Tema 3.7 - Corrutinas

Descargar estos apuntes pdf o html

indice

= |ntroduccién
¥ Corrutinas en Kotlin
= Anatomia de una corrutina
= Primer ejemplo basico
= Concurrencia estructurada
= Funciones de suspension con suspend
= Profundizando en el constructor de alcance CoroutineScope

<

Dispatchers e hilos
= Cambiando el contexto y planificador de una corrutina con withContext

Controlando el estado de una corrutina con Job

Jobs asincronos que devuelven un resultado async/await

Depurando contexto y planificador de una corrutina
= Esquema resumen conceptos basicos de corrutinas
¥ Corrutinas en Android
= CoroutineScopes mas comunes en Android
¥ Side-effects y corrutinas en Compose
= |LaunchedEffect
= Ejemplo de uso de corrutinas en Android

1/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_7_corrutinas.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_7_corrutinas.html

Introduccion

o Documentacion oficial: Lenguaje Kotlin

o Documentacion oficial: Android

e Video: Android Developers

+ Video: Martin Kiperszmid

¢ Lista de reproduccion: Stevdza-San (Inglés)

o Lista de reproduccion: Philipp Lackner (Inglés)

En primer lugar comentar que las corrutinas no son un concepto exclusivo de Kotlin, ya que existen en otros lenguajes como C#,
Python, Go, JavaScript, etc. En Kotlin, las corrutinas son una caracteristica del lenguaje que implementa un patrén que nos permite
escribir cédigo asincrono de manera secuencial. Esto significa que podemos escribir cédigo asincrono como si fuera codigo
sincrono, sin tener que preocuparnos por los callbacks, los hilos, etc. Esto hace que el cddigo sea mas facil de leer y de mantener.

¢ Quiere decir esto que no podamos gestionar la concurrencia como lo hacemos en Java?. No, podemos seguir usando hilos tal cual lo
hacemos en Java a través del paquete kotlin.concurrent . Sin embargo, las corrutinas nos permiten gestionar la concurrencia de una
manera mas sencilla y segura ya no estan vinculada a ningun hilo en particular. Puede suspender su ejecucion en un hilo y reanudarse

en otro.
Seran Utiles para tener:

o Ligereza: Puedes ejecutar muchas corrutinas de forma concurrente en un solo hilo debido a la compatibilidad con la suspension,
que no bloquea el hilo en el que se ejecuta la corrutina.

+ Menos fugas de memoria: Puedo ejecutar un proceso dentro de un determinado 'scope' o alcance, y cuando el alcance se cierra,
todas las corrutinas que se ejecutan dentro de ese alcance se cancelan automaticamente. Esto significa que no hay fugas de
memoria.

+ Compatibilidad con cancelacién incorporada: Se propaga automaticamente la cancelacion a través de la jerarquia de
corrutinas en ejecucion.

« Integracion con Jetpack: Muchas bibliotecas de Jetpack incluida Compose. Estas bibliotecas incluyen extensiones que
proporcionan compatibilidad total con corrutinas.

Las corrutinas forman parte de la libreria estandar de Kotlin. No obstante para usarlas necesitamos afiadir como dependencia la libreria
de extension (kotlinx.coroutines) donde se implementan en el fichero build.gradle.kts del modulo app:

Podemos ver las version actual de corrutinas en el siguiente repositorio de Kotlin. Ademas, debemos fijarnos cual es la version de
Kotlin minima asociada a la version de corrutinas que queremos usar.

Por ejemplo si usaramos un programa de consola tendriamos que afadir:

En el libs.versions.toml ...

[versions]

coroutines = "1.9.0"

[libraries]

coroutines-core = {module = "org.jetbrains.kotlinx:kotlinx-coroutines-core", version.ref = "coroutines" }

En el DSL definido en build.gradle.kt del modulo app...

dependencies {

implementation(libs.coroutines.core)

En un proyecto Android posiblemente no necesitemos afadirla porque ya estara incluida la libreria a través de alguna otra
dependencia. Pero si no fuera asi, tendriamos que afiadir minimo la implementacion especifica para Android:

2/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://kotlinlang.org/docs/coroutines-guide.html
https://developer.android.com/kotlin/coroutines?hl=es-419
https://www.youtube.com/watch?v=ZTDXo0-SKuU
https://www.youtube.com/watch?v=56yLoJNCa2I
https://www.youtube.com/watch?v=2QInrEaXyMo&list=PLSrm9z4zp4mE-o3sPq-PqzGHoFAIsQFI6
https://www.youtube.com/watch?v=ShNhJ3wMpvQ&list=PLQkwcJG4YTCQcFEPuYGuv54nYai_lwil_
https://github.com/Kotlin/kotlinx.coroutines

org.jetbrains.kotlinx:kotlinx-coroutines-android

3/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Corrutinas en Kotlin

2 Nota

para probar el codigo del tema, puedes crear un proyecto de consola en Kotlin o usar el playground

Anatomia de una corrutina

Estara formada por las siguientes partes del esquema:

CoroutineScope

ChildScope ChildScope
,” \ i \
| Child Context : | Child Context :
' ’ \, ;

N N

CoroutineContext

Exception

Job Dispatcher -

Definiciones basicas:

o CoroutinesScope: Es el ambito en el que se ejecuta la corrutina. Por ejemplo, si lanzamos una corrutina desde una actividad, el
ambito de la corrutina sera la actividad. Cuando la actividad se destruya, la corrutina se cancelara automaticamente.
+ CoroutineContext: Es el contexto en el que se ejecuta la corrutina y esta forma por un conjunto de elementos que definen el
comportamiento de la corrutina
o Job: Objeto que representa la tarea concurrente que se esta ejecutando. Podemos usar este objeto para controlar el estado
de la corrutina, por ejemplo, para esperarla o cancelarla. El ciclo de vida del trabajo asociado a una corrutina lo puedes ver en

el siguiente diagrama.

Job Lifecycle

Cancelling finish ' g Cancelled
cancel/falil
cancel/falil

complete

Completing finish
(wait children)

Completed

« Dispatcher: Podemos decir que es el hilo en el que se ejecuta la corrutina. Por defecto, las corrutinas se ejecutan en el hilo de la

corrutina que las lanza. Pero podemos cambiar el hilo de ejecucion de una en el contexto de la misma.
o CoroutineExceptionHandler: Permite que la corrutina tenga un manejo de excepciones personalizado en su contexto.
o Corrutinas 'Hijas": Dentro de una corrutina podemos lanzar otras corrutinas. El ambito de estas corrutinas secundarias
(childScope) se ejecutaran dentro del ambito o (CoroutinesScope) corrutina principal. Esto significa que si la corrutina principal se
cancela, también se cancelaran las corrutinas secundarias. Es por eso que el Job o Tarea del contexto de la corrutina espera a que

todas las corrutinas secundarias finalicen antes de finalizar su ciclo de vida.

4/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://play.kotlinlang.org/

Vamos a ir adentrandonos con ejemplos en las anteriores definiciones...

Primer ejemplo basico
Veamos el siguiente ejemplo extraido de la documentacion oficial de Kotlin:

import kotlinx.coroutines.*

fun main() = runBlocking { // Corrutina 1
launch { // Corrutina 2
delay(1000L)
println("Mundo!")
¥
println("Hola")

Mostrara por pantalla:

Hola

Mundo!

Vamos a desglosar lo que hace este codigo....

runBlocking €s un constructor de corrutinas, esto es, define un bloque de codigo que se ejecuta como una corrutina. En este
caso, el bloque de cddigo se ejecuta en el hilo principal (sera el Dispatcher por defecto de su contexto si no especificamos otro).

runBlocking es una funcion de suspension que bloquea el hilo donde se ejecuta mientras se ejecuta el bloque de cédigo. Esto
se hace para evitar que el programa finalice antes de que se ejecute la corrutina.

launch es un constructor de corrutinas. Lanza una nueva corrutina en paralelo con el resto del codigo, que contintia funcionando
de forma independiente. Es por eso que se muestra primero 'Hola'

delay es una funcion de suspension especial. Suspende la corrutina durante un tiempo especifico.

Main Thread / Hilo Principal

Hilo Principal

main() »
main() | Bloquedao ... bloqueado hasta finish)
ACTIVE fin Corrutina 1 COMPLETED

COMPLETING

corrutina 1
on runBlocking

F— Corrutina 1 P r

orrutina . " " Bloqueada orrutina 1 bloqueada

runBlocking prlrxréfl_ltiltéa) Pmiaee hasta fin Corrutina 2
ACTIVE COMPLETING

start
corrutina 2
con launch

finish

Corrutina 2 delay (1000L)

launch prinin ("Mundo!")
ACTIVE ACTIVE

Tanto el codigo de la corrutina 1 (bloque runBlocking)y el codigo de la corrutina 2 (bloque 1launch) se ejecutan en el hilo principal
de forma concurrente.

1. Tras el primer runBlocking , el main se queda esperando a que termine la corrutina 1, por lo que se bloquea el hilo principal.
2. La corrutina 1 lanza la corrutina 2 y sigue ejecutando su c6digo println ("Hola") .

5/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

3. La corrutina 2 se suspende durante 1 segundo y luego imprime println ("Mundo!") pero la corrutina 1 ya habra terminado y se

habra unido al hilo principal bloqueado que continua con la ejecucion del main .

Concurrencia estructurada

Las corrutinas siguen un principio de concurrencia estructurada, lo que significa que solo se pueden lanzar nuevas corrutinas en un
CoroutineScope especifico que delimita la vida util de la corrutina como ya hemos comentado.

El ejemplo anterior muestra que runBlocking establece el alcance correspondiente y es por eso que el ejemplo anterior espera hasta

que Mundo! se imprime después de un segundo de retraso y solo entonces sale.

En una aplicacion real, lanzaras muchas corrutinas. La concurrencia estructurada garantiza que no se pierdan. Un ambito externo
no puede completarse hasta que se completen todas sus rutinas secundarias. La simultaneidad estructurada también garantiza que

cualquier error en el cédigo se informe correctamente y nunca se pierda.

Funciones de suspension con suspend

El codigo de ejemplo esta escrito en un solo bloque. § Cé6mo podriamos separar en diferentes funciones el bloque de las

corrutinas?.

Si extraemos el bloque de cédigo interno de la corrutina 2 launch { ... } auna funcién separada. Cuando se realiza la
refactorizacion 'Extraer funcion' en este codigo, obtiene una nueva funcién con el modificador suspend . Esta es nuestra primera

funcion de suspension.

» fun main() = runBlocking { this: CoroutineScope

fun nein() = runélocdng { Launch { this: CoroutineScope
launch {
doMundo () @ <l doMundo ()
J }
println("Hello") printin("Hello")
! }

suspend fun doMundo() {
delay(1000L) suspend fun doMundo() {

println("Mundo!") @ - delay(timeMillis: 1000L)
¥ println("Mundo!™")

Las funciones de suspension se pueden usar dentro de las corrutinas al igual que las funciones normales, pero su caracteristica
adicional es que, a su vez, pueden usar otras funciones de suspensién (como delay este ejemplo) para suspender la ejecucion de una

corrutina.

Fijate que en el codigo del editor, las funciones de suspension se muestran con un icono de 'flecha suspendida’. Esto es una ayuda
visual para distinguir las funciones de suspension de las funciones normales indicandome que el la corrutina se suspendera en ese

punto y continuara con la ejecucion cuando finalice dicha funcion.

= Resumen

Podemos resumir diciendo que una funcion modificada con suspend (funcién de suspension) es una funcion que solo puede ser

ejecutada de forma asincrona dentro de una corrutina o dentro de otra funcion de suspension.

Profundizando en el constructor de alcance coroutineScope

Al usar runBlocking O launch dentro de un bloque de cddigo, se crea un CoroutineScope . CoroutineScope €S una interfaz que
representa un ambito de corrutina. El ambito de corrutina es responsable de cancelar todas las corrutinas que se ejecutan en él

cuando se cierra.

6/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Ademas de los alcances definidos por los constructores que ya hemos definido. Es posible declarar nuestro propio alcance utilizando el
constructor coroutineScope . Este crea un alcance de rutina y no se finaliza hasta que todos las corrutinas lanzadas dentro de él no

finalicen.

fun main() = runBlocking {
doMundo ()

suspend fun doMundo() = coroutineScope {
launch {
delay(1000L)
println("Mundo!")

}
println("Hola")

Los constructores runBlocking Yy coroutineScope pueden parecer similares porque ambos esperan a que se completen su bloque y
todos sus corrutinas secundarias. La principal diferencia es que runBlocking bloquea el hilo actual en espera, mientras que
coroutineScope suspende la corrutina actual liberando el hilo subyacente para otros usos. Por tanto, coroutineScope es una funcién
de suspension y solo puede ser llamado dentro de otra funciéon de suspensién o dentro de una corrutina.

Ademas, todas las corrutinas que se ejecuten dentro del mismo CorrutineScope se ejecutaran de forma concurrente en el mismo hilo.

suspend fun doMundo() = coroutineScope {

launch {
delay(2000L)
println(“Mundo 2")
}
launch {
delay(1000L)
println("Mundo 1")
}

println("Hola")

7126 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Dispatchers e hilos

Como hemos comentado, el contexto de corrutina incluye un CoroutineDispatcher o ‘despachador’ de corrutina que determina qué
subproceso utiliza la corrutina correspondiente para su ejecucion.

Todos los constructores de corrutinas, como launch y async , aceptan un parametro CoroutineContext opcional que se puede usar
para especificar explicitamente el despachador de la nueva rutina y otros elementos de contexto.

Hay 5 tipos de Dispatchers:

e Dispatchers.Main , este es el hilo principal. A diferencia de los demas, a veces tenemos que definirlo explicitamente (por ejemplo,
en el entorno de prueba).

e Dispatchers.IO0, esto para el proceso de Redes y Discos. Cualquier cosa que tenga que ver con la extraccion o envio de datos.

e Dispatchers.Default , esto es para cualquier otro subproceso de trabajo que no sea principal (es decir, en segundo plano) y se
asigna automaticamente.

e Dispatchers.Unconfined , este es un despachador especial que permite que la tarea cambie sus procesos especificos cuando
suspende y reanuda su tarea.

e newSingleThreadContext , permite al usuario definir sus propios procesos.

Cuando 1launch { ... } se usa sin parametros, hereda el contexto (y por lo tanto el despachador) del CoroutineScope desde el que se
inicia. En este caso, hereda el contexto de la corrutina principal que se ejecuta en el hilo principal Dispatchers.Main .

Una forma de de indicar el hilo de ejecucion es cuando lanzamos la corrutina launch 0 async . En el ejemplo anterior tanto
runBlocking COMO 1launch usan el hilo principal pispatchers.Main por heredar el contexto. Pero podemos cambiar el hilo de ejecucion
en launch de la siguiente manera...

fun main() = runBlocking {
doMundo()

suspend fun doMundo() = coroutineScope {
// Cambiamos el planificador de ejecuciédn.
launch(Dispatchers.Default) {
delay(1000L)
println(“Mundo!")

}
println(“"Hola")

Cambiando el contexto y planificador de una corrutina con withContext

Podemos cambiar el contexto de una corrutina en cualquier momento usando la funcion de suspension withContext . Esta funcién de
suspension crea un nuevo contexto de corrutina con el 'dispatcher' especificado y ejecuta el bloque de cédigo en él. Cuando el bloque
de cadigo finaliza, la corrutina vuelve al contexto anterior.

Normalmente, withcContext se utiliza en situaciones en las que desea cambiar temporalmente a un contexto de ejecucion diferente
para realizar una operacién que sea mas apropiada para ese contexto, como realizar una solicitud de red, E/S de disco o calculos que
requieren un uso intensivo de la CPU.

Por ejemplo, una forma mas 'correcta’' de hacer el ejemplo anterior seria la siguiente:

8/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

fun main() = runBlocking {
launch { doMundo() }
println("Hola")

suspend fun doMundo() = withContext(Dispatchers.Default) {
delay(1000L)
println("Mundo!")

Donde, es el método de suspension segun lo que tenga que hacer en que planificador se ejecuta cambiando su contexto.

Por tanto, este seria el esquema tipico de uso de withContext ...

suspend fun peticionREST(): Dato
= withContext(Dispatchers.I0) { getDato() }

suspend fun realizaProcesoPesado(): Unit
= withContext(Dispatchers.Default) { proceso() }

9/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Controlando el estado de una corrutina con 3Job

Cuando lanzamos una corrutina con launch , se devuelve un objeto Job que representa la tarea que se esta ejecutando en el contexto
de la corrutina. Como ya hemos comentado, podemos usar este objeto para controlar el estado de la corrutina, por ejemplo, para
esperarla o cancelarla.

e job.join() : funcion de suspension que espera a que la corrutina termine;

fun main() = runBlocking {

val job : Job = launch {
delay(1000L)
println("Mundo!")

¥

println("Hola")

job.join()

println("Fin")

e job.cancelAndJoin() : Notifica al trabajo su cancelacion y espera a que termine ordenadamente. El trabajo internamente debe
verificar periédicamente el estado de cancelacién usando la propiedad de solo acceso de del corrutineScope isActive . Ademas,
las funciones de suspensién cancelables producen cancellationException en la cancelacion, que se puede controlar de la manera
habitual por ejemplo con un finally para realizar las acciones de limpieza necesarias.

fun main() = runBlocking {
val job : Job = launch(Dispatchers.Default) {
try {
val startTime = System.currentTimeMillis()
var nextPrintTime = startTime
var i = 0
while (isActive) { // cancellable computation loop
// print a message twice a second
if (System.currentTimeMillis() >= nextPrintTime) {
println("job: I'm sleeping ${i++} ...")
nextPrintTime += 500L

}
} finally {

println("job: I'm resuming the execution™)

}

delay(1300L) // Espera un rato

println("main: I'm tired of waiting!")

job.cancelAndJoin() // Cancela el trabajo y espera a que termine

println("main: Now I can quit.")

Mostrara ...

job: I'm sleeping @ ...

job: I'm sleeping 1 ...

job: I'm sleeping 2 ...

main: I'm tired of waiting!
job: I'm resuming the execution

main: Now I can quit.
e withTimeout(timeout: Long) { } Para generar un contexto de corrutina que expira después de un tiempo determinado

generando un evento de cancelacion y la excepcion TimeoutCancellationException .
withTimeout es una funcién de suspension. Por ejemplo, podemos reescribir el codigo anterior de la siguiente forma:

10/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

suspend fun trabajoBloqueante(timeout: Long) =
val startTime = System.currentTimeMillis()
try {
var nextPrintTime = startTime

var i = 0

withTimeout (timeout) {

// Se ejecuta hasta que se cumple el timeout

while (isActive) {

if (System.currentTimeMillis() >= nextPrintTime) {

println("job: I'm sleeping ${i++} ...")

nextPrintTime += 500L

¥
} finally {

println("job: I'm resuming the execution™)

fun main() = runBlocking {
println("main: Waiting for job 1.3 secs.")
val job = launch {
trabajoBloqueante(1300L)
¥

job.join() // Espera a que termine o expire el trabajo

printIn("main: Now I can quit.")

Mostrara ...

11/26

main: Waiting for job 1.3 secs.

job:
job:
job:
job:

I'm sleeping @ ...
I'm sleeping 1 ...
I'm sleeping 2 ...

I'm resuming the execution

main: Now I can quit.

PMDM 2° DAM Tema 3.7 - Corrutinas

Rev. 10/12/2024

IES Doctor Balmis

Jobs asincronos que devuelven un resultado async/await

Hasta ahora hemos visto que las corrutinas se ejecutan de forma concurrente, pero no hemos visto cémo obtener un resultado de una
corrutina. Para ello, podemos usar el constructor async . Este constructor es similar a 1aunch , pero devuelve un objeto peferred que
representa un resultado futuro.

Deferred es una subclase de Job y, por lo tanto, también se puede cancelar. Ademas, tiene una funcion de suspension await() que
devuelve el resultado cuando esta listo.

Veamos un ejemplo donde tenemos la funcién asincrona esPrimo(n: Long) que devuelve un booleano indicando si el nimero pasado
como parametro es primo o no.

Puesto que async debe ejecutarse dentro de un CoroutineScope , o lanzamos dentro del GlobalScope . GlobalScope es un alcance
global que no est4 vinculado a ningun hilo en particular y, por lo tanto, no bloquea el hilo principal.

fun esPrimo(n: Long): Deferred<Boolean> = GlobalScope.async {
n > 1 & (2 until n).none { n % it == oL }

fun main() = runBlocking {
val n = 1000000007L
println("Viendo si es primo el numero $n")
val job : Deferred<Boolean> = esPrimo(n)

print("Esperando calculo ")
// Vamos a mostrar un punto cada 100 ms mientras vemos
// si el numero es primo o no
while (!job.isCompleted) {
print(".")
delay(100)

job.await().let {

println("\nEl numero $n ${if (it) "es" else "no es"} primo")

Mostrara ...

Viendo si es primo el nimero 1000000007
Esperando cdlculocovivininnn.

E1l numero 1000000007 es primo

Warning

Aunque en este ejemplo hemos usado GlobalScope para lanzar la corrutina, no es recomendable usarlo y solo se ha usado
para simplificar el ejemplo. Puedes ver mas informacion en https://kotlinlang.org/docs/composing-suspending-
functions.html#async-style-functions

Hemos usado GlobalScope para lanzar la corrutina, porque si hiciéramos esto que es mas 'correcto’. muestraProgreso quedaria
bloqueado al estar ejecutandose en el mismo hilo y mismo alcance ya que esPrimo es un proceso que demanda mucho tiempo de
CPU. Ya veras que en el préximo punto solucionaremos esto con withContext para cambiar de hilo.

12/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://kotlinlang.org/docs/composing-suspending-functions.html#async-style-functions
https://kotlinlang.org/docs/composing-suspending-functions.html#async-style-functions

suspend fun esPrimo(n: Long) = coroutineScope {
n > 1 & (2 until n).none { n % it == oL }
}
suspend fun muestraProgreso(job : Deferred<Boolean>)
= withContext(Dispatchers.Default) {
print("Esperando cdlculo ")
while (!job.isCompleted) {
print(".")
delay(100)

fun main() = runBlocking {
val n = 1000000007L
println("Viendo si es primo el numero $n")
val job : Deferred<Boolean> = async {esPrimo(n) }
muestraProgreso(job)
job.await().let {

println("\nEl numero $n ${if (it) "es" else "no es"} primo")

13/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Depurando contexto y planificador de una corrutina

Vamos a definir la siguiente funcion de extension para obtener informacion de nuestro contexto:

fun CoroutineContext.info() =
"\nCorrutina: {\n\tContexto: ${this}, \n\tProceso: ${Thread.currentThread().name}\n}"

Si volvemos a ejecutar el ejemplo inicial...

fun main() = runBlocking {
launch {
delay(1000L)
println("Mundo! ${coroutineContext.info()}")

¥
println("Hola ${coroutineContext.info()}")

Mostrara ...

Hola

Corrutina: {
Contexto: [BlockingCoroutine{Active}@7d4793a8, BlockingEventLoop@449b2d27],
Proceso: main

}

Mundo!

Corrutina: {
Contexto: [StandaloneCoroutine{Active}@lae369b7, BlockingEventLoop@449b2d27],

Proceso: main

Ahora modificamos el contexto de la corrutina 2 para que se ejecute en el hilo Dispatchers.Default y ademas le asignamos un nombre
ambas corrutinas para poder identificarlas:

fun main() = runBlocking(CoroutineName("CORRUTINA 1")) {
launch (Dispatchers.Default + CoroutineName("CORRUTINA 2")) {
delay(1000L)
println("Mundo! ${coroutineContext.info()}")

¥

println("Hola ${coroutineContext.info()}")

Ahora la salida nos mostrara el nombre de la corrutina y el proceso en el que se ejecuta:

Hola

Corrutina: {
Contexto: [CoroutineName(CORRUTINA 1), BlockingCoroutine{Active}@lbc6a36e, BlockingEventLoop@lff8b8f],
Proceso: main

}

Mundo!

Corrutina: {
Contexto: [CoroutineName(CORRUTINA 2), StandaloneCoroutine{Active}@f4edec@, Dispatchers.Default],

Proceso: DefaultDispatcher-worker-2

Ejemplo:

Volvamos al célculo de nimeros primos. Pero esta vez vamos a implementarlo de forma mas adecuada, afiadiendo logs de
depuracion, sin usar GlobalScope , definiendo funciones de suspension y usando withContext para cambiar de hilo.

14/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

fun CoroutineContext.info() = "\nCorrutina: {\n\tContexto: ${this}, \n\tProceso: ${Thread.currentThread().name}\n}"

suspend fun esPirmo(n: Long): Boolean

= withContext(Dispatchers.Default + CoroutineName("ESPRIMO")) {
println(coroutineContext.info())
n > 1 && (2 until n).none { n % it == oL }

suspend fun muestraProgreso()
= withContext(Dispatchers.Default + CoroutineName("PROGRESO")) {
try {
delay(200)
println(coroutineContext.info())
print("Esperando cdlculo ")
while (true) {
print(".")
delay(100)
¥
} catch (e: CancellationException) {

println("\nProgreso cancelado ${coroutineContext.info()}")

fun main() = runBlocking {
val n = 1000000007L
println("viendo si es primo el ndumero $n")
val jobPrimo = async { esPirmo(n) }
val jobProgreso = launch { muestraProgreso() }
printIn("En main esperando a esPrimio() ${coroutineContext.info()}")
jobPrimo.await().let {
printIn("\nEl numero $n ${if (it) "es" else "no es"} primo")

}
jobProgreso.cancel()
}
Mostrara ...

Viendo si es primo el nlumero 1000000007
En main esperando a esPrimio()
Corrutina: {
Contexto: [BlockingCoroutine{Active}@47fdi17e3, BlockingEventLoop@7cdbc5d3],

Proceso: main

Corrutina: {
Contexto: [CoroutineName(ESPRIMO), DispatchedCoroutine{Active}@472bb@70, Dispatchers.Default],
Proceso: DefaultDispatcher-worker-2

Corrutina: {
Contexto: [CoroutineName(PROGRESO), ScopeCoroutine{Active}@5931574c, Dispatchers.Default],
Proceso: DefaultDispatcher-worker-1

}

Esperando cdlculocouvvuennn

E1l numero 1000000007 es primo

Progreso cancelado

Corrutina: {
Contexto: [CoroutineName(PROGRESO), ScopeCoroutine{Cancelling}@5931574c, Dispatchers.Default],
Proceso: DefaultDispatcher-worker-2

15/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Esquema resumen conceptos basicos de corrutinas

val job : Job = scope.launch {
try {
procedimientoAsincrono()
} catch (e: CancellationException) {

N // Manejo de la cancelacién
o

producen
resultado

}

job.isActive // Comprueba si estd activa
job.cancel() // Cancela la corrutina
job.join() // Espera a que finalice

Creacion

val job : Deferred<Tipo> = scope.async {
funcionAsincrona() // Se evalua a Tipo

Producen

Corrutinas resultado

job.await().let { resultado ->
// Procesar el resultado

suspend fun procedimientoAsincrono() = withContext(Dispatchers.Default) {
// Puedo llamar directamente a otras funciones de suspension
// Tengo acceso a coroutineContext
// Puedo lanzar otras corrutinas

Funciones

de suspension
o asincronas

suspend fun funcionAsincrona() : Tipo = withContext(Dispatchers.Default) {

// Se evalua a tipo

16/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Corrutinas en Android

Utilizaremos los conceptos ya vistos pero adaptados a Android. Alguna de las cosas que deberemos tener en cuenta son:

1. X No debemos usar runBlocking en el hilo principal porque lo bloqueara.En su lugar, podemos usar runBlocking en un hilo
secundario.

2. ¥ No deberiamos lanzar corrutinas en el GlobalScope porque no se cancelaran automaticamente cuando se destruya el
componente de Android.

3. Las funciones de suspension deberian ser seguras para su llamada desde el subproceso principal. Por ejemplo, cambiando el
contexto de ejecucion para realizar una solicitud de red con withContext(Dispatchers.IO) .

4. ¥ No debemos actualizar la Ul desde una corrutina que se ejecute en un contexto diferente al del hilo principal. Deberemos usar
withContext(Dispatchers.Main) para cambiar al contexto del hilo principal y actualizar la Ul.

5. X No debemos lanzar una corrutina que modifique un estado antes de finalizar la composicion de la Ul.

6. Si la aplicacion entra en segundo plano. En aquellos alcances de corrutina que estén vinculados al ciclo de vida de un componente
de Android, se cancelaran automaticamente solo cuando el componente se destruya. Pero si no es asi, deberemos cancelar
manualmente las corrutinas que se estén ejecutando en segundo plano si queremos que se paren.

7. ¥ No debemos exponer métodos de suspension publicos en el ViewModel. Pero si puede lanzar corrutinas en su alcance o mejor
exponer flujos de datos que se puedan observar desde la Ul.

CoroutineScopes mas comunes en Android
Los alcances (CoroutineScope) de las corrutinas se pueden vincular a los ciclos de vida de los componentes de Android.

e rememberCoroutineScope() Vinculado al ciclo de vida de un componente de Android como un Composable. Se cancela cuando el

componente se destruye.
Lo vamos a usar solo cuando queramos ejecutar una acciéon sobre un componente tras un evento. Ejemplo extraido de

documentacion oficial de Android:

@Composable

fun MoviesScreen(scaffoldState: ScaffoldState = rememberScaffoldState()) {
// Crea un CoroutineScope vinculado al ciclo de vida de MoviesScreen
// este alcance es recordado en la recomposicion.

val scope = rememberCoroutineScope()

Scaffold(scaffoldState = scaffoldState) {
Column {
[% oo %Y
Button(
onClick = {
// Crea una nueva corrutina en el manejador del
// evento del botén para mostrar el snackbar asociado al Scaffold
scope.launch {
// showSnackbar es una funcién de suspensiodn

scaffoldState.snackbarHostState.showSnackbar("Something happened!™)

) A

Text("Press me")

17/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

https://developer.android.com/kotlin/coroutines/coroutines-best-practices#global-scope
https://developer.android.com/jetpack/compose/side-effects?hl=es-419#remembercoroutinescope

e viewModelScope : Vinculado al ciclo de vida del ViewModel. Se cancela cuando el ViewModel se destruye.
Dentro de cualquier clase que herede de ViewModel dispondremos de la propiedad viewModelScope que sera un CoroutineScope
vinculado al ciclo de vida del mismo. Crear una corrutina de las formas que hemos visto es tan simple como hacer...

viewModelScope.launch { ... }

val deferredJob = viewModelScope.async { ... }

Recuerda poara crear una corrutina hija dentro de otra corrutina, debemos usar el coroutinescope de la corrutina padre. Por
ejemplo, si queremos lanzar una corrutina desde un ViewModel que se ejecute en el hilo principal y que se cancele cuando el

ViewModel se destruya, podemos hacerlo de la siguiente forma:

viewModelScope.launch {

// Corrutina hija en el alcance del padre, con su contexto especifico.
launch(Dispatchers.I0) {

try {

}

catch (ce: CancellationException) {

// Manejo de la cancelaciédn

¥

// Esperara a que termine la corrutina hija

Para finaliar cualquier corrutina que se esté ejecutando en el viewModelScope podemos usar la funcién viewModelScope.cancel() O

viewModelScope.coroutineContext.cancelChildren() . Por ejemplo...

fun paraProceso() {
// Cancelard las corrutinas hijas creados dentro de su contexto.
// Provocara la excepcién CancellationException en las corrutinas hijas

viewModelScope.coroutineContext.cancelChildren()

e lifecycleScope : Vinculado al ciclo de vida de un componente de Android como una Activity. Se cancela cuando el componente

se destruye.
Es idéntico a viewModelScope pero su alcance es una Actividad o Fragment.

18/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Side-effects y corrutinas en Compose

Un efecto lateral o side-effect de Compose es un cambio en el estado de la app que ocurre fuera del alcance de una funcién de
componibilidad. Puesto que no podemos realizar ningun proceso bloqueante durante la composicién de la Ul y ademas no tenemos
ningun control sobre el momento, orden y finalizacién de la misma. En el ejemplo anterior donde hemos visto como podemos usar
rememberCoroutineScope() para mostrar una notificacion en un Scaffold tras un evento de click en un botén. Esto seria un efecto
lateral fuera de la composicion de la Ul. Por resumir, cuando un cambio de estado en la Ul no lo controla la composicion, sino
que necesitemos que sea predecible y asincrono, estaremos ante un efecto lateral.

LaunchedEffect

Ejecuta funciones de suspension en el alcance de un elemento componible.

Por ejemplo, para ejecutar una funcién de suspension ante uno o varios cambios de estado.

@Composable

fun FlechaRotable() {
var rotationZAnimationSatate = remember { Animatable(of) }
var rotado by remember { mutableStateOf(false) }

// Indico el estado o los estados que provocaran la ejecucidn de
// la o las funciones de suspensioén
LaunchedEffect(rotado) {
// Estamos dentro de un CorourineScope
// esto se ejecuta de forma asincrona con la composicién de la UI

// por tanto las funcionen de suspensién no la bloquean.

// Funcion de suspension
rotationZAnimationSatate.animateTo(
targetValue = if (rotado) 180f else of,
animationSpec = tween(durationMillis = 500, easing = FastOutSlowInEasing))

}
Icon(
painter = rememberVectorPainter(image = Icons.Filled.ArrowCircleUp),
contentDescription = null,
modifier = Modifier
.clickable { rotado = !rotado }
.graphicsLayer { rotationZ = rotationZAnimationSatate.value }
.size(200.dp)
)
¥
A Nota: Si especificamos LaunchedEffect(Unit) { ... } la corrutina se ejecutara solo en la primera composicion del
componente.

Podriamos reescribir el codigo de la funcion StateFul anterior gestionando el Side-effect en el manejador del evento con

rememberCoroutineScope() .

19/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

@Composable

fun FlechaRotable() {
var rotationZAnimationSatate = remember { Animatable(of) }
var rotado by remember { mutableStateOf(false) }

var coroutineScope = rememberCoroutineScope()

Icon(
painter = rememberVectorPainter(image = Icons.Filled.ArrowCircleUp),
contentDescription = null,
modifier = Modifier
.clickable {
rotado = !rotado
coroutineScope.launch {
rotationZAnimationSatate.animateTo(
targetValue = if (rotado) 180f else of,
animationSpec = tween(durationMillis = 500, easing = FastOutSlowInEasing))

}

.graphicsLayer { rotationZ = rotationZAnimationSatate.value }

.size(200.dp)

20/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Ejemplo de uso de corrutinas en Android
&’ Dercarga: El proyecto con el cédigo del ejemplo que vamos a ver lo puedes descargar de este enlace

Es la tipica aplicacién donde vamos a tener dos corrutinas a modo de corredores. Cada corredor se ejecutara en un hilo diferente y se
mostrara su progreso en la Ul. Ademas, tendremos un botén para Empezar y Parar la carrera y otro que Reiniciara la carrera y estara
activo solo cuando la carrera esté parada. Ademas, al llegar ambos corredores al final del progreso la carrera parara automaticamente.
También parara automaticamente si la aplicacion pasa a segundo plano.

Carrera Procesos Carrera Procesos Carrera Procesos Carrera Procesos

Corredor 1 Corredor 1 (R Corredor 1 (EEEE Corredor 1 (NS
0% 100 % 20 % 100 % 50 % 100 % 100 % 100 %
Corredor 2 Corredor 2 (NI Corredor 2 (N Corredor 2 (D
0% 100 % 21% 100 % 54 % 100 % 100 % 100 %

En primer lugar en el paquete com.ejemplo_corrutinas.utilities hemos definido el fuente CoroutinesDebug.kt que nos permitira
mostrar informacion de las corrutinas en el Logcat. Para ello, hemos definido la siguiente funcién de extensién a usar en un contexto

de corrutina:

fun CoroutineContext.log(

corrutina: String = "Corrutina",
accion: String = "No especificada"
) |
Log.println(
Log.DEBUG, corrutina,
"${corrutina}: {\n\tAccion: ${accion}, \n\tContexto: ${this}\n}"
)
¥

En el paquete com.ejemplo_corrutinas.ui.features.seguimientocarrera definiremos la pantalla de prueba de nuestra aplicacion. El

interfaz del componente de la pantalla sera el siguiente:

@Composable
fun SeguimientoCarreraScreen(
corredorl: CorredorUiState,
corredor2: CorredorUiState,
enCarrera: Boolean,
onSeguimientoCarreraEvent: (SeguimientoCarreraEvent) -> Unit,

modifier: Modifier = Modifier

21/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_7/corrutinas_android_ejemplo.zip

Donde el estado de cada corredor se representara por la siguiente clase:

data class CorredorUiState(
val nombre: String,
val porcentajeProgreso : Int = @
) |
// Funcion de suspension que simula el avance del corredor en la
// carrera bloquera la corrutina con una espera entre 5 y 300 ms
suspend fun avanza(): CorredorUiState {
delay((5L..300L).random())
val nuevoPorcentaje = porcentajeProgreso + 1

return copy(porcentajeProgreso = nuevoPorcentaje)

fun reinicia(): CorredorUiState = copy(porcentajeProgreso = 0)

Ademas, dispondremos de un 'Stafe’ enCarrera que me indicara si se esta corriendo la carrera o no. Y un onSeguimientoCarreraEvent
que sera el manejador de eventos de la pantalla y donde se controla la pulsacién de ambos botones.

sealed interface SeguimientoCarreraEvent {
data object OnEmpezarPararClick : SeguimientoCarreraEvent
data object OnReiniciarClick : SeguimientoCarreraEvent

Podemos crear un @preview de test similar a la carrera con corrutinas. Pero como se trata de un composable deberemos usar
LaunchesEffect para ejecutar la simulacion de la carrera en un coroutinescope dentro de la composicion de dicho preview de prueba

@Preview
@Composable

private fun SeguimientoCarreraScreenPreview() {
// Creamos los estados a usar en la UI
var corredorl by remember {

mutableStateOf(CorredorUiState(nombre = "Corredor 1"))

var corredor2 by remember {

mutableStateOf(CorredorUiState(nombre = “Corredor 2"))

var enCarrera by remember { mutableStateOf(false) }

22/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

// Cada vez que hay un cambio en uno de estos estados se recompone la UI
// y se lanza el LaunchedEffect con las corrutinas de simulacién de la carrera
LaunchedEffect(

keyl = enCarrera,

key2 = corredorl.porcentajeProgreso,

key3 = corredor2.porcentajeProgreso

// Cada corrutina hara que avance el corredor cambiando su estado
// y por tanto recomponinedo la UI y relanzando el LaunchedEffect
// Ambos procesos se ejecutan en un contexto de corrutina diferente
// con Dispatchers.Default para que el sistema decida el hilo mas adecuado para el preview
val jobCorredorl = launch(Dispatchers.Default) {
if (enCarrera && corredorl.porcentajeProgreso < 100)
corredorl = corredorl.avanza()
}
val jobCorredor2 = launch(Dispatchers.Default) {
if (enCarrera && corredor2.porcentajeProgreso < 100)
corredor2 = corredor2.avanza()
}
// Esperamos a que los dos correodres avancen si lo tienen que hacer
joinAll(jobCorredorl, jobCorredor2)
// Si ambos corredores han llegado al 100% paramos la carrera
if (corredorl.porcentajeProgreso == 100 && corredor2.porcentajeProgreso == 100)
enCarrera = false

Por ultimo, definimos el componente de nuestra pantalla...

EjemploCorrutinasTheme {
Surface {
SeguimientoCarreraScreen(
corredorl = corredorl,
corredor2 = corredor2,
enCarrera = enCarrera,
onSeguimientoCarreraEvent = {
when (it) {
SeguimientoCarreraEvent.OnEmpezarPararClick -> {
enCarrera = !enCarrera
¥
SeguimientoCarrerakEvent.OnReiniciarClick -> {
corredorl = corredorl.reinicia()

corredor2 = corredor2.reinicia()

23/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Bien, ahora vamos a definir un ViewModel para nuestro Screen y realizar el proceso de la carrera en el mismo. La cosa va a cambiar
'un poco' puesto que las corrutinas se lanzaran desde ahora desde un CoroutineScope distinto al de la composicion.

class SeguimientoCarreraViewModel : ViewModel() {

// Definimos los estados de la UI
var corredorl by mutableStateOf(

CorredorUiState(nombre = "Corredor 1")

private set
var corredor2 by mutableStateOf(
CorredorUiState(nombre = "Corredor 2")

private set
var enCarrera by mutableStateOf(false)
private set

// Gestidén de los eventos del Screen
fun onSeguimientoCarreraEvent(event: SeguimientoCarreraEvent) {
when (event) {
SeguimientoCarreraEvent.OnEmpezarPararClick -> {
if (enCarrera)
// Cambiamos el estado de enCarrera = false
// y paramos las corrutinas que avanzan cambiando
// el valor del estado del progreso
pararDeCorrer()
else
// Cambiamos el estado de enCarrera = false
// e iniciamos las corrutinas que avanzan cambiando
// el valor del estado del progreso
empezarACarrer()
}
SeguimientoCarreraEvent.OnReiniciarClick -> {
// 0jo no deberia llamar a Reiniciar si estoy en carrera
// ya que una corrutina suspendida en delay puede actualizar
// el estado de la UI tras el reset. Esto es porque guarda un
// el valor de un estado inmutable de la UI anterior.
corredorl = corredorl.reinicia()
corredor2 = corredor2.reinicia()

fun pararDeCorrer() {
// Cancelo las corrutinas hijas que se estén ejecutando
// en el contexto del viewModelScope que en mi caso son
// los dos corredores.
// Si tuviera mas corrutinas, tendrd que guardarme los trabajos
// como propiedades privadas en el ViewModel y bucarlos en el
// contexto para cancelarlos de forma especifica.
viewModelScope.coroutineContext.log("CARRERA", "Parando corredores...")

viewModelScope. coroutineContext.cancelChildren()

24/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

// Lanza una corrutina que simula el avance de un corredor
// para ello recibe el estado inicial del corredor que se guarda en el VM
// una funcién que actualiza el estado de la UI
// Devolvera un Job que se puede usar para cancelar la corrutina o esperar a que termine
private fun CoroutineScope.lanzaCorredor(
estadoInicialCorredor: CorredorUiState,
actualizaEstadoUi: (CorredorUiState) -> Unit
): Job = launch {
// Guardamos el estado inicial del corredor en una variable mutable
// donde se ird actualizando el estado del corredor de forma local
// este estado servira para actualizar el estado de la UI del corredor correspondiente
var estadoCorredorLocal = estadoInicialCorredor
try {
coroutineContext.log("CARRERA", "Corredor ${estadoCorredorLocal.nombre} corriendo")
while (estadoCorredorLocal.porcentajeProgreso < 100) {
estadoCorredorLocal = estadoCorredorLocal.avanza() // SUSPEND FUN
actualizaEstadoUi(estadoCorredorLocal)
}
coroutineContext.log("CARRERA", "${estadoCorredorLocal.nombre} esta en meta")
} catch (ce: CancellationException) {

coroutineContext.log("CARRERA", "${estadoCorredorLocal.nombre} se para")

fun empezarACarrer() =
// Lanzo una corrutina con el alcance en el que se encuentra el ViewModel
// y con el contexto de Dispatchers.Default
viewModelScope.launch(Dispatchers.Default) {
// Si alguno de los corredores no ha llegado a la meta, sigo en carrera
if (corredorl.porcentajeProgreso != 100 || corredor2.porcentajeProgreso != 100) {
enCarrera = true
try {
val jobCorredorl = lanzaCorredor(corredorl) { corredorl = it }
val jobCorredor2 = lanzaCorredor(corredor2) { corredor2 = it }
// Espero a que terminen las dos corrutinas o bien
// porque alguno de los corredores ha llagado a la meta
// o bien porque se han cancelado las corrutinas
joinAll(jobCorredorl, jobCorredor2) // SUSPEND FUN
// Si los dos corredores han llegado a la meta, termino la carrera
if (corredorl.porcentajeProgreso == 100 && corredor2.porcentajeProgreso == 100)
enCarrera = false
} catch (ce: CancellationException) {
enCarrera = false
}

viewModelScope.coroutineContext.log("CARRERA", "Corredores parados")

25/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

Por ultimo, vamos a examinar el codigo en la MainActivity.

class MainActivity : ComponentActivity() {
// Definimos el ViewModel como propiedad delegada y asi usarla en
// los métodos del ciclo de vida de la actividad

private val vm by viewModels<SeguimientoCarreraViewModel> ()

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
EjemploCorrutinasTheme {
Surface(
modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background
) A
SeguimientoCarreraScreen(
corredorl = vm.corredorl,
corredor2 = vm.corredor2,
enCarrera = vm.enCarrera,

onSeguimientoCarreraEvent = vm::onSeguimientoCarreraEvent

// Al pausar la actividad por cualquier motivo, paramos la carrera
// a través del ViewModel que es quine gestiona las corrutinas de la misma
// Ten en cuenta que el Accance del ViewModel sigue vivo aunque la actividad
// esté pausada y por tanto los corredores seguiran corriendo
override fun onPause() {

super.onPause()

vm.pararDeCorrer()

Si quisiéramos que la carrera empezara nada mas iniciarse la actividad, podriamos hacerlo en el método onstart de la actividad.
Donde ya sabemos que se ha creado la Ul y por tanto podemos modificar el estado de la misma.

override fun onStart() {
super.onStart()
vm.empezarACarrer()

26/26 PMDM 2° DAM Tema 3.7 - Corrutinas Rev. 10/12/2024 IES Doctor Balmis

