
Tema 3.7 - Corrutinas
Descargar estos apuntes pdf o html

Índice
Introducción
Corrutinas en Kotlin

Anatomía de una corrutina
Primer ejemplo básico
Concurrencia estructurada
Funciones de suspensión con suspend
Profundizando en el constructor de alcance CoroutineScope
Dispatchers e hilos

Cambiando el contexto y planificador de una corrutina con withContext
Controlando el estado de una corrutina con Job
Jobs asíncronos que devuelven un resultado async/await
Depurando contexto y planificador de una corrutina
Esquema resumen conceptos básicos de corrutinas

Corrutinas en Android
CoroutineScopes más comunes en Android
Side-effects y corrutinas en Compose

LaunchedEffect
Ejemplo de uso de corrutinas en Android

1/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_7_corrutinas.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_7_corrutinas.html

Introducción
Documentación oficial: Lenguaje Kotlin
Documentación oficial: Android
Vídeo: Android Developers
Vídeo: Martin Kiperszmid
Lista de reproducción: Stevdza-San (Inglés)
Lista de reproducción: Philipp Lackner (Inglés)

En primer lugar comentar que las corrutinas no son un concepto exclusivo de Kotlin, ya que existen en otros lenguajes como C#,
Python, Go, JavaScript, etc. En Kotlin, las corrutinas son una característica del lenguaje que implementa un patrón que nos permite
escribir código asíncrono de manera secuencial. Esto significa que podemos escribir código asíncrono como si fuera código
síncrono, sin tener que preocuparnos por los callbacks, los hilos, etc. Esto hace que el código sea más fácil de leer y de mantener.

¿Quiere decir esto que no podamos gestionar la concurrencia como lo hacemos en Java?. No, podemos seguir usando hilos tal cual lo
hacemos en Java a través del paquete kotlin.concurrent . Sin embargo, las corrutinas nos permiten gestionar la concurrencia de una
manera más sencilla y segura ya no están vinculada a ningún hilo en particular. Puede suspender su ejecución en un hilo y reanudarse
en otro.

Serán útiles para tener:

Ligereza: Puedes ejecutar muchas corrutinas de forma concurrente en un solo hilo debido a la compatibilidad con la suspensión,
que no bloquea el hilo en el que se ejecuta la corrutina.
Menos fugas de memoria: Puedo ejecutar un proceso dentro de un determinado 'scope' o alcance, y cuando el alcance se cierra,
todas las corrutinas que se ejecutan dentro de ese alcance se cancelan automáticamente. Esto significa que no hay fugas de
memoria.
Compatibilidad con cancelación incorporada: Se propaga automáticamente la cancelación a través de la jerarquía de
corrutinas en ejecución.
Integración con Jetpack: Muchas bibliotecas de Jetpack incluida Compose. Estas bibliotecas incluyen extensiones que
proporcionan compatibilidad total con corrutinas.

Las corrutinas forman parte de la librería estándar de Kotlin. No obstante para usarlas necesitamos añadir como dependencia la librería
de extensión (kotlinx.coroutines) donde se implementan en el fichero build.gradle.kts del módulo app:

Podemos ver las versión actual de corrutinas en el siguiente repositorio de Kotlin. Además, debemos fijarnos cual es la versíon de
Kotlin mínima asociada a la versión de corrutinas que queremos usar.

Por ejemplo si usáramos un programa de consola tendríamos que añadir:

En el libs.versions.toml ...

[versions]

coroutines = "1.9.0"

[libraries]

coroutines-core = {module = "org.jetbrains.kotlinx:kotlinx-coroutines-core", version.ref = "coroutines" }

En el DSL definido en build.gradle.kt del módulo app...

dependencies {

 implementation(libs.coroutines.core)

}

En un proyecto Android posiblemente no necesitemos añadirla porque ya estará incluida la librería a través de alguna otra
dependencia. Pero si no fuera así, tendríamos que añadir mínimo la implementación específica para Android:

2/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://kotlinlang.org/docs/coroutines-guide.html
https://developer.android.com/kotlin/coroutines?hl=es-419
https://www.youtube.com/watch?v=ZTDXo0-SKuU
https://www.youtube.com/watch?v=56yLoJNCa2I
https://www.youtube.com/watch?v=2QInrEaXyMo&list=PLSrm9z4zp4mE-o3sPq-PqzGHoFAIsQFI6
https://www.youtube.com/watch?v=ShNhJ3wMpvQ&list=PLQkwcJG4YTCQcFEPuYGuv54nYai_lwil_
https://github.com/Kotlin/kotlinx.coroutines

org.jetbrains.kotlinx:kotlinx-coroutines-android

3/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Corrutinas en Kotlin

Anatomía de una corrutina
Estará formada por las siguientes partes del esquema:

CoroutineScope

CoroutineContext

ChildScope ChildScope

Job Dispatcher Exception
handler ...

Child Context Child Context

Definiciones básicas:

CoroutinesScope: Es el ámbito en el que se ejecuta la corrutina. Por ejemplo, si lanzamos una corrutina desde una actividad, el
ámbito de la corrutina será la actividad. Cuando la actividad se destruya, la corrutina se cancelará automáticamente.
CoroutineContext: Es el contexto en el que se ejecuta la corrutina y está forma por un conjunto de elementos que definen el
comportamiento de la corrutina

Job: Objeto que representa la tarea concurrente que se está ejecutando. Podemos usar este objeto para controlar el estado
de la corrutina, por ejemplo, para esperarla o cancelarla. El ciclo de vida del trabajo asociado a una corrutina lo puedes ver en
el siguiente diagrama.

Job Lifecycle

New Activestart

Completing
(wait children)complete

Cancelling

cancel/falil

Completedfinish

cancel/falil

Cancelledfinish

Dispatcher: Podemos decir que es el hilo en el que se ejecuta la corrutina. Por defecto, las corrutinas se ejecutan en el hilo de la
corrutina que las lanza. Pero podemos cambiar el hilo de ejecución de una en el contexto de la misma.

CoroutineExceptionHandler: Permite que la corrutina tenga un manejo de excepciones personalizado en su contexto.
Corrutinas 'Hijas': Dentro de una corrutina podemos lanzar otras corrutinas. El ámbito de estas corrutinas secundarias
(ChildScope) se ejecutarán dentro del ámbito o (CoroutinesScope) corrutina principal. Esto significa que si la corrutina principal se
cancela, también se cancelarán las corrutinas secundarias. Es por eso que el Job o Tarea del contexto de la corrutina espera a que
todas las corrutinas secundarias finalicen antes de finalizar su ciclo de vida.

Nota

para probar el código del tema, puedes crear un proyecto de consola en Kotlin o usar el playground



4/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://play.kotlinlang.org/

Vamos a ir adentrándonos con ejemplos en las anteriores definiciones...

Primer ejemplo básico
Veamos el siguiente ejemplo extraído de la documentación oficial de Kotlin:

import kotlinx.coroutines.*

fun main() = runBlocking { // Corrutina 1

 launch { // Corrutina 2

 delay(1000L)

 println("Mundo!")

 }

 println("Hola")

}

Mostrará por pantalla:

Hola

Mundo!

Vamos a desglosar lo que hace este código....

 runBlocking es un constructor de corrutinas, esto es, define un bloque de código que se ejecuta como una corrutina. En este
caso, el bloque de código se ejecuta en el hilo principal (será el Dispatcher por defecto de su contexto si no especificamos otro).
 runBlocking es una función de suspensión que bloquea el hilo donde se ejecuta mientras se ejecuta el bloque de código. Esto
se hace para evitar que el programa finalice antes de que se ejecute la corrutina.
 launch es un constructor de corrutinas. Lanza una nueva corrutina en paralelo con el resto del código, que continúa funcionando
de forma independiente. Es por eso que se muestra primero 'Hola'
 delay es una función de suspensión especial. Suspende la corrutina durante un tiempo específico.

Main Thread / Hilo Principal

main()
ACTIVE

main()
bloqueado hasta

fin Corrutina 1
COMPLETING

Hilo Principal
Bloquedao

Corrutina 1
runBlocking

ACTIVE

start
corrutina 1

con runBlocking

main()
COMPLETED

finish

prinln ("Hola")
ACTIVE

Corrutina 2
launch

ACTIVE

start
corrutina 2
con launch

Corrutina 1 bloqueada
hasta fin Corrutina 2

COMPLETING

Corrutina 1
Bloqueada

finish

delay (1000L)
prinln ("Mundo!")

ACTIVE

finish

Tanto el código de la corrutina 1 (bloque runBlocking) y el código de la corrutina 2 (bloque launch) se ejecutan en el hilo principal
de forma concurrente.

1. Tras el primer runBlocking , el main se queda esperando a que termine la corrutina 1, por lo que se bloquea el hilo principal.
2. La corrutina 1 lanza la corrutina 2 y sigue ejecutando su código println ("Hola") .

5/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

3. La corrutina 2 se suspende durante 1 segundo y luego imprime println ("Mundo!") pero la corrutina 1 ya habrá terminado y se
habrá unido al hilo principal bloqueado que continúa con la ejecución del main .

Concurrencia estructurada
Las corrutinas siguen un principio de concurrencia estructurada, lo que significa que solo se pueden lanzar nuevas corrutinas en un
 CoroutineScope específico que delimita la vida útil de la corrutina como ya hemos comentado.

El ejemplo anterior muestra que runBlocking establece el alcance correspondiente y es por eso que el ejemplo anterior espera hasta
que Mundo! se imprime después de un segundo de retraso y solo entonces sale.

En una aplicación real, lanzarás muchas corrutinas. La concurrencia estructurada garantiza que no se pierdan. Un ámbito externo
no puede completarse hasta que se completen todas sus rutinas secundarias. La simultaneidad estructurada también garantiza que
cualquier error en el código se informe correctamente y nunca se pierda.

Funciones de suspensión con suspend
El código de ejemplo está escrito en un solo bloque. ¿Cómo podríamos separar en diferentes funciones el bloque de las
corrutinas?.

Si extraemos el bloque de código interno de la corrutina 2 launch { ... } a una función separada. Cuando se realiza la
refactorización 'Extraer función' en este código, obtiene una nueva función con el modificador suspend . Esta es nuestra primera
función de suspensión.

fun main() = runBlocking {

 launch {

 doMundo()

 }

 println("Hello")

}

suspend fun doMundo() {

 delay(1000L)

 println("Mundo!")

}

Las funciones de suspensión se pueden usar dentro de las corrutinas al igual que las funciones normales, pero su característica
adicional es que, a su vez, pueden usar otras funciones de suspensión (como delay este ejemplo) para suspender la ejecución de una
corrutina.

Fíjate que en el código del editor, las funciones de suspensión se muestran con un icono de 'flecha suspendida'. Esto es una ayuda
visual para distinguir las funciones de suspensión de las funciones normales indicándome que el la corrutina se suspenderá en ese
punto y continuará con la ejecución cuando finalice dicha función.

Profundizando en el constructor de alcance CoroutineScope
Al usar runBlocking o launch dentro de un bloque de código, se crea un CoroutineScope . CoroutineScope es una interfaz que
representa un ámbito de corrutina. El ámbito de corrutina es responsable de cancelar todas las corrutinas que se ejecutan en él
cuando se cierra.

Resumen

Podemos resumir diciendo que una función modificada con suspend (función de suspensión) es una función que solo puede ser
ejecutada de forma asíncrona dentro de una corrutina o dentro de otra función de suspensión.



6/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Además de los alcances definidos por los constructores que ya hemos definido. Es posible declarar nuestro propio alcance utilizando el
constructor coroutineScope . Este crea un alcance de rutina y no se finaliza hasta que todos las corrutinas lanzadas dentro de él no
finalicen.

fun main() = runBlocking {

 doMundo()

}

suspend fun doMundo() = coroutineScope {

 launch {

 delay(1000L)

 println("Mundo!")

 }

 println("Hola")

}

Los constructores runBlocking y coroutineScope pueden parecer similares porque ambos esperan a que se completen su bloque y
todos sus corrutinas secundarias. La principal diferencia es que runBlocking bloquea el hilo actual en espera, mientras que
 coroutineScope suspende la corrutina actual liberando el hilo subyacente para otros usos. Por tanto, coroutineScope es una función
de suspensión y solo puede ser llamado dentro de otra función de suspensión o dentro de una corrutina.

Además, todas las corrutinas que se ejecuten dentro del mismo CorrutineScope se ejecutarán de forma concurrente en el mismo hilo.

suspend fun doMundo() = coroutineScope {

 launch {

 delay(2000L)

 println("Mundo 2")

 }

 launch {

 delay(1000L)

 println("Mundo 1")

 }

 println("Hola")

}

7/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Dispatchers e hilos
Como hemos comentado, el contexto de corrutina incluye un CoroutineDispatcher o 'despachador' de corrutina que determina qué
subproceso utiliza la corrutina correspondiente para su ejecución.

Todos los constructores de corrutinas, como launch y async , aceptan un parámetro CoroutineContext opcional que se puede usar
para especificar explícitamente el despachador de la nueva rutina y otros elementos de contexto.

Hay 5 tipos de Dispatchers:

 Dispatchers.Main , este es el hilo principal. A diferencia de los demás, a veces tenemos que definirlo explícitamente (por ejemplo,
en el entorno de prueba).
 Dispatchers.IO , esto para el proceso de Redes y Discos. Cualquier cosa que tenga que ver con la extracción o envío de datos.
 Dispatchers.Default , esto es para cualquier otro subproceso de trabajo que no sea principal (es decir, en segundo plano) y se
asigna automáticamente.
 Dispatchers.Unconfined , este es un despachador especial que permite que la tarea cambie sus procesos específicos cuando
suspende y reanuda su tarea.
 newSingleThreadContext , permite al usuario definir sus propios procesos.

Cuando launch { ... } se usa sin parámetros, hereda el contexto (y por lo tanto el despachador) del CoroutineScope desde el que se
inicia. En este caso, hereda el contexto de la corrutina principal que se ejecuta en el hilo principal Dispatchers.Main .

Una forma de de indicar el hilo de ejecución es cuando lanzamos la corrutina launch o async . En el ejemplo anterior tanto
 runBlocking como launch usan el hilo principal Dispatchers.Main por heredar el contexto. Pero podemos cambiar el hilo de ejecución
en launch de la siguiente manera...

Cambiando el contexto y planificador de una corrutina con withContext

Podemos cambiar el contexto de una corrutina en cualquier momento usando la función de suspensión withContext . Esta función de
suspensión crea un nuevo contexto de corrutina con el 'dispatcher' especificado y ejecuta el bloque de código en él. Cuando el bloque
de código finaliza, la corrutina vuelve al contexto anterior.

Normalmente, withContext se utiliza en situaciones en las que desea cambiar temporalmente a un contexto de ejecución diferente
para realizar una operación que sea más apropiada para ese contexto, como realizar una solicitud de red, E/S de disco o cálculos que
requieren un uso intensivo de la CPU.

Por ejemplo, una forma más 'correcta' de hacer el ejemplo anterior sería la siguiente:

fun main() = runBlocking {

 doMundo()

}

suspend fun doMundo() = coroutineScope {

 // Cambiamos el planificador de ejecución.

 launch(Dispatchers.Default) {

 delay(1000L)

 println("Mundo!")

 }

 println("Hola")

}

7

8/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Donde, es el método de suspensión según lo que tenga que hacer en que planificador se ejecuta cambiando su contexto.

Por tanto, este sería el esquema típico de uso de withContext ...

suspend fun peticionREST(): Dato

= withContext(Dispatchers.IO) { getDato() }

suspend fun realizaProcesoPesado(): Unit

= withContext(Dispatchers.Default) { proceso() }

fun main() = runBlocking {

 launch { doMundo() }

 println("Hola")

}

suspend fun doMundo() = withContext(Dispatchers.Default) {

 delay(1000L)

 println("Mundo!")

}

6

9/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Controlando el estado de una corrutina con Job
Cuando lanzamos una corrutina con launch , se devuelve un objeto Job que representa la tarea que se está ejecutando en el contexto
de la corrutina. Como ya hemos comentado, podemos usar este objeto para controlar el estado de la corrutina, por ejemplo, para
esperarla o cancelarla.

 job.join() : función de suspensión que espera a que la corrutina termine;

fun main() = runBlocking {

 val job : Job = launch {

 delay(1000L)

 println("Mundo!")

 }

 println("Hola")

 job.join()

 println("Fin")

}

 job.cancelAndJoin() : Notifica al trabajo su cancelación y espera a que termine ordenadamente. El trabajo internamente debe
verificar periódicamente el estado de cancelación usando la propiedad de solo acceso de del CorrutineScope isActive . Además,
las funciones de suspensión cancelables producen CancellationException en la cancelación, que se puede controlar de la manera
habitual por ejemplo con un finally para realizar las acciones de limpieza necesarias.

fun main() = runBlocking {

 val job : Job = launch(Dispatchers.Default) {

 try {

 val startTime = System.currentTimeMillis()

 var nextPrintTime = startTime

 var i = 0

 while (isActive) { // cancellable computation loop

 // print a message twice a second

 if (System.currentTimeMillis() >= nextPrintTime) {

 println("job: I'm sleeping ${i++} ...")

 nextPrintTime += 500L

 }

 }

 } finally {

 println("job: I'm resuming the execution")

 }

 }

 delay(1300L) // Espera un rato

 println("main: I'm tired of waiting!")

 job.cancelAndJoin() // Cancela el trabajo y espera a que termine

 println("main: Now I can quit.")

}

Mostrará ...

job: I'm sleeping 0 ...

job: I'm sleeping 1 ...

job: I'm sleeping 2 ...

main: I'm tired of waiting!

job: I'm resuming the execution

main: Now I can quit.

 withTimeout(timeout: Long) { } Para generar un contexto de corrutina que expira después de un tiempo determinado
generando un evento de cancelación y la excepción TimeoutCancellationException .
 withTimeout es una función de suspensión. Por ejemplo, podemos reescribir el código anterior de la siguiente forma:

10/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Mostrará ...

main: Waiting for job 1.3 secs.

job: I'm sleeping 0 ...

job: I'm sleeping 1 ...

job: I'm sleeping 2 ...

job: I'm resuming the execution

main: Now I can quit.

suspend fun trabajoBloqueante(timeout: Long) = withTimeout(timeout) {

 val startTime = System.currentTimeMillis()

 try {

 var nextPrintTime = startTime

 var i = 0

 // Se ejecuta hasta que se cumple el timeout

 while (isActive) {

 if (System.currentTimeMillis() >= nextPrintTime) {

 println("job: I'm sleeping ${i++} ...")

 nextPrintTime += 500L

 }

 }

 } finally {

 println("job: I'm resuming the execution")

 }

}

fun main() = runBlocking {

 println("main: Waiting for job 1.3 secs.")

 val job = launch {

 trabajoBloqueante(1300L)

 }

 job.join() // Espera a que termine o expire el trabajo

 println("main: Now I can quit.")

}

1

11/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Jobs asíncronos que devuelven un resultado async/await
Hasta ahora hemos visto que las corrutinas se ejecutan de forma concurrente, pero no hemos visto cómo obtener un resultado de una
corrutina. Para ello, podemos usar el constructor async . Este constructor es similar a launch , pero devuelve un objeto Deferred que
representa un resultado futuro.

 Deferred es una subclase de Job y, por lo tanto, también se puede cancelar. Además, tiene una función de suspensión await() que
devuelve el resultado cuando está listo.

Veamos un ejemplo donde tenemos la función asíncrona esPrimo(n: Long) que devuelve un booleano indicando si el número pasado
como parámetro es primo o no.

Puesto que async debe ejecutarse dentro de un CoroutineScope , lo lanzamos dentro del GlobalScope . GlobalScope es un alcance
global que no está vinculado a ningún hilo en particular y, por lo tanto, no bloquea el hilo principal.

fun esPrimo(n: Long): Deferred<Boolean> = GlobalScope.async {

 n > 1 && (2 until n).none { n % it == 0L }

}

fun main() = runBlocking {

 val n = 1000000007L

 println("Viendo si es primo el número $n")

 val job : Deferred<Boolean> = esPrimo(n)

 print("Esperando cálculo ")

 // Vamos a mostrar un punto cada 100 ms mientras vemos

 // si el número es primo o no

 while (!job.isCompleted) {

 print(".")

 delay(100)

 }

 job.await().let {

 println("\nEl numero $n ${if (it) "es" else "no es"} primo")

 }

}

Mostrará ...

Viendo si es primo el número 1000000007

Esperando cálculo

El numero 1000000007 es primo

Hemos usado GlobalScope para lanzar la corrutina, porque si hiciéramos esto que es más 'correcto'. muestraProgreso quedaría
bloqueado al estar ejecutándose en el mismo hilo y mismo alcance ya que esPrimo es un proceso que demanda mucho tiempo de
CPU. Ya verás que en el próximo punto solucionaremos esto con withContext para cambiar de hilo.

Warning

Aunque en este ejemplo hemos usado GlobalScope para lanzar la corrutina, no es recomendable usarlo y solo se ha usado
para simplificar el ejemplo. Puedes ver más información en https://kotlinlang.org/docs/composing-suspending-
functions.html#async-style-functions



12/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://kotlinlang.org/docs/composing-suspending-functions.html#async-style-functions
https://kotlinlang.org/docs/composing-suspending-functions.html#async-style-functions

suspend fun esPrimo(n: Long) = coroutineScope {

 n > 1 && (2 until n).none { n % it == 0L }

}

suspend fun muestraProgreso(job : Deferred<Boolean>)

= withContext(Dispatchers.Default) {

 print("Esperando cálculo ")

 while (!job.isCompleted) {

 print(".")

 delay(100)

 }

}

fun main() = runBlocking {

 val n = 1000000007L

 println("Viendo si es primo el número $n")

 val job : Deferred<Boolean> = async {esPrimo(n) }

 muestraProgreso(job)

 job.await().let {

 println("\nEl numero $n ${if (it) "es" else "no es"} primo")

 }

}

13/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Depurando contexto y planificador de una corrutina
Vamos a definir la siguiente función de extensión para obtener información de nuestro contexto:

fun CoroutineContext.info() =

"\nCorrutina: {\n\tContexto: ${this}, \n\tProceso: ${Thread.currentThread().name}\n}"

Si volvemos a ejecutar el ejemplo inicial...

fun main() = runBlocking {

 launch {

 delay(1000L)

 println("Mundo! ${coroutineContext.info()}")

 }

 println("Hola ${coroutineContext.info()}")

}

Mostrará ...

Hola

Corrutina: {

Contexto: [BlockingCoroutine{Active}@7d4793a8, BlockingEventLoop@449b2d27],

Proceso: main

}

Mundo!

Corrutina: {

Contexto: [StandaloneCoroutine{Active}@1ae369b7, BlockingEventLoop@449b2d27],

Proceso: main

}

Ahora modificamos el contexto de la corrutina 2 para que se ejecute en el hilo Dispatchers.Default y además le asignamos un nombre
ambas corrutinas para poder identificarlas:

Ahora la salida nos mostrará el nombre de la corrutina y el proceso en el que se ejecuta:

Ejemplo:

Volvamos al cálculo de números primos. Pero esta vez vamos a implementarlo de forma más adecuada, añadiendo logs de
depuración, sin usar GlobalScope , definiendo funciones de suspensión y usando withContext para cambiar de hilo.

fun main() = runBlocking(CoroutineName("CORRUTINA 1")) {

 launch (Dispatchers.Default + CoroutineName("CORRUTINA 2")) {

 delay(1000L)

 println("Mundo! ${coroutineContext.info()}")

 }

 println("Hola ${coroutineContext.info()}")

}

2

Hola

Corrutina: {

Contexto: [CoroutineName(CORRUTINA 1), BlockingCoroutine{Active}@1bc6a36e, BlockingEventLoop@1ff8b8f],

Proceso: main

}

Mundo!

Corrutina: {

Contexto: [CoroutineName(CORRUTINA 2), StandaloneCoroutine{Active}@f4e4ec0, Dispatchers.Default],

Proceso: DefaultDispatcher-worker-2

}

4

9

14/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

fun CoroutineContext.info() = "\nCorrutina: {\n\tContexto: ${this}, \n\tProceso: ${Thread.currentThread().name}\n}"

suspend fun esPirmo(n: Long): Boolean

= withContext(Dispatchers.Default + CoroutineName("ESPRIMO")) {

 println(coroutineContext.info())

 n > 1 && (2 until n).none { n % it == 0L }

}

suspend fun muestraProgreso()

= withContext(Dispatchers.Default + CoroutineName("PROGRESO")) {

 try {

 delay(200)

 println(coroutineContext.info())

 print("Esperando cálculo ")

 while (true) {

 print(".")

 delay(100)

 }

 } catch (e: CancellationException) {

 println("\nProgreso cancelado ${coroutineContext.info()}")

 }

}

fun main() = runBlocking {

 val n = 1000000007L

 println("Viendo si es primo el núumero $n")

 val jobPrimo = async { esPirmo(n) }

 val jobProgreso = launch { muestraProgreso() }

 println("En main esperando a esPrimio() ${coroutineContext.info()}")

 jobPrimo.await().let {

 println("\nEl numero $n ${if (it) "es" else "no es"} primo")

 }

 jobProgreso.cancel()

}

Mostrará ...

Viendo si es primo el núumero 1000000007

En main esperando a esPrimio()

Corrutina: {

Contexto: [BlockingCoroutine{Active}@47fd17e3, BlockingEventLoop@7cdbc5d3],

Proceso: main

}

Corrutina: {

Contexto: [CoroutineName(ESPRIMO), DispatchedCoroutine{Active}@472bb070, Dispatchers.Default],

Proceso: DefaultDispatcher-worker-2

}

Corrutina: {

Contexto: [CoroutineName(PROGRESO), ScopeCoroutine{Active}@5931574c, Dispatchers.Default],

Proceso: DefaultDispatcher-worker-1

}

Esperando cálculo

El numero 1000000007 es primo

Progreso cancelado

Corrutina: {

Contexto: [CoroutineName(PROGRESO), ScopeCoroutine{Cancelling}@5931574c, Dispatchers.Default],

Proceso: DefaultDispatcher-worker-2

}

15/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Esquema resumen conceptos básicos de corrutinas

Corrutinas

Creación

No
producen
resultado

val job : Job = scope.launch {

try {
procedimientoAsincrono()

} catch (e: CancellationException) {
// Manejo de la cancelación

}

}
...
job.isActive // Comprueba si está activa
job.cancel() // Cancela la corrutina
job.join() // Espera a que finalice

Producen
resultado

val job : Deferred<Tipo> = scope.async {

funcionAsincrona() // Se evalúa a Tipo
}
...
job.await().let { resultado ->

// Procesar el resultado
}

Funciones
de suspensión
o asíncronas

suspend fun procedimientoAsincrono() = withContext(Dispatchers.Default) {

// Puedo llamar directamente a otras funciones de suspension
// Tengo acceso a coroutineContext
// Puedo lanzar otras corrutinas

}

suspend fun funcionAsincrona() : Tipo = withContext(Dispatchers.Default) {

...
// Se evalúa a tipo

}

16/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Corrutinas en Android
Utilizaremos los conceptos ya vistos pero adaptados a Android. Alguna de las cosas que deberemos tener en cuenta son:

1. ❌ No debemos usar runBlocking en el hilo principal porque lo bloqueará.En su lugar, podemos usar runBlocking en un hilo
secundario.

2. ❌ No deberíamos lanzar corrutinas en el GlobalScope porque no se cancelarán automáticamente cuando se destruya el
componente de Android.

3. Las funciones de suspensión deberían ser seguras para su llamada desde el subproceso principal. Por ejemplo, cambiando el
contexto de ejecución para realizar una solicitud de red con withContext(Dispatchers.IO) .

4. ❌ No debemos actualizar la UI desde una corrutina que se ejecute en un contexto diferente al del hilo principal. Deberemos usar
 withContext(Dispatchers.Main) para cambiar al contexto del hilo principal y actualizar la UI.

5. ❌ No debemos lanzar una corrutina que modifique un estado antes de finalizar la composición de la UI.
6. Si la aplicación entra en segundo plano. En aquellos alcances de corrutina que estén vinculados al ciclo de vida de un componente

de Android, se cancelarán automáticamente solo cuando el componente se destruya. Pero si no es así, deberemos cancelar
manualmente las corrutinas que se estén ejecutando en segundo plano si queremos que se paren.

7. ❌ No debemos exponer métodos de suspensión públicos en el ViewModel. Pero sí puede lanzar corrutinas en su alcance o mejor
exponer flujos de datos que se puedan observar desde la UI.

CoroutineScopes más comunes en Android
Los alcances (CoroutineScope) de las corrutinas se pueden vincular a los ciclos de vida de los componentes de Android.

 rememberCoroutineScope() Vinculado al ciclo de vida de un componente de Android como un Composable. Se cancela cuando el
componente se destruye.
Lo vamos a usar solo cuando queramos ejecutar una acción sobre un componente tras un evento. Ejemplo extraído de
documentación oficial de Android:

@Composable

fun MoviesScreen(scaffoldState: ScaffoldState = rememberScaffoldState()) {

 // Crea un CoroutineScope vinculado al ciclo de vida de MoviesScreen

 // este alcance es recordado en la recomposición.

 val scope = rememberCoroutineScope()

 Scaffold(scaffoldState = scaffoldState) {

 Column {

 /* ... */

 Button(

 onClick = {

 // Crea una nueva corrutina en el manejador del

 // evento del botón para mostrar el snackbar asociado al Scaffold

 scope.launch {

 // showSnackbar es una función de suspensión

 scaffoldState.snackbarHostState.showSnackbar("Something happened!")

 }

 }

) {

 Text("Press me")

 }

 }

 }

}

3

5

12

17

17/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://developer.android.com/kotlin/coroutines/coroutines-best-practices#global-scope
https://developer.android.com/jetpack/compose/side-effects?hl=es-419#remembercoroutinescope

 viewModelScope : Vinculado al ciclo de vida del ViewModel. Se cancela cuando el ViewModel se destruye.
Dentro de cualquier clase que herede de ViewModel dispondremos de la propiedad viewModelScope que será un CoroutineScope
vinculado al ciclo de vida del mismo. Crear una corrutina de las formas que hemos visto es tan simple como hacer...

viewModelScope.launch { ... }

val deferredJob = viewModelScope.async { ... }

Recuerda poara crear una corrutina hija dentro de otra corrutina, debemos usar el CoroutineScope de la corrutina padre. Por
ejemplo, si queremos lanzar una corrutina desde un ViewModel que se ejecute en el hilo principal y que se cancele cuando el
ViewModel se destruya, podemos hacerlo de la siguiente forma:

viewModelScope.launch {

 ...

 // Corrutina hija en el alcance del padre, con su contexto específico.

 launch(Dispatchers.IO) {

 try {

 }

 catch (ce: CancellationException) {

 // Manejo de la cancelación

 }

 }

 // Esperará a que termine la corrutina hija

}

Para finaliar cualquier corrutina que se esté ejecutando en el viewModelScope podemos usar la función viewModelScope.cancel() o
 viewModelScope.coroutineContext.cancelChildren() . Por ejemplo...

fun paraProceso() {

 // Cancelará las corrutinas hijas creados dentro de su contexto.

 // Provocará la excepción CancellationException en las corrutinas hijas

 viewModelScope.coroutineContext.cancelChildren()

}

 lifecycleScope : Vinculado al ciclo de vida de un componente de Android como una Activity. Se cancela cuando el componente
se destruye.
Es idéntico a viewModelScope pero su alcance es una Actividad o Fragment.

18/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Side-effects y corrutinas en Compose
Un efecto lateral o side-effect de Compose es un cambio en el estado de la app que ocurre fuera del alcance de una función de
componibilidad. Puesto que no podemos realizar ningún proceso bloqueante durante la composición de la UI y además no tenemos
ningún control sobre el momento, orden y finalización de la misma. En el ejemplo anterior donde hemos visto como podemos usar
 rememberCoroutineScope() para mostrar una notificación en un Scaffold tras un evento de click en un botón. Esto sería un efecto
lateral fuera de la composición de la UI. Por resumir, cuando un cambio de estado en la UI no lo controla la composición, sino
que necesitemos que sea predecible y asíncrono, estaremos ante un efecto lateral.

LaunchedEffect

Ejecuta funciones de suspensión en el alcance de un elemento componible.

Por ejemplo, para ejecutar una función de suspensión ante uno o varios cambios de estado.

📌 Nota: Si especificamos LaunchedEffect(Unit) { ... } la corrutina se ejecutará solo en la primera composición del
componente.

Podríamos reescribir el código de la función StateFul anterior gestionando el Side-effect en el manejador del evento con
 rememberCoroutineScope() .

@Composable

fun FlechaRotable() {

 var rotationZAnimationSatate = remember { Animatable(0f) }

 var rotado by remember { mutableStateOf(false) }

 // Indico el estado o los estados que provocarán la ejecución de

 // la o las funciones de suspensión

 LaunchedEffect(rotado) {

 // Estamos dentro de un CorourineScope

 // esto se ejecuta de forma asíncrona con la composición de la UI

 // por tanto las funcionen de suspensión no la bloquean.

 // Función de suspensión

 rotationZAnimationSatate.animateTo(

 targetValue = if (rotado) 180f else 0f,

 animationSpec = tween(durationMillis = 500, easing = FastOutSlowInEasing))

 }

 Icon(

 painter = rememberVectorPainter(image = Icons.Filled.ArrowCircleUp),

 contentDescription = null,

 modifier = Modifier

 .clickable { rotado = !rotado }

 .graphicsLayer { rotationZ = rotationZAnimationSatate.value }

 .size(200.dp)

)

}

6

17

19/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

@Composable

fun FlechaRotable() {

 var rotationZAnimationSatate = remember { Animatable(0f) }

 var rotado by remember { mutableStateOf(false) }

 var coroutineScope = rememberCoroutineScope()

 Icon(

 painter = rememberVectorPainter(image = Icons.Filled.ArrowCircleUp),

 contentDescription = null,

 modifier = Modifier

 .clickable {

 rotado = !rotado

 coroutineScope.launch {

 rotationZAnimationSatate.animateTo(

 targetValue = if (rotado) 180f else 0f,

 animationSpec = tween(durationMillis = 500, easing = FastOutSlowInEasing))

 }

 }

 .graphicsLayer { rotationZ = rotationZAnimationSatate.value }

 .size(200.dp)

)

}

5

13

17

20/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Ejemplo de uso de corrutinas en Android
🔗 Dercarga: El proyecto con el código del ejemplo que vamos a ver lo puedes descargar de este enlace

Es la típica aplicación donde vamos a tener dos corrutinas a modo de corredores. Cada corredor se ejecutará en un hilo diferente y se
mostrará su progreso en la UI. Además, tendremos un botón para Empezar y Parar la carrera y otro que Reiniciará la carrera y estará
activo solo cuando la carrera esté parada. Además, al llegar ambos corredores al final del progreso la carrera parará automáticamente.
También parará automáticamente si la aplicación pasa a segundo plano.

En primer lugar en el paquete com.ejemplo_corrutinas.utilities hemos definido el fuente CoroutinesDebug.kt que nos permitirá
mostrar información de las corrutinas en el Logcat. Para ello, hemos definido la siguiente función de extensión a usar en un contexto
de corrutina:

fun CoroutineContext.log(

 corrutina: String = "Corrutina",

 accion: String = "No especificada"

) {

 Log.println(

 Log.DEBUG, corrutina,

 "${corrutina}: {\n\tAccion: ${accion}, \n\tContexto: ${this}\n}"

)

}

En el paquete com.ejemplo_corrutinas.ui.features.seguimientocarrera definiremos la pantalla de prueba de nuestra aplicación. El
interfaz del componente de la pantalla será el siguiente:

@Composable

fun SeguimientoCarreraScreen(

 corredor1: CorredorUiState,

 corredor2: CorredorUiState,

 enCarrera: Boolean,

 onSeguimientoCarreraEvent: (SeguimientoCarreraEvent) -> Unit,

 modifier: Modifier = Modifier

)

21/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_7/corrutinas_android_ejemplo.zip

Donde el estado de cada corredor se representará por la siguiente clase:

Además, dispondremos de un 'State' enCarrera que me indicará si se está corriendo la carrera o no. Y un onSeguimientoCarreraEvent
que será el manejador de eventos de la pantalla y donde se controla la pulsación de ambos botones.

sealed interface SeguimientoCarreraEvent {

 data object OnEmpezarPararClick : SeguimientoCarreraEvent

 data object OnReiniciarClick : SeguimientoCarreraEvent

}

Podemos crear un @Preview de test similar a la carrera con corrutinas. Pero como se trata de un composable deberemos usar
 LaunchesEffect para ejecutar la simulación de la carrera en un CoroutineScope dentro de la composición de dicho preview de prueba

@Preview

@Composable

private fun SeguimientoCarreraScreenPreview() {

 // Creamos los estados a usar en la UI

 var corredor1 by remember {

 mutableStateOf(CorredorUiState(nombre = "Corredor 1"))

 }

 var corredor2 by remember {

 mutableStateOf(CorredorUiState(nombre = "Corredor 2"))

 }

 var enCarrera by remember { mutableStateOf(false) }

 ...

data class CorredorUiState(

 val nombre: String,

 val porcentajeProgreso : Int = 0

) {

 // Función de suspensión que simula el avance del corredor en la

 // carrera bloquerá la corrutina con una espera entre 5 y 300 ms

 suspend fun avanza(): CorredorUiState {

 delay((5L..300L).random())

 val nuevoPorcentaje = porcentajeProgreso + 1

 return copy(porcentajeProgreso = nuevoPorcentaje)

 }

 fun reinicia(): CorredorUiState = copy(porcentajeProgreso = 0)

}

7

22/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

 ...

 // Cada vez que hay un cambio en uno de estos estados se recompone la UI

 // y se lanza el LaunchedEffect con las corrutinas de simulación de la carrera

 LaunchedEffect(

 key1 = enCarrera,

 key2 = corredor1.porcentajeProgreso,

 key3 = corredor2.porcentajeProgreso

) {

 // Cada corrutina hara que avance el corredor cambiando su estado

 // y por tanto recomponinedo la UI y relanzando el LaunchedEffect

 // Ambos procesos se ejecutan en un contexto de corrutina diferente

 // con Dispatchers.Default para que el sistema decida el hilo más adecuado para el preview

 val jobCorredor1 = launch(Dispatchers.Default) {

 if (enCarrera && corredor1.porcentajeProgreso < 100)

 corredor1 = corredor1.avanza()

 }

 val jobCorredor2 = launch(Dispatchers.Default) {

 if (enCarrera && corredor2.porcentajeProgreso < 100)

 corredor2 = corredor2.avanza()

 }

 // Esperamos a que los dos correodres avancen si lo tienen que hacer

 joinAll(jobCorredor1, jobCorredor2)

 // Si ambos corredores han llegado al 100% paramos la carrera

 if (corredor1.porcentajeProgreso == 100 && corredor2.porcentajeProgreso == 100)

 enCarrera = false

 }

 ...

Por último, definimos el componente de nuestra pantalla...

 ...

 EjemploCorrutinasTheme {

 Surface {

 SeguimientoCarreraScreen(

 corredor1 = corredor1,

 corredor2 = corredor2,

 enCarrera = enCarrera,

 onSeguimientoCarreraEvent = {

 when (it) {

 SeguimientoCarreraEvent.OnEmpezarPararClick -> {

 enCarrera = !enCarrera

 }

 SeguimientoCarreraEvent.OnReiniciarClick -> {

 corredor1 = corredor1.reinicia()

 corredor2 = corredor2.reinicia()

 }

 }

 }

)

 }

 }

}

23/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Bien, ahora vamos a definir un ViewModel para nuestro Screen y realizar el proceso de la carrera en el mismo. La cosa va a cambiar
'un poco' puesto que las corrutinas se lanzarán desde ahora desde un CoroutineScope distinto al de la composición.

class SeguimientoCarreraViewModel : ViewModel() {

 // Definimos los estados de la UI

 var corredor1 by mutableStateOf(

 CorredorUiState(nombre = "Corredor 1")

)

 private set

 var corredor2 by mutableStateOf(

 CorredorUiState(nombre = "Corredor 2")

)

 private set

 var enCarrera by mutableStateOf(false)

 private set

 // Gestión de los eventos del Screen

 fun onSeguimientoCarreraEvent(event: SeguimientoCarreraEvent) {

 when (event) {

 SeguimientoCarreraEvent.OnEmpezarPararClick -> {

 if (enCarrera)

 // Cambiamos el estado de enCarrera = false

 // y paramos las corrutinas que avanzan cambiando

 // el valor del estado del progreso

 pararDeCorrer()

 else

 // Cambiamos el estado de enCarrera = false

 // e iniciamos las corrutinas que avanzan cambiando

 // el valor del estado del progreso

 empezarACarrer()

 }

 SeguimientoCarreraEvent.OnReiniciarClick -> {

 // Ojo no debería llamar a Reiniciar si estoy en carrera

 // ya que una corrutina suspendida en delay puede actualizar

 // el estado de la UI tras el reset. Esto es porque guarda un

 // el valor de un estado inmutable de la UI anterior.

 corredor1 = corredor1.reinicia()

 corredor2 = corredor2.reinicia()

 }

 }

 }

 fun pararDeCorrer() {

 // Cancelo las corrutinas hijas que se estén ejecutando

 // en el contexto del viewModelScope que en mi caso son

 // los dos corredores.

 // Si tuviera más corrutinas, tendrá que guardarme los trabajos

 // como propiedades privadas en el ViewModel y bucarlos en el

 // contexto para cancelarlos de forma específica.

 viewModelScope.coroutineContext.log("CARRERA", "Parando corredores...")

 viewModelScope.coroutineContext.cancelChildren()

 }

 ...

24/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

 ...

 // Lanza una corrutina que simula el avance de un corredor

 // para ello recibe el estado inicial del corredor que se guarda en el VM

 // una función que actualiza el estado de la UI

 // Devolverá un Job que se puede usar para cancelar la corrutina o esperar a que termine

 private fun CoroutineScope.lanzaCorredor(

 estadoInicialCorredor: CorredorUiState,

 actualizaEstadoUi: (CorredorUiState) -> Unit

): Job = launch {

 // Guardamos el estado inicial del corredor en una variable mutable

 // donde se irá actualizando el estado del corredor de forma local

 // este estado servirá para actualizar el estado de la UI del corredor correspondiente

 var estadoCorredorLocal = estadoInicialCorredor

 try {

 coroutineContext.log("CARRERA", "Corredor ${estadoCorredorLocal.nombre} corriendo")

 while (estadoCorredorLocal.porcentajeProgreso < 100) {

 estadoCorredorLocal = estadoCorredorLocal.avanza() // SUSPEND FUN

 actualizaEstadoUi(estadoCorredorLocal)

 }

 coroutineContext.log("CARRERA", "${estadoCorredorLocal.nombre} está en meta")

 } catch (ce: CancellationException) {

 coroutineContext.log("CARRERA", "${estadoCorredorLocal.nombre} se para")

 }

 }

 fun empezarACarrer() =

 // Lanzo una corrutina con el alcance en el que se encuentra el ViewModel

 // y con el contexto de Dispatchers.Default

 viewModelScope.launch(Dispatchers.Default) {

 // Si alguno de los corredores no ha llegado a la meta, sigo en carrera

 if (corredor1.porcentajeProgreso != 100 || corredor2.porcentajeProgreso != 100) {

 enCarrera = true

 try {

 val jobCorredor1 = lanzaCorredor(corredor1) { corredor1 = it }

 val jobCorredor2 = lanzaCorredor(corredor2) { corredor2 = it }

 // Espero a que terminen las dos corrutinas o bien

 // porque alguno de los corredores ha llagado a la meta

 // o bien porque se han cancelado las corrutinas

 joinAll(jobCorredor1, jobCorredor2) // SUSPEND FUN

 // Si los dos corredores han llegado a la meta, termino la carrera

 if (corredor1.porcentajeProgreso == 100 && corredor2.porcentajeProgreso == 100)

 enCarrera = false

 } catch (ce: CancellationException) {

 enCarrera = false

 }

 viewModelScope.coroutineContext.log("CARRERA", "Corredores parados")

 }

 }

}

25/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Por último, vamos a examinar el código en la MainActivity.

class MainActivity : ComponentActivity() {

 // Definimos el ViewModel como propiedad delegada y así usarla en

 // los métodos del ciclo de vida de la actividad

 private val vm by viewModels<SeguimientoCarreraViewModel>()

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 EjemploCorrutinasTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 SeguimientoCarreraScreen(

 corredor1 = vm.corredor1,

 corredor2 = vm.corredor2,

 enCarrera = vm.enCarrera,

 onSeguimientoCarreraEvent = vm::onSeguimientoCarreraEvent

)

 }

 }

 }

 }

 // Al pausar la actividad por cualquier motivo, paramos la carrera

 // a través del ViewModel que es quine gestiona las corrutinas de la misma

 // Ten en cuenta que el Accance del ViewModel sigue vivo aunque la actividad

 // esté pausada y por tanto los corredores seguirán corriendo

 override fun onPause() {

 super.onPause()

 vm.pararDeCorrer()

 }

}

Si quisiéramos que la carrera empezara nada más iniciarse la actividad, podríamos hacerlo en el método onStart de la actividad.
Donde ya sabemos que se ha creado la UI y por tanto podemos modificar el estado de la misma.

override fun onStart() {

 super.onStart()

 vm.empezarACarrer()

}

26/26 PMDM 2º DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

