hemos añadido el atributo android:exported="true" . Esto
es necesario para que otras aplicaciones puedan usar esta actividad y además hemos
expuesto a Android que podemos recibir intents de tipo SEND con datos de tipo text/plain
para que nos ofrezca a otras Apps en ese caso.

12/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Podemos ahora definir la siguiente UI con Compose para ActivityQueProduceUnTexto en la cual
mostramos el dato de texto recibido desde el MainActivity y además tenemos un campo de texto
para que el usuario introduzca un texto y lo devuelva al MainActivity a través del manejador
 onClickDevolver . El código puede ser el siguiente...

@Composable

fun PideTexto(

 textoRecibidoPorLlamador: String = "Sin llamador",

 onClickDevolver: (String) -> Unit = {}

) {

 var texto by rememberSaveable { mutableStateOf("") }

 Column(modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally,

 verticalArrangement = Arrangement.Center) {

 Text(

 text = textoRecibidoPorLlamador,

 modifier = Modifier

 .padding(10.dp)

 .fillMaxWidth(),

 style = MaterialTheme.typography.titleLarge,

 textAlign = TextAlign.Center

)

 Spacer(modifier = Modifier.height(16.dp))

 OutlinedTextField(

 label = { Text(text = "Texto a devolver") },

 value = texto,

 onValueChange = { texto = it }

)

 Spacer(modifier = Modifier.height(16.dp))

 Button(onClick = { onClickDevolver(texto) }) {

 Text(text = "Devolver texto")

 }

 }

}

Veamos ahora cómo quedaría el código definitivo de ActivityQueProduceUnTexto .

13/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

class ActivityQueProduceUnTexto : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 // Recuperamos el texto que nos ha pasado el llamador y que está en

 // la propiedad intent de la actividad que contiene los datos

 // que se han pasado desde el llamador.

 // Los asignamos en un estado usado por la interfaz en la composición.

 val textoRecibidoPorLlamador by mutableStateOf(

 intent.getStringExtra("TEXTO") ?: ""

)

 val onClickDevolver: (String) -> Unit = { texto ->

 // Para devolver datos al llamador, los empaquetamos en un

 // Intent le añadimos los datos y lo pasamos como parámetro

 // al método setResult, que crea un objeto ActivityResult que

 // es lo que espera recibir el llamador en su 'contrato'.

 Intent().also {intento ->

 intento.putExtra("TEXTODEVUELTO", texto)

 setResult(RESULT_OK, intento)

 }

 // Finalizamos la actividad tras poner los datos de resultado en el intent

 finish()

 }

 setContent {

 EjemplosIntentsTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 PideTexto(

 textoRecibidoPorLlamador = textoRecibidoPorLlamador,

 onClickDevolver = onClickDevolver

)

 }

 }

 }

 }

}

Veamos ahora cómo sería el proceso de llamar a ActivityQueProduceUnTexto con un Intent
explícito con un texto y recibir el resultado en otro intent envuelto en un ActivityResult .

14/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

En primer lugar definimos una interfaz @Composable en MainActivity (fuera de la clase) que nos
permita lanzar la actividad y gestionar su respuesta denominado
 InterfaceParaLanzarActivityQueProduceUnTexto

@Composable

fun InterfaceParaLanzarActivityQueProduceUnTexto(

 textoDevueltoPorIntent: String = "No has llamado aún",

 onClickLanzar: () -> Unit = {}

) {

 Column(modifier = Modifier.fillMaxSize(),

 horizontalAlignment = Alignment.CenterHorizontally,

 verticalArrangement = Arrangement.Center) {

 Button(onClick = onClickLanzar) {

 Text(text = "Llama a ActivityQueProduceUnTexto")

 }

 Text(

 text = textoDevueltoPorIntent,

 modifier = Modifier

 .padding(10.dp)

 .fillMaxWidth(),

 style = MaterialTheme.typography.titleLarge,

 textAlign = TextAlign.Center

)

 }

}

Ahora usarmos el método registerForActivityResult() de la clase ComponentActivity para
registrar un ActivityResultLauncher que se encargará de gestionar la respuesta del intent. El
código sería el siguiente:

15/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

class MainActivity : ComponentActivity() {

 private var textoDevueltoPorIntent by mutableStateOf("No has llamdo aún")

 // Definimos un lanzador con el contrato ActivityResultContracts.StartActivityForResult

 // que recibirá (ENTRADA) el intent explícito sobre la actividad secuendaria

 // y devolverá (SALIDA) un objeto ActivityResult que contiene el intent de respuesta

 private val launcherActivityQueProduceUnTexto: ActivityResultLauncher<Intent> =

 registerForActivityResult(ActivityResultContracts.StartActivityForResult())

 { result ->

 if (result.resultCode == Activity.RESULT_OK) {

 textoDevueltoPorIntent = result.data?.getStringExtra("TEXTODEVUELTO")

 ?: "Nada retornado"

 }

 }

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 EjemplosIntentsTheme {

 Surface(modifier = Modifier.fillMaxSize()) {

 val context = LocalContext.current

 InterfaceParaLanzarActivityQueProduceUnTexto(

 textoDevueltoPorIntent = textoDevueltoPorIntent,

 onClickLanzar = {

 // En lanzado con el contrato encargado de gestionar una

 // respuesta ActivityResult. Para ello crea el

 // Intent explícito pasándole un texto como parámetro

 // indicándole por quien es llamada.

 // El contexto se puede sacar de LocalContext.current y también

 // claururándo el propio contexto de la actividad.

 launcherActivityQueProduceUnTexto.launch(

 Intent(context, ActivityQueProduceUnTexto::class.java)

 .apply {

 putExtra("TEXTO", "Te llamo desde MainActivity")

 }

)

 }

)

 }

 }

 }

 }

}

16/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Vemos con más detalle el código de la llamada ...

private val launcherActivityQueProduceUnTexto: ActivityResultLauncher<Intent> =

 registerForActivityResult(ActivityResultContracts.StartActivityForResult())

 { result ->

 if (result.resultCode == Activity.RESULT_OK) {

 textoDevueltoPorIntent = result.data?.getStringExtra("TEXTODEVUELTO")

 ?: "Nada retornado"

 }

 }

Vamos a separar la respuesta de la llamada porque después de acabar la actividad se destruirá.

Paso 1: Crearemos un objeto ActivityResultLauncher mediante el método
 registerForActivityResult() de la clase ComponentActivity . Este método recibe dos
parámetros:

public final <I, O> ActivityResultLauncher<I> registerForActivityResult(

 @NonNull ActivityResultContract<I, O> contract,

 @NonNull ActivityResultCallback<O> callback) {

 return registerForActivityResult(contract, mActivityResultRegistry, callback);

}

Donde ...
 ActivityResultContract es un 'contrato' que especifica que una actividad se puede llamar
con una entrada de tipo I y producir una salida de tipo O. Aunque se pueden crear
contratos personalizados, la API proporciona contratos predeterminados para acciones de
intent básicas, como tomar una foto, solicitar permisos, etc.
Por ejemplo, ActivityResultContracts.StartActivityForResult() es una contrato que
especifica que una actividad se puede llamar con una entrada de tipo Intent y producir
una salida de tipo ActivityResult .
 ActivityResultCallback es un callback al que le llega un objeto de tipo O, para nuestro
contrato un ActivityResult y hace una determinada acción sin retornar o 'producir' nada.
 result : ActivityResult -> void

Aviso

Los registerForActivityResult deben hacerse en el onCreate de la actividad.



17/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Paso 2: Crearemos un Intent con los datos y el nombre de la Activity como siempre y después
con el objeto launcherActivityQueProduceUnTexto lanzaremos en Intent según lo establecido
en el contrato del lanzador. El código sería el siguiente:

launcherActivityQueProduceUnTexto.launch(

 Intent(context, ActivityQueProduceUnTexto::class.java).apply {

 putExtra("TEXTO", "Te llamo desde MainActivity")

 }

)

Registrando contratos dentro de un @Composable

La API de rememberLauncherForActivityResult es análoga a registerForActivityResult pero
permite registrar un contrato dentro de un @Composable y guardarlo como un estado que sobrevive
a las recomposiciones. Veamos el siguiente ejemplo extrado de la documentación oficial ...

@Composable

fun GetContentExample() {

 var imageUri by remember { mutableStateOf<Uri?>(null) }

 val launcher = rememberLauncherForActivityResult(GetContent()) { uri: Uri? ->

 imageUri = uri

 }

 Column {

 Button(onClick = { launcher.launch("image*") }) {

 Text(text = "Load Image")

 }

 Image(

 painter = rememberImagePainter(imageUri),

 contentDescription = "My Image"

)

 }

}

 GetContent() es un contrato que especifica que se puede llamar a una actividad de selección de
imágenes con una entrada de tipo String , que es la ruta de donde escogerlas y producir una
salida de tipo Uri que es la ruta a ella.

18/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/libraries?hl=es-419#activity_result

Gestion de Permisos
Para realizar lanzar algunos intents sobre actividades y servicios del sistema necesitaremos de
ciertos permisos. Por ejemplo, para abrir la cámara, para leer la agenda de contactos, etc.

La forma de gestionar los permisos ha cambiado en las últimas versiones de Android. En versiones
anteriores a Android 6.0 (API nivel 23), los usuarios concedían todos los permisos solicitados en
el manifiesto por una app en el momento de la instalación.

Ahora en Android, el sistema gestiona los permisos de las apps mientras se ejecutan y los
usuarios pueden revocar cualquier permiso en cualquier momento.

El esquema para definir permisos es:

1. Definiremos los requerimientos de permisos en el AndroidManifest.xml de la aplicación.
2. Registraremos un contrato de solicitud de permisos

 ActivityResultContracts.RequestPermission() con el método registerForActivityResult o
 rememberLauncherForActivityResult de la clase ComponentActivity .
El manejador del resultado de los permisos creará el intent para el servicio o activity y se
pueden dar dos casos:

i. Que el servicio no retorne nada por ejemplo una llamada telefónica.
En este caso, desde el manejador si el permiso ha sido concedido lanzaremos el intent de
llamada con el método startActivity() como ya hemos visto.

ii. Que el servicio retorne un resultado por ejemplo una foto.
En este caso, desde el manejador si el permiso ha sido concedido lanzaremos el launch
de del registro de un contrato que se encargará de gestionar la respuesta con el
resultado.

19/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar intent implícito de llamada telefónica
1. Añadimos en el AndroidManifest.xml el permiso CALL_PHONE . Estas etiquetas irán dentro de la

etiqueta <manifest> :

<uses-feature

 android:name="android.hardware.telephony"

 android:required="true" />

<uses-permission android:name="android.permission.CALL_PHONE"/>

2. Por ejemplo, si queremos que el método de registro sea @Composable haremos.

@Composable

fun registroLlamarPorTelefonoIntent(

 telefono: String

): ManagedActivityResultLauncher<String, Boolean> {

 val context = LocalContext.current

 return rememberLauncherForActivityResult(

 ActivityResultContracts.RequestPermission()

) { success ->

 if (success) {

 Intent(Intent.ACTION_CALL).also {

 callIntent ->

 callIntent.data = Uri.parse("tel:$telefono")

 context.startActivity(callIntent)

 }

 }

 }

}

Posteriormente podemos hacer ...

@Composable

fun IntentLlamadaConPermisos(telefono: String) {

 val launcherTelefono = registroLlamarPorTelefonoIntent(telefono)

 Button(onClick = {

 launcherTelefono.launch(android.Manifest.permission.CALL_PHONE)

 }) {

 Text(text = "Llamar al $telefono")

 }

}

20/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar intent implícito para hacer un foto
1. Añadimos en el AndroidManifest.xml el permiso CAMERA . Estas etiquetas irán dentro de la

etiqueta <manifest> :

<uses-feature

 android:name="android.hardware.camera.any"

 android:required="true" />

<uses-permission android:name="android.permission.CAMERA"/>

2. Por ejemplo, si queremos que el método de registro sea @Composable haremos.

@Composable

fun registroHacerFotoConIntent(

 onFotoCambiada: (ImageBitmap) -> Unit

): ManagedActivityResultLauncher<String, Boolean> {

 val cameraLauncher =

 rememberLauncherForActivityResult(ActivityResultContracts

 .StartActivityForResult()) { result ->

 if (result.resultCode == Activity.RESULT_OK) {

 val androidBitmap = result.data?.extras?.get("data") as Bitmap

 onFotoCambiada(androidBitmap!!.asImageBitmap())

 }

 }

 return rememberLauncherForActivityResult(

 ActivityResultContracts.RequestPermission()

) { success ->

 if (success) {

 val cameraIntent = Intent(MediaStore.ACTION_IMAGE_CAPTURE_SECURE)

 cameraLauncher.launch(cameraIntent)

 }

 }

}

21/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Posteriormente podemos hacer ...

@Composable

fun IntentFotoConPermisos(

 onFotoCambiada: (ImageBitmap) -> Unit

) {

 val launcherHacerFoto = registroHacerFotoConIntent(onFotoCambiada)

 Button(onClick = {

 launcherHacerFoto.launch(android.Manifest.permission.CAMERA)

 }) {

 Text(text = "Hacer foto")

 }

}

22/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar registro hacer foto con TakePicture
Esta forma de hacer fotos nos permitirá guardarla foto en una caché local como JPG y lo que
recibirá el callback será la ruta de la foto.

1. Además de añadir los permisos de acceso a la cámara como hemos hecho antes. Añadimos
en el AndroidManifest.xml un proveedor de ficheros para que la aplicación pueda acceder a la
caché de la aplicación. Estas etiquetas irán dentro de la etiqueta <application> :

2. Definiremos el recurso XML path_provider.xml en res/xml . Donde definimos que las
imágenes se guardarán en la carpeta cache de la aplicación situada en
 /sdcard/Android/data/<package_name>/cache . En esta ubicación encontraremos los JPG que
se vayan generando.

<?xml version="1.0" encoding="utf-8"?>

<paths>

 <external-cache-path

 name="my_images"

 path="/" />

</paths>

3. Ya solo nos queda definir el contrato ActivityResultContracts.TakePicture() cuyo callback, a
través del FileProvider definido nos permitirá obtener la ruta de la foto en la caché.

<application>

 ...

 <provider

 android:name="androidx.core.content.FileProvider"

 android:authorities="${applicationId}.provider"

 android:exported="false"

 android:grantUriPermissions="true">

 <meta-data

 android:name="android.support.FILE_PROVIDER_PATHS"

 android:resource="@xml/path_provider" />

 </provider>

</application>

10

23/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

private fun Context.toImageBitmap(uri: Uri): ImageBitmap {

 val contextResolver = this.contentResolver

 val source = ImageDecoder.createSource(contextResolver, uri)

 return ImageDecoder.decodeBitmap(source).asImageBitmap()

}

@Composable

fun registroHacerFotoConTakePicture(

 onFotoCambiada: (ImageBitmap) -> Unit

): ManagedActivityResultLauncher<String, Boolean> {

 val context = LocalContext.current

 val ficheroTemporal = File.createTempFile(

 "JPEG_${SimpleDateFormat("yyyyMMdd_HHmmss").format(Date())}_",

 ".jpg",

 context.externalCacheDir

)

 val uri = FileProvider.getUriForFile(

 context,

 "${context.packageName}.provider",

 ficheroTemporal

)

 val cameraLauncher =

 rememberLauncherForActivityResult(

 ActivityResultContracts.TakePicture()) { success ->

 if (success) {

 onFotoCambiada(context.toImageBitmap(uri))

 }

 }

 return rememberLauncherForActivityResult(

 ActivityResultContracts.RequestPermission()

) { success ->

 if (success) {

 cameraLauncher.launch(uri)

 }

 }

}

24/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Gestionar registro para obtener una imagen de la galería
En el punto Registrando contratos dentro de un @Composable ya hemos visto un ejemplo de como
hacerlo. Veamos como concretarlo para seguir el mismo esquema que hemos seguido en los
ejemplos anteriores.

1. Definimos el contrato ActivityResultContracts.GetContent() que especifica que que se puede
llamar a una actividad de selección de imágenes con una entrada de tipo String que es la
ruta de donde escogerlas y producir una salida de tipo Uri que es ruta a ella.

@Composable

fun registroSelectorDeImagenesConGetContent(

 onFotoCambiada: (ImageBitmap) -> Unit

): ManagedActivityResultLauncher<String, Uri?> {

 val context = LocalContext.current

 return rememberLauncherForActivityResult(

 ActivityResultContracts.GetContent()) { uri ->

 uri?.let {

 onFotoCambiada(context.toImageBitmap(uri))

 }

 }

}

2. Posteriormente podemos hacer ...

@Composable

fun IntentImagenGaleria(

 onFotoCambiada: (ImageBitmap) -> Unit

) {

 val launcherFotoGaleria = registroSelectorDeImagenesConGetContent(onFotoCambiada)

 Button(onClick = {

 launcherFotoGaleria.launch("image/*")

 }) {

 Text(text = "Foto galería")

 }

}

25/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

Conclusión
Como has podido observar gestionar permisos y lanzar intents es un proceso que puede ser
complejo y que requiere de un conocimiento profundo de la API de Android. Por ello, en ocasiones
es recomendable utilizar librerías de terceros que nos faciliten el trabajo. Por ejemplo dispones de
la librería accompanist que ofrece compatibilidad con Compose para gestionar permisos y lanzar
intents.

Nosotros en el módulo hemos creado una librería que puedes usar para gestionar los permisos y
lanzar intents de una forma más sencilla. Añadiendo algunos los más comunes vistos en el tema o
usado en los ejercicios.

Para usarlos debes añadir o comprobar si tienes añadidas la dependencia de la librería:

En libs.version.toml :

pmdm-ies-balmis-utilities

= { group = "com.github.pmdmiesbalmis", name = "utilities", version.ref = "pmdmIesBalmisVersi

En build.gradle.kts del módulo app:

dependencies { implementation(libs.pmdm.ies.balmis.utilities) }

Em el fuente donde vayas a usar los métodos de la librería debes añadir el import:

import com.github.pmdmiesbalmis.utilities.device.*

26/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

https://google.github.io/accompanist/permissions/

🎓 Caso de estudio: Obtener el teléfono de un
contacto
Partiendo de la de las utilidades de la librería com.github.pmdmiesbalmis.utilities.device
vamos a añadir un caso más que nos permita obtener el teléfono de un contacto de la
agenda del dispositivo.

🔗 Descarga: Si no consigues hacerlo, puedes descargar el código de este caso de estudio
en el siguiente enlace: intents_permisos_caso_estudio

Para ello vamos a adaptar el tutorial de la documentación oficial:
Seleccionar datos de un contacto específico para hacerlo.

Paso 1: Asegúrate de tener una cuenta de pruebas en el dispositivo y haber añadido al menos
un contacto con un teléfono.

Paso 2: Puesto que vamos a usar la agenda de contactos, debemos añadir el permiso
 READ_CONTACTS en el AndroidManifest.xml . Estas etiquetas irán dentro de la etiqueta
 <manifest> :

<uses-permission android:name="android.permission.READ_CONTACTS"/>

Paso 3: Analiza el código de registroSelectorTelefonoContacto en la librería
 com.github.pmdmiesbalmis.utilities.device que nos permitirá obtener el teléfono de un
contacto de la agenda. El código sería el siguiente:

27/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_8/intents_permisos_caso_estudio_recurso.zip
https://developer.android.com/guide/components/intents-common?hl=es-419#PickContactDat

@Composable

fun registroSelectorTelefonoContacto(

 onSeleccionNumeroContacto: (String) -> Unit

): ManagedActivityResultLauncher<String, Boolean> {

 val contexto = LocalContext.current

 val registroObtenerTelefono = rememberLauncherForActivityResult(

 contract = ActivityResultContracts.StartActivityForResult(),

 onResult = { result ->

 if (result.resultCode == Activity.RESULT_OK) {

 val contactUri: Uri? = result.data?.data

 val projection = arrayOf(ContactsContract.CommonDataKinds.Phone.NUMBER)

 if (contactUri != null) {

 contexto.contentResolver

 .query(contactUri, projection, null, null, null)

 .use { cursor ->

 if (cursor != null && cursor.moveToFirst()) {

 val numberIndex =

 cursor.getColumnIndex(ContactsContract.CommonDataKin

 .Phone.NUMBER)

 val number =

 if (numberIndex >= 0)

 cursor.getString(numberIndex)

 else "NO NUMBER"

 onSeleccionNumeroContacto(number)

 }

 }

 }

 }

 })

 return rememberLauncherForActivityResult(

 ActivityResultContracts.RequestPermission()

) { success ->

 if (success) {

 val intent = Intent(Intent.ACTION_PICK).apply {

 type = ContactsContract.CommonDataKinds.Phone.CONTENT_TYPE

 }

 registroObtenerTelefono.launch(intent)

 }

 }

}

28/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

La función composable registroSelectorTelefonoContacto recibe un callback que se
ejecutará cuando se seleccione un contacto de la agenda y recibirá como parámetro una
cadena con el teléfono el mismo.ç

Para ello, registramos y devolveremos el contrato de permisos
 ActivityResultContracts.RequestPermission() que nos permitirá lanzar un intent de selección
de contactos Intent.ACTION_PICK y que nos devolverá un Uri con el contacto seleccionado.
Para ello le pasamos el tipo de MIME CommonDataKinds.Phone.CONTENT_TYPE que nos devolverá
un contacto con un teléfono.

Paso 4: Por último, podemos usar la función composable registroSelectorTelefonoContacto
para obtener el teléfono de un contacto. En el mismo nivel que definamos el estado del
teléfono, definiremos el registro del contrato y la llamada al mismo. El código sería el
siguiente:

Nota

Como se indica en la documentación, tenemos otros tipos de MIME para obtener
contactos con un correo electrónico como CommonDataKinds.Email.CONTENT_TYPE o una
dirección postal como CommonDataKinds.StructuredPostal.CONTENT_TYPE .



29/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 EjemploIntentsTheme {

 var telefono by rememberSaveable { mutableStateOf("")}

 val registroSeleccionContacto = registroSelectorTelefonoContacto {

 telefono = it

 }

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 PruebaIntentsScreen(telefono) {

 registroSeleccionContacto.launch(

 android.Manifest.permission.READ_CONTACTS)

 }

 }

 }

 }

 }

}

@Composable

fun PruebaIntentsScreen(

 telefono: String,

 onSeleccionContacto: () -> Unit

) {

 Column(

 modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Button(onClick = onSeleccionContacto) { Text("Seleccionar contacto") }

 Text(telefono)

 }

}

30/30 PMDM 2º DAM Tema 3.8 - Intents y Contracts Rev. 15/12/2024 IES Doctor Balmis

