Tema 3.4 - Inyeccion Dependencias (DlI)

Descargar estos apuntes pdf o html

indice

» [ntroduccién
v Hilt
» Procesador de anotaciones KSP
» Configuracion
¥ Preparando los componentes de Android para la inyeccion de dependencias
= Codmo insertar objetos ViewModel con Hilt en Compose
¥ Exponer dependencias y preparar médulos con Hilt
= ViewModels con Hilt
= Preparando Modulos
= |nyectando el contexto de la aplicacion

= Resumen configuracion Hilt

113 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_5_inyeccion_de_dependencias_id_con_hilt.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_5_inyeccion_de_dependencias_id_con_hilt.html

Introduccion

Enlaces de interés:

Documentacion oficial de Android: Inyecciéon de dependencias

Video tutorial Divulgativo (Castellano): DevExperto

Codelab Google: Inyeccion de dependencias

Lista de reproduccion: Andorid Developers

Video tutorial (Inglés): Philipp Lackner

La inyeccion de dependencias (DI) es una técnica muy utilizada en programacion y adecuada
para el desarrollo de Android. Si sigues los principios de la DI, sentaras las bases para una buena
arquitectura de apps.

Implementar la inyeccion de dependencias te proporciona las siguientes ventajas:

¢ Reutilizacion de cédigo
o Facilidad de refactorizacion.
e Facilidad de prueba o test

Una de las razones de por qué necesitamos inyeccidon de dependencias. Es porque durante el
desarrollo de un proyecto, es importante aplicar el Principio de Responsabilidad Unica (SRP),
uno de los 5 principios SOLID. Este principio establece, por explicarlo de forma simple, que
nuestras entidades o clases deben hacer una sola cosa. Esto hace que las clases sean mas
legibles, faciles de modificar y de probar.

Sin embargo, este principio puede llevar a la creacion de muchos moédulos con muchas
dependencias entre ellos. Gestionar estas dependencias puede ser un problema ya que no se
pueden ver los colaboradores de las entidades desde fuera y los médulos no pueden ser probados
de forma aislada. Para evitar esto, es importante que cada médulo exponga sus dependencias.
También, esta intimamente relacionado con el principio de inversion de dependencias (DIP) que
vimos en primero también y que deforma resumida establece los médulos (clases) no deben crear
sus dependencias, sino que deben ser provistas desde fuera.

Puesto que los mdédulos exponen sus dependencias a través de sus constructores y se necesita un
componente adicional para proporcionarles instancias de memoria de estas dependencias. Crear
una pieza que proporcione todas las dependencias puede ser un trabajo dificil, por lo que existen
los inyectores de dependencias para facilitar este proceso.

2/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://developer.android.com/training/dependency-injection
https://www.youtube.com/watch?v=eefQelCqA-E
https://developer.android.com/codelabs/android-hilt?hl=es-419#0
https://www.youtube.com/watch?v=mnMCgjuMJPA&list=PLWz5rJ2EKKc_9Qo-RBRYhVmME1iR4oeTK
https://www.youtube.com/watch?v=bbMsuI2p1DQ

En el caso de aplicaciones grandes, tomar todas las dependencias y conectarlas correctamente
puede requerir una gran cantidad de cddigo estandar. En una arquitectura de varias capas, para
crear un objeto en una capa superior, debes proporcionar todas las dependencias de las capas
qgue se encuentran debajo de ella. Por ejemplo, para construir un automavil real, es posible que
necesites un motor, una transmision, un chasis y otras piezas; a su vez, el motor necesita cilindros

y bujias.

Cuando no puedes construir dependencias antes de pasarlas (por ejemplo, si usas inicializaciones
diferidas o solicitas permisos para objetos en los flujos de tu app), necesitas escribir y conservar un
contenedor personalizado (o un grafo de dependencias) que administre las dependencias en la
memoria desde el principio.

Hay bibliotecas que resuelven este problema automatizando el proceso de creacion y provision

de dependencias. Se dividen en dos categorias:

1. Soluciones basadas en reflexiones que conectan las dependencias durante el tiempo de
ejecucion.
2. Soluciones estaticas que generan el codigo para conectar las dependencias durante el tiempo

de compilacién (Las mas usadas).

Dagger es una biblioteca de insercion de dependencias popular para Java, Kotlin y Android que
mantiene Google. Dagger facilita el uso de la DI en tu app mediante la creacidén y administracion
del grafo de dependencias. Proporciona dependencias totalmente estaticas y en tiempo de
compilacién que abordan muchos de los problemas de desarrollo y rendimiento de las

soluciones basadas en reflexiones.

Por tanto, casi todos los frameworks modernos proveen algun tipo de libreria de inyeccion de
dependencias. En el ecosistema de Java existen diferentes opciones como: Dagger2, Koin para
Kotlin e incluso JCDI en Jakarta EE.

En Android, la libreria mas popular es Dagger2. Sin embargo, Dagger2 es una libreria muy
compleja y requiere de mucho codigo boilerplate para configurarla. Por eso, Google ha
desarrollado Hilt, una libreria de inyeccion de dependencias que se integra con el framework
nativo de Android y que elimina mucho cédigo boilerplate necesario en Dagger2.

En resumen, la inyeccién de dependencias no es mas que una forma automatica de proveer
dependencias a los modulos que las requieran. Para requerirlas tienen que exponerlas por

constructor.

3/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/(https:/dagger.dev/)
https://insert-koin.io/
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html
https://dagger.dev/hilt/

Podemos pensar en el inyector de dependencias como un chef en una cocina. Los modulos
o clases serian los platos y las dependencias los ingredientes. Cada vez que un plato
requiera un ingrediente, el chef ira a la despensa y lo afiadira a la receta.

La gran mayoria de inyectores de dependencias funcionan de la misma forma:

¢ Los modulos exponen sus dependencias a través de sus constructores.

¢ Un inyector de dependencias se encarga de proveer instancias de memoria de las
dependencias a los médulos que las requieran.

o Existen diferentes librerias de ID en Android de dependencias como Hilt, Koin, Kotlin-
inject, Dagger2...

Hilt

Hilt es una libreria de inyeccion de dependencias desarrollada y recomendada por Google en
incluida en el framework nativo de Android.

La principal caracteristica de Hilt es su facilidad de uso y la cantidad de cédigo boilerplate que
elimina con respecto a la integracion de Dagger2. Por tanto, el objetivo de Hilt es hacer todo este
proceso muy sencillo e integrado con el framework nativo de Android.

Como unica pega podemos decir que, al estar construida sobre la libreria de Java Dagger2, Hilt
funciona solo con Kotlin/dJVM 'y por tanto médulos comunes de proyectos de KMP (Kotlin
Multiplatform) donde se use Kotlin/native o Kotlin/wasm en ese caso la alternativa seria Koin.

Procesador de anotaciones KSP

Puesto que Hilt utiliza anotaciones, para poder usarlo en un proyecto de Android, necesitamos
afadir el procesador de anotaciones KSP (Kotlin Symbol Processing) a nuestro proyecto. KSP
es un procesador de anotaciones de Kotlin creado por Google que reemplaza a 'antiguo' KAPT
(Kotlin Annotation Processing Tool) usado hasta la version 2.48 de Hilt ya que KSP mejora mucho
los tiempos de compilacion.

e Puedes encontrar mas informacién sobre por qué usar Ksp Aqui

Configuracion

o La forma de incluir Hilt en nuestro proyecto de forma actualizada la puedes encontrar a Aqui
o en la documentacién oficial de Android en Inglés.

4/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt
https://android-developers.googleblog.com/2021/09/accelerated-kotlin-build-times-with.html
https://dagger.dev/hilt/gradle-setup
https://dagger.dev/hilt/gradle-setup
https://developer.android.com/training/dependency-injection/hilt-android

En el libs.versions.toml afadiremos las versiones de las librerias y plugins que vamos a usar:

[versions]

kotlin = "2.0.20"

ksp = "2.0.20-1.0.25"
hilt = "2.52"
hiltNavigationCompose = "1.2.0"

[libraries]

dagger-hilt-android

= { group = "com.google.dagger", name = "hilt-android", version.ref = "hilt" }
dagger-hilt-android-compiler

= { group = "com.google.dagger", name = "hilt-android-compiler", version.ref = "hilt" }

androidx-hilt-navigation-compose

= { group = "androidx.hilt", name = "hilt-navigation-compose", version.ref = "hiltNavigationc
[plugins]

devtools-ksp = { id = "com.google.devtools.ksp", version.ref = "ksp" }

com-google-dagger = { id = "com.google.dagger.hilt.android", version.ref = "hilt" }

En el build.gradle.kts raiz del proyecto afiadiremos los plugins de KSP y Hilt definidos en el

libs.versions.toml :

plugins {

alias(libs.plugins.devtools.ksp) apply false
alias(libs.plugins.com.google.dagger) apply false

En el build.gradle.kts del médulo de la aplicacion (app) definiremos los plugins y las

dependencias de Hilt:

5/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

plugins {

alias(libs.plugins.devtools.ksp)

alias(libs.plugins.com.google.dagger)

dependencies {

implementation(libs.dagger.hilt.android)
implementation(libs.androidx.hilt.navigation.compose)
ksp(libs.dagger.hilt.android.compiler)
kspAndroidTest(libs.dagger.hilt.android.compiler)

Tras ello pulsamos 'Sync Now' para sincronizar los cambios en Gradle.

Preparando los componentes de Android para la inyeccidn
de dependencias

o Puedes descargar una chuleta con todas las anotaciones que vamos a ver en este enlace.

En el paquete raiz creamos una clase que extienda de Application Yy le afadimos la anotacién
@HiltAndroidApp para indicar que es la clase principal de la aplicacion:

e Documentacién oficial: HiltAndroidApp

@HiltAndroidApp
class MiApplication : Application() { ... }

Recuerda a continuacion, en el AndroidManifest.xml anadir la clase que acabamos de crear como
la clase principal de la aplicacion si no la habias hecho ya:

6/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/hilt-annotations_cheat-sheet.pdf
https://dagger.dev/hilt/application

<application
android:name=".MiApplication"
android:allowBackup="true"

500

</application>

Es recomendable afadir la anotacién @AndroidEntryPoint a la MainActivity para que Hilt pueda

inyectar dependencias en ella:

o Documentacion oficial: AndroidEntryPoint

@AndroidEntryPoint
class MainActivity : ComponentActivity() { ... }

Cémo insertar objetos ViewModel con Hilt en Compose

/’ Nota

Fijate que hemos afadido la dependencia androidx.hilt:hilt-navigation-compose en el
build.gradle.kts del mdédulo de la aplicacion. Ya que tal y como nos indicaba el
cheatsheet del ViewModel que vimos en el tema anterior. Esta dependencia nos permitira

inyectar viewModels en las funciones @Composable .

e Documentacion oficial: Hilt en Compose

// Inyectamos el contexto de la aplicaciodn

@HiltViewModel
class MiViewModel @Inject constructor() : ViewModel() { ... }

Para acceder al viewModel dentro de una Activity seguiremos usando el delegado

by viewModels()

Para usar un viewModel con Hilt dentro de una funcion @Composable usaremos ahora

hiltViewModel() ...

713 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt/android-entry-point.html
https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-cheatsheet
https://developer.android.com/jetpack/compose/libraries#hilt

@Composable
fun MiScreen(miVm: MiViewModel = hiltViewModel()) { ... }

También es posible usarlo en la navegacion como veremos mas adelante con ...
val miVm = hiltViewModel<MiViewModel>(navBackStackEntry)

de esta manera el viewModelStoreOwner sera una determinada ruta de navegacion y no la

Activity .
Exponer dependencias y preparar médulos con Hilt

o Entry Points

Realmente ya lo hemos hecho al usar el viewModel , y es a través de la anotacién @Inject . Con
esta anotacion indicamos que queremos inyectar una dependencia en el constructor de una
clase. En otras palabras, le estamos diciendo a Hilt que queremos que nos provea una instancia
de memoria de una dependencia que necesitamos. Nos sera util para indicar que necesitamos
instancias de otros modulos tales como repositorios, servicios, etc.

Pero también deberemos preparar los médulos que queramos inyectar con Hilt. Para ello,
debemos afiadir la anotacion @Module a la clase que queramos inyectar. En otras palabras,
deberemos anotar aquellas clases que queramos que Hilt provea instancias de memoria de ellas.

ViewModels con Hilt
e Documentacion oficial: Hilt ViewModels

Por ejemplo, un colaborador tipico o agregacion que genera una dependencia en el ViewModel es
el repositorio o repositorios de datos a los que accedemos.

@HiltViewModel
class MiViewModel @Inject constructor() : ViewModel() {

// Dependencia que queremos inyectar

// Creamos una instancia de MiRepositorio cada vez que se crea un MiViewModel

private val miRepositorio = MiRepositorio() // (ee

8/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt/entry-points
https://dagger.dev/hilt/view-model

Realizaremos una inversion de dependencia (Principio SOLID) por la cual exponemos en el
constructor la instancia del objeto colaborador que queremos que nos inyecte Hilt.

@HiltViewModel
class MiViewModel @Inject constructor(

private val miRepositorio : MiRepository // Sigue siendo una propiedad privada
) : ViewModel() {

Preparando Modulos

e Documentacion oficial: Modules

Ahora deberemos preparar el médulo o la clase MiRepositorio para poder ser inyectado. Para
ello, definiremos una clase que definira los métodos proveedores de las instancias de las clases
que queremos inyectar. A esta clase le denominaremos Componente de Hilt

Esta clase debera tener la anotacion @Module y la anotacion @Installln
que indicara el alcance o Scope de la clase que se provee. En este caso,

2 ingletonComponen
la clase se proveera en el singletonComponent que es el alcance por [Android |V
defecto. : m[com.pmdm.miapplication]
m[data]
. . m[models]
Para seguir los convenios de nomenclatura propuesta en el curso al ver la (U]
arquitectura de una app de Android. La clase que define los proveedores]‘_i[dil
AppModule.kt

la podemos llamar AppModule Yy la afadiremos el paquete di
(dependency injection) al paquete raiz de nuestro proyecto ya que
centralizara todos proveedores de dependencias de la aplicacion.

9/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt/modules
https://dagger.dev/hilt/components.html

package com.pmdm.miapplication.di

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

// Crearemos un método que suele empezar con el prefijo 'provide'’
// y que devolvera una instancia de MiRepositorio

@Provides

@Singleton

fun provideMiRepositorio() : MiRepository = MiRepository()

// Crearemos un modulo para cada clase que queramos inyectar

Anotaciones:

e @Provides : Indica que el método provee una instancia de la clase que se indica en el tipo de

retorno del método.

e @Singleton : Indica que la instancia de la clase que se provee es unica y que se reutilizara en
todas las clases que la necesiten. Cuidado no siempre una instancia unica es una buena
opcion.

e @Installln : Indica el alcance o Scope de la clase que se provee. En este caso, la clase se
proveera en el singletonComponent que es el alcance mas alto que existe.

Puede darse el caso de que se produzca una 'cadena’ de dependencias a inyectar. Por ejemplo,
puede ser que nuestro repositorio necesite de una DAO (Data Access Object) para acceder a la

fuente de datos.

1. Expondremos la inyeccion de la dependencia en el constructor del repositorio a Hilt y de los

objetos que se inyecten.

class MiRepository @Inject constructor(
private val dao: ModeloDaoMock // Como se inyecta también tendremos que exponerlo

)L ...}

class ModeloDaoMock @Inject constructor(){ ... }

10/13 PMDM 2° DAM Tema 3.5 - Inyeccion Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

2. Definiremos el método proveedor de las instancias de ModeloDaoMock hemos marcado como
@Inject en MiRepository

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

@Provides
@Singleton
fun provideModeloDaoMock() : ModeloDaoMock = ModeloDaoMock()

3. Por ultimo, modelobaoMock es inyectado por provideModeloDaoMock() €n el proveedor de
MiRepository Yy por tanto resuelto automaticamente por Hilt.

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

@Provides
@Singleton
fun provideModeloDaoMock() : ModeloDaoMock = ModeloDaoMock()

@Provides
@Singleton
fun provideMiRepositorio(

modeloDaoMock : ModeloDaoMock // Es inyectado por provideModeloDaoMock()

) : MiRepository = MiRepository(modeloDaoMock)

¢) Importante

Aunque es recomendable definir los proveedores de dependencias. En aquellos mddulos
cuyo 'proveedor simplemente se instancie un constructor por defecto o que reciba objetos
ya marcados con @Inject no es necesario definir un proveedor. Hilt o hara
automaticamente.

Por ejemplo, en el caso de ModelobaoMock NO seria necesario definir el proveedor

fun provideModeloDaoMock() : ModeloDaoMock = ModeloDaoMock() ya que no tiene
dependencias y se instanciara automaticamente. Pero si quisiéramos que se instanciara una
unica vez, podriamos aplicarle la anotacion @singleton en la definicion.

11/13 PMDM 2° DAM Tema 3.5 - Inyeccién Dependencias (DI) Hilt ~ Rev. 13/10/2024 IES Doctor Balmis

@Singleton
class ModeloDaoMock @Inject constructor(){ ... }

Otras anotaciones que podemos usar en los métodos 'proveedores' son:

e @Binds : Indica que la clase que se provee es una interfaz y que se debe enlazar con una
clase concreta que implemente dicha interfaz. Se usa en lugar de @Provides .

e @IntoMap : Indica que la clase que se provee es un mapa y que se debe anadir a un mapa
concreto. Se usa en lugar de @Provides .

e @Intoset : Indica que la clase que se provee es un conjunto y que se debe afadir a un
conjunto concreto. Se usa en lugar de @Provides .

Inyectando el contexto de la aplicacion

Aquellos objetos que no se puedan inyectar por Hilt, como por ejemplo SharedPreferences ,
Resources , etc. se pueden inyectar en el AppModule usando la inyeccion del contexto de la
aplicacion con las anotaciones @ApplicationContext O @ActivityContext :

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

@Provides

@Singleton

fun provideSharedPreferences(@ApplicationContext context: Context) : SharedPreferenc
return context.getSharedPreferences("miApp", Context.MODE_PRIVATE)

}

12/13 PMDM 2° DAM Tema 3.5 - Inyeccién Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://developer.android.com/training/dependency-injection/hilt-android#predefined-qualifiers

Resumen configuracion Hilt

e CheatSheet Anotaciones

Resumen

1. Definir loa Entry Points de la aplicacion:
o @HiltAndroidApp en la clase Application .
o @AndroidEntryPoint en la clase MainActivity .
2. Exponer las dependencias en los constructores de las clases que queramos inyectar
con @Inject de forma 'recursiva'.
3. Preparar aquellos médulos que hemos expuesto con la anotacion @Inject . Por tanto, a
la clase AppModule dentro del paquete di .
o La anotaremos con:
= @Module
= @InstallIn(SingletonComponent::class)
o @pProvides en los métodos proveedores de las instancias de las clases que
queramos inyectar que empiezan por fun provide...

13/13 PMDM 2° DAM Tema 3.5 - Inyeccién Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://developer.android.com/static/images/training/dependency-injection/hilt-annotations.pdf

