
Tema 3.4 - Inyección Dependencias (DI)
Descargar estos apuntes pdf o html

Índice
Introducción
Hilt

Procesador de anotaciones KSP
Configuración
Preparando los componentes de Android para la inyección de dependencias

Cómo insertar objetos ViewModel con Hilt en Compose
Exponer dependencias y preparar módulos con Hilt

ViewModels con Hilt
Preparando Modulos
Inyectando el contexto de la aplicación

Resumen configuración Hilt

1/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_5_inyeccion_de_dependencias_id_con_hilt.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_5_inyeccion_de_dependencias_id_con_hilt.html

Introducción
Enlaces de interés:

Documentación oficial de Android: Inyección de dependencias
Vídeo tutorial Divulgativo (Castellano): DevExperto
Codelab Google: Inyección de dependencias
Lista de reproducción: Andorid Developers
Vídeo tutorial (Inglés): Philipp Lackner

La inyección de dependencias (DI) es una técnica muy utilizada en programación y adecuada
para el desarrollo de Android. Si sigues los principios de la DI, sentarás las bases para una buena
arquitectura de apps.

Implementar la inyección de dependencias te proporciona las siguientes ventajas:

Reutilización de código
Facilidad de refactorización.
Facilidad de prueba o test

Una de las razones de por qué necesitamos inyección de dependencias. Es porque durante el
desarrollo de un proyecto, es importante aplicar el Principio de Responsabilidad Única (SRP),
uno de los 5 principios SOLID. Este principio establece, por explicarlo de forma simple, que
nuestras entidades o clases deben hacer una sola cosa. Esto hace que las clases sean más
legibles, fáciles de modificar y de probar.

Sin embargo, este principio puede llevar a la creación de muchos módulos con muchas
dependencias entre ellos. Gestionar estas dependencias puede ser un problema ya que no se
pueden ver los colaboradores de las entidades desde fuera y los módulos no pueden ser probados
de forma aislada. Para evitar esto, es importante que cada módulo exponga sus dependencias.
También, está íntimamente relacionado con el principio de inversión de dependencias (DIP) que
vimos en primero también y que deforma resumida establece los módulos (clases) no deben crear
sus dependencias, sino que deben ser provistas desde fuera.

Puesto que los módulos exponen sus dependencias a través de sus constructores y se necesita un
componente adicional para proporcionarles instancias de memoria de estas dependencias. Crear
una pieza que proporcione todas las dependencias puede ser un trabajo difícil, por lo que existen
los inyectores de dependencias para facilitar este proceso.

2/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://developer.android.com/training/dependency-injection
https://www.youtube.com/watch?v=eefQelCqA-E
https://developer.android.com/codelabs/android-hilt?hl=es-419#0
https://www.youtube.com/watch?v=mnMCgjuMJPA&list=PLWz5rJ2EKKc_9Qo-RBRYhVmME1iR4oeTK
https://www.youtube.com/watch?v=bbMsuI2p1DQ

En el caso de aplicaciones grandes, tomar todas las dependencias y conectarlas correctamente
puede requerir una gran cantidad de código estándar. En una arquitectura de varias capas, para
crear un objeto en una capa superior, debes proporcionar todas las dependencias de las capas
que se encuentran debajo de ella. Por ejemplo, para construir un automóvil real, es posible que
necesites un motor, una transmisión, un chasis y otras piezas; a su vez, el motor necesita cilindros
y bujías.

Cuando no puedes construir dependencias antes de pasarlas (por ejemplo, si usas inicializaciones
diferidas o solicitas permisos para objetos en los flujos de tu app), necesitas escribir y conservar un
contenedor personalizado (o un grafo de dependencias) que administre las dependencias en la
memoria desde el principio.

Hay bibliotecas que resuelven este problema automatizando el proceso de creación y provisión
de dependencias. Se dividen en dos categorías:

1. Soluciones basadas en reflexiones que conectan las dependencias durante el tiempo de
ejecución.

2. Soluciones estáticas que generan el código para conectar las dependencias durante el tiempo
de compilación (Las más usadas).

Dagger es una biblioteca de inserción de dependencias popular para Java, Kotlin y Android que
mantiene Google. Dagger facilita el uso de la DI en tu app mediante la creación y administración
del grafo de dependencias. Proporciona dependencias totalmente estáticas y en tiempo de
compilación que abordan muchos de los problemas de desarrollo y rendimiento de las
soluciones basadas en reflexiones.

Por tanto, casi todos los frameworks modernos proveen algún tipo de librería de inyección de
dependencias. En el ecosistema de Java existen diferentes opciones como: Dagger2, Koin para
Kotlin e incluso JCDI en Jakarta EE.

En Android, la librería más popular es Dagger2. Sin embargo, Dagger2 es una librería muy
compleja y requiere de mucho código boilerplate para configurarla. Por eso, Google ha
desarrollado Hilt, una librería de inyección de dependencias que se integra con el framework
nativo de Android y que elimina mucho código boilerplate necesario en Dagger2.

Resumen

En resumen, la inyección de dependencias no es más que una forma automática de proveer
dependencias a los módulos que las requieran. Para requerirlas tienen que exponerlas por
constructor.



3/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/(https:/dagger.dev/)
https://insert-koin.io/
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html
https://dagger.dev/hilt/

Hilt
Hilt es una librería de inyección de dependencias desarrollada y recomendada por Google en
incluida en el framework nativo de Android.

La principal característica de Hilt es su facilidad de uso y la cantidad de código boilerplate que
elimina con respecto a la integración de Dagger2. Por tanto, el objetivo de Hilt es hacer todo este
proceso muy sencillo e integrado con el framework nativo de Android.

Como única pega podemos decir que, al estar construida sobre la librería de Java Dagger2, Hilt
funciona solo con Kotlin/JVM y por tanto módulos comunes de proyectos de KMP (Kotlin
Multiplatform) donde se use Kotlin/native o Kotlin/wasm en ese caso la alternativa sería Koin.

Procesador de anotaciones KSP
Puesto que Hilt utiliza anotaciones, para poder usarlo en un proyecto de Android, necesitamos
añadir el procesador de anotaciones KSP (Kotlin Symbol Processing) a nuestro proyecto. KSP
es un procesador de anotaciones de Kotlin creado por Google que reemplaza a 'antiguo' KAPT
(Kotlin Annotation Processing Tool) usado hasta la versión 2.48 de Hilt ya que KSP mejora mucho
los tiempos de compilación.

Puedes encontrar más información sobre por qué usar Ksp Aquí 🔗

Configuración
La forma de incluir Hilt en nuestro proyecto de forma actualizada la puedes encontrar a Aquí
🔗 o en la documentación oficial de Android en Inglés.

Podemos pensar en el inyector de dependencias como un chef en una cocina. Los módulos
o clases serían los platos y las dependencias los ingredientes. Cada vez que un plato
requiera un ingrediente, el chef irá a la despensa y lo añadirá a la receta.

La gran mayoría de inyectores de dependencias funcionan de la misma forma:

Los módulos exponen sus dependencias a través de sus constructores.
Un inyector de dependencias se encarga de proveer instancias de memoria de las
dependencias a los módulos que las requieran.
Existen diferentes librerías de ID en Android de dependencias como Hilt, Koin, Kotlin-
inject, Dagger2...

4/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt
https://android-developers.googleblog.com/2021/09/accelerated-kotlin-build-times-with.html
https://dagger.dev/hilt/gradle-setup
https://dagger.dev/hilt/gradle-setup
https://developer.android.com/training/dependency-injection/hilt-android

En el libs.versions.toml añadiremos las versiones de las librerías y plugins que vamos a usar:

[versions]

kotlin = "2.0.20"

...

// Fíjate que la versión de KSP debe coincidir con la de Kotlin 2.0.20

ksp = "2.0.20-1.0.25"

hilt = "2.52"

hiltNavigationCompose = "1.2.0"

[libraries]

dagger-hilt-android

= { group = "com.google.dagger", name = "hilt-android", version.ref = "hilt" }

dagger-hilt-android-compiler

= { group = "com.google.dagger", name = "hilt-android-compiler", version.ref = "hilt" }

androidx-hilt-navigation-compose

= { group = "androidx.hilt", name = "hilt-navigation-compose", version.ref = "hiltNavigationC

[plugins]

devtools-ksp = { id = "com.google.devtools.ksp", version.ref = "ksp" }

com-google-dagger = { id = "com.google.dagger.hilt.android", version.ref = "hilt" }

En el build.gradle.kts raíz del proyecto añadiremos los plugins de KSP y Hilt definidos en el
 libs.versions.toml :

plugins {

 ...

 alias(libs.plugins.devtools.ksp) apply false

 alias(libs.plugins.com.google.dagger) apply false

}

En el build.gradle.kts del módulo de la aplicación (app) definiremos los plugins y las
dependencias de Hilt:

5/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

plugins {

 ...

 alias(libs.plugins.devtools.ksp)

 alias(libs.plugins.com.google.dagger)

}

dependencies {

 ...

 implementation(libs.dagger.hilt.android)

 implementation(libs.androidx.hilt.navigation.compose)

 ksp(libs.dagger.hilt.android.compiler)

 kspAndroidTest(libs.dagger.hilt.android.compiler)

}

Tras ello pulsamos 'Sync Now' para sincronizar los cambios en Gradle.

Preparando los componentes de Android para la inyección
de dependencias

Puedes descargar una chuleta con todas las anotaciones que vamos a ver en este enlace.

En el paquete raíz creamos una clase que extienda de Application y le añadimos la anotación
 @HiltAndroidApp para indicar que es la clase principal de la aplicación:

Documentación oficial: HiltAndroidApp

// Indicamos que es la clase principal de la aplicación

// Esta clase se ejecutará antes que cualquier otra clase de la aplicación

// y se encargará de proveer las dependencias a los módulos que las requieran

@HiltAndroidApp

class MiApplication : Application() { ... }

Recuerda a continuación, en el AndroidManifest.xml añadir la clase que acabamos de crear como
la clase principal de la aplicación si no la habías hecho ya:

6/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/hilt-annotations_cheat-sheet.pdf
https://dagger.dev/hilt/application

<application

 android:name=".MiApplication"

 android:allowBackup="true"

 ...>

 ...

</application>

Es recomendable añadir la anotación @AndroidEntryPoint a la MainActivity para que Hilt pueda
inyectar dependencias en ella:

Documentación oficial: AndroidEntryPoint

@AndroidEntryPoint

class MainActivity : ComponentActivity() { ... }

Cómo insertar objetos ViewModel con Hilt en Compose

// Inyectamos el contexto de la aplicación

@HiltViewModel

class MiViewModel @Inject constructor() : ViewModel() { ... }

Para acceder al ViewModel dentro de una Activity seguiremos usando el delegado
 by viewModels()

Para usar un ViewModel con Hilt dentro de una función @Composable usaremos ahora
 hiltViewModel() ...

Nota

Fíjate que hemos añadido la dependencia androidx.hilt:hilt-navigation-compose en el
 build.gradle.kts del módulo de la aplicación. Ya que tal y como nos indicaba el
cheatsheet del ViewModel que vimos en el tema anterior. Esta dependencia nos permitirá
inyectar ViewModels en las funciones @Composable .

Documentación oficial: Hilt en Compose



7/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt/android-entry-point.html
https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-cheatsheet
https://developer.android.com/jetpack/compose/libraries#hilt

@Composable

fun MiScreen(miVm: MiViewModel = hiltViewModel()) { ... }

También es posible usarlo en la navegación como veremos más adelante con ...

val miVm = hiltViewModel<MiViewModel>(navBackStackEntry)

de esta manera el ViewModelStoreOwner será una determinada ruta de navegación y no la
 Activity .

Exponer dependencias y preparar módulos con Hilt
Entry Points

Realmente ya lo hemos hecho al usar el ViewModel , y es a través de la anotación @Inject . Con
esta anotación indicamos que queremos inyectar una dependencia en el constructor de una
clase. En otras palabras, le estamos diciendo a Hilt que queremos que nos provea una instancia
de memoria de una dependencia que necesitamos. Nos será útil para indicar que necesitamos
instancias de otros módulos tales como repositorios, servicios, etc.

Pero también deberemos preparar los módulos que queramos inyectar con Hilt. Para ello,
debemos añadir la anotación @Module a la clase que queramos inyectar. En otras palabras,
deberemos anotar aquellas clases que queramos que Hilt provea instancias de memoria de ellas.

ViewModels con Hilt

Documentación oficial: Hilt ViewModels

Por ejemplo, un colaborador típico o agregación que genera una dependencia en el ViewModel es
el repositorio o repositorios de datos a los que accedemos.

@HiltViewModel

class MiViewModel @Inject constructor() : ViewModel() {

 // Dependencia que queremos inyectar

 // Creamos una instancia de MiRepositorio cada vez que se crea un MiViewModel

 private val miRepositorio = MiRepositorio() // 💀

 ...

}

8/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt/entry-points
https://dagger.dev/hilt/view-model

Realizaremos una inversión de dependencia (Principio SOLID) por la cual exponemos en el
constructor la instancia del objeto colaborador que queremos que nos inyecte Hilt.

@HiltViewModel

class MiViewModel @Inject constructor(

 private val miRepositorio : MiRepository // Sigue siendo una propiedad privada

) : ViewModel() {

 ...

}

Preparando Modulos

Documentación oficial: Modules

Ahora deberemos preparar el módulo o la clase MiRepositorio para poder ser inyectado. Para
ello, definiremos una clase que definirá los métodos proveedores de las instancias de las clases
que queremos inyectar. A esta clase le denominaremos Componente de Hilt

Esta clase deberá tener la anotación @Module y la anotación @InstallIn
que indicará el alcance o Scope de la clase que se provee. En este caso,
la clase se proveerá en el SingletonComponent que es el alcance por
defecto.

Para seguir los convenios de nomenclatura propuesta en el curso al ver la
arquitectura de una app de Android. La clase que define los proveedores
la podemos llamar AppModule y la añadiremos el paquete di
(dependency injection) al paquete raíz de nuestro proyecto ya que
centralizará todos proveedores de dependencias de la aplicación.

Android
[com.pmdm.miapplication]

[data]
[models]
[ui]
[di]
AppModule.kt

9/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://dagger.dev/hilt/modules
https://dagger.dev/hilt/components.html

package com.pmdm.miapplication.di

@Module

@InstallIn(SingletonComponent::class)

class AppModule {

 // Crearemos un método que suele empezar con el prefijo 'provide'

 // y que devolverá una instancia de MiRepositorio

 @Provides

 @Singleton

 fun provideMiRepositorio() : MiRepository = MiRepository()

 // Crearemos un módulo para cada clase que queramos inyectar

}

Anotaciones:

 @Provides : Indica que el método provee una instancia de la clase que se indica en el tipo de
retorno del método.
 @Singleton : Indica que la instancia de la clase que se provee es única y que se reutilizará en
todas las clases que la necesiten. Cuidado no siempre una instancia única es una buena
opción.
 @InstallIn : Indica el alcance o Scope de la clase que se provee. En este caso, la clase se
proveerá en el SingletonComponent que es el alcance más alto que existe.

Puede darse el caso de que se produzca una 'cadena' de dependencias a inyectar. Por ejemplo,
puede ser que nuestro repositorio necesite de una DAO (Data Access Object) para acceder a la
fuente de datos.

1. Expondremos la inyección de la dependencia en el constructor del repositorio a Hilt y de los
objetos que se inyecten.

class MiRepository @Inject constructor(

 private val dao: ModeloDaoMock // Como se inyecta también tendremos que exponerlo

) { ... }

class ModeloDaoMock @Inject constructor(){ ... }

10/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

2. Definiremos el método proveedor de las instancias de ModeloDaoMock hemos marcado como
 @Inject en MiRepository

3. Por último, modeloDaoMock es inyectado por provideModeloDaoMock() en el proveedor de
 MiRepository y por tanto resuelto automáticamente por Hilt.

@Module

@InstallIn(SingletonComponent::class)

class AppModule {

 @Provides

 @Singleton

 fun provideModeloDaoMock() : ModeloDaoMock = ModeloDaoMock()

}

7

@Module

@InstallIn(SingletonComponent::class)

class AppModule {

 @Provides

 @Singleton

 fun provideModeloDaoMock() : ModeloDaoMock = ModeloDaoMock()

 @Provides

 @Singleton

 fun provideMiRepositorio(

 modeloDaoMock : ModeloDaoMock // Es inyectado por provideModeloDaoMock()

) : MiRepository = MiRepository(modeloDaoMock)

}

12

Importante

Aunque es recomendable definir los proveedores de dependencias. En aquellos módulos
cuyo 'proveedor' simplemente se instancie un constructor por defecto o que reciba objetos
ya marcados con @Inject no es necesario definir un proveedor. Hilt lo hará
automáticamente.

Por ejemplo, en el caso de ModeloDaoMock no sería necesario definir el proveedor
 fun provideModeloDaoMock() : ModeloDaoMock = ModeloDaoMock() ya que no tiene
dependencias y se instanciará automáticamente. Pero si quisiéramos que se instanciara una
única vez, podríamos aplicarle la anotación @Singleton en la definición.



11/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

Otras anotaciones que podemos usar en los métodos 'proveedores' son:

 @Binds : Indica que la clase que se provee es una interfaz y que se debe enlazar con una
clase concreta que implemente dicha interfaz. Se usa en lugar de @Provides .
 @IntoMap : Indica que la clase que se provee es un mapa y que se debe añadir a un mapa
concreto. Se usa en lugar de @Provides .
 @IntoSet : Indica que la clase que se provee es un conjunto y que se debe añadir a un
conjunto concreto. Se usa en lugar de @Provides .

Inyectando el contexto de la aplicación

Aquellos objetos que no se puedan inyectar por Hilt, como por ejemplo SharedPreferences ,
 Resources , etc. se pueden inyectar en el AppModule usando la inyección del contexto de la
aplicación con las anotaciones @ApplicationContext o @ActivityContext :

@Singleton

class ModeloDaoMock @Inject constructor(){ ... }

@Module

@InstallIn(SingletonComponent::class)

class AppModule {

 @Provides

 @Singleton

 fun provideSharedPreferences(@ApplicationContext context: Context) : SharedPreferenc

 return context.getSharedPreferences("miApp", Context.MODE_PRIVATE)

 }

}

7

12/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://developer.android.com/training/dependency-injection/hilt-android#predefined-qualifiers

Resumen configuración Hilt
CheatSheet Anotaciones

Resumen

1. Definir loa Entry Points de la aplicación:
 @HiltAndroidApp en la clase Application .
 @AndroidEntryPoint en la clase MainActivity .

2. Exponer las dependencias en los constructores de las clases que queramos inyectar
con @Inject de forma 'recursiva'.

3. Preparar aquellos módulos que hemos expuesto con la anotación @Inject . Por tanto, a
la clase AppModule dentro del paquete di .

La anotaremos con:
 @Module

 @InstallIn(SingletonComponent::class)

 @Provides en los métodos proveedores de las instancias de las clases que
queramos inyectar que empiezan por fun provide... .



13/13 PMDM 2º DAM Tema 3.5 - Inyección Dependencias (DI) Hilt Rev. 13/10/2024 IES Doctor Balmis

https://developer.android.com/static/images/training/dependency-injection/hilt-annotations.pdf

