
Tema 3.4 - ViewModel
Descargar estos apuntes pdf o html

Índice
Introducción

Alcance de un ViewModel (ViewModel Scope)
Ciclo de vida de un ViewModel

Instanciando un ViewModel
Ejemplo de uso y definición de un ViewModel

AhorcadoUiState.kt
AhorcadoEvent.kt
AhorcadoScreen.kt
AhorcadoViewModel.kt
Asociando el ViewModel a la UI en MainActivity.kt

✋ Prácticas no recomendadas

1/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_4_viewmodel.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_4_viewmodel.html

Introducción
En anteriores temas cuando hablamos de la arquitectura de aplicaciones de Android ya
mencionamos este componente como parte de la Capa de UI. En este tema vamos a centrarnos
en él para concretar la implementación de MVVM en nuestra capa UI de la arquitectura.

 ViewModel es una de esas clases que Google definió, allá por 2018, en la primera versión de
Jetpack para ayudar a los desarrolladores a crear aplicaciones de Android más robustas y fáciles
de mantener. ViewModel es una clase que está diseñada para almacenar y administrar datos
relacionados con la interfaz de usuario de una manera que sobrevive a los cambios de
configuración, como la rotación de la pantalla.

Los beneficios clave de la clase ViewModel son básicamente dos:

Te permite conservar el estado de la IU.
Proporciona acceso a la lógica empresarial, idealmente a través de casos de uso definidos en
el dominio.

Alcance de un ViewModel (ViewModel Scope)
Cuando se crea una instancia de ViewModel , se pasa un objeto que implementa la interfaz
 ViewModelStoreOwner .

Los objetos que implementan ViewModelStoreOwner puede ser por ejemplo:

Una Activity o ComponentActivity .
Un Fragment .
Un destino de Navigation NavBackStackEntry .

Cuando se destruye el fragmento o la actividad para los que se definió el alcance del ViewModel,
el trabajo asíncrono continúa en el ViewModel específico. Esta es la clave de la persistencia.

Importante

El alcance de tu ViewModel se define en el Ciclo de vida del ViewModelStoreOwner . Esto es,
continúa en la memoria hasta que su ViewModelStoreOwner desaparece de forma
permanente.



2/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Cuando se definió la clase ViewModel en la primera versión de Jetpack, aún no existia Compose
y se usaba asociado a una vista como un Activity o a un Fragment . Nuestras aplicaciones de
Android se componían de una o más Activity o Fragment y cada uno de ellos tenía su propio
 ViewModel que se creaba como una instancia única. ViewModel se usaba para almacenar datos
que se necesitaban en la interfaz de usuario de la Activity/Fragment o el Fragment y queríamos
que sobrevivieran a los cambios de configuración o queríamos compartir datos entre ellos.

Con la llegada de Jetpack Compose este enfoque ha cambiado y Google ahora recomienda
aplicaciones de actividad única donde las diferentes pantallas se cargan como contenido dentro
de la misma actividad. Por tanto, un ViewModel utilizado por una actividad permanece en memoria
hasta que la actividad finalice esto es hasta que la aplicación finalice.

Ciclo de vida de un ViewModel

En el caso de una Activity , hasta que termina. (El más común)
En el caso de un Fragment , cuando se desvincula. (No se usa en Compose)
En el caso de un NavBackStackEntry , hasta volvemos atrás en el grafo.

En la imagen de la derecha vemos que el objeto ViewModel cuyo
'propietario' (el ViewModelStoreOwner) es una Activity que tiene
un cambio de configuración (rotación de pantalla) y por tanto se
destruye y vuelve a crearse su vista asociada.

1. Se crea al llamarse al método onCreate() de la Activity
solo la primera vez y aunque se vuelva a llamar a
 onCreate() por un cambio de configuración, no se vuelve a
crear permanece el mismo objeto ViewModel que se creó en
la primera llamada.

2. No se destruye aunque la Activity destruya su vista y
permanece en memoria hasta la finalización de la Activity ,
en ese momento se llama al método onCleared() del
 ViewModel para que realice las tareas de limpieza necesarias.

3/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Instanciando un ViewModel
Hay muchas formas de instanciarlo y eso nos puede llevar a confusión. Pero nosotros vamos a
usar la más sencilla y recomendada por Google. De todas formas, si quieres profundizar puedes
ver el siguiente 'cheatsheet' creado por los desarrolladores de Google.

1. Para definirlo deberemos crear una clase que herede de ViewModel y que implemente la
lógica de negocio que necesitemos.

class MiViewModel : ViewModel() { ... }

2. ❌ No debemos hacer jamás una instancia direcra.

val miVm = MiViewModel() //💀💀

Ya que el ciclo de vida de un ViewModel está asociado a un ViewModelStoreOwner y por tanto
es la clase ViewModelProvider la que se encarga de crearlo y mantenerlo en memoria.

// activity es el objeto que implementa ViewModelStoreOwner

val miVm = ViewModelProvider(activity).get(MiViewModel::class.java)

El código anterior, nosotros no tendremos que crearlo así nunca, pues Jetpack nos
proporciona formas más sencillas de hacerlo.

3. ⚠️ Como en el fondo debe ser ViewModelProvider quien lo crea, si pasamos parámetros al
constructor de la clase MiViewModel no nos va a dejar, más adelante tendremos formas más
sencillas de hacerlo. Por tanto, de momento, no deberíamos pasar parámetros al constructor.

class MiViewModel(val param: String) : ViewModel() { ... } //💀💀

Si necesitáramos pasar parámetros al constructor, deberemos crear una clase que
implemente ViewModelProvider.Factory y que se encargue de crear el objeto MiViewModel
como se indica en la documentación oficial.

Importante

Ya veremos más adelante que la librería Hilt (Jetpack) para inyección de dependencias
me facilita mucho esta tarea. Así pues, no tendremos nunca que crear una clase que
implemente ViewModelProvider.Factory cuando pasemos parámetros.



4/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

https://developer.android.com/static/images/topic/libraries/architecture/viewmodel-apis-cheatsheet.png?hl=es-419
https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-factories

4. Delegado de creación by viewModels() , si el propietario es una Activity .

5. Creación con viewModel() , si estamos dentro de una función @Composable
El ViewModelStoreOwner será la Activity que renderiza la composición. No importa que
 viewModel() sea llamado más veces a lo largo de las recomposiciones pues solo se
instanciará en la primera llamada.

@Composable

fun MiScreen(miVm: MiViewModel = viewModel()) { ... }

Esta última forma, tal y como indica el cheatSheet de Google, necesita de la siguiente
dependencia:

dependencies {

 // androidx.lifecycle:lifecycle-viewmodel-compose:<version>

 implementation(libs.androidx.lifecycle.viewmodel.compose)

}

por lo que en el libs.versions.toml deberemos añadir la entrada correspondiente.

class MainActivity : ComponentActivity() {

 // Opción 1

 // Lo defino como propiedad de la clase y delego su creación que será al ser usa

 // primera vez después de llamarse el método onCreate() de la Activity y puede s

 // accedido desde cualquier método de la Activity que usemos después del onCreat

 // El delegado internamente llama a ViewModelProvider

 val miVm: MiViewModel by viewModels()

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 // Opción 2

 // Lo defino en el método onCreate() y lo clausuramos al definir el árbol de

 // seguirá siendo destruido por ViewModelProvider al destruirse la

 // Activity que es el ViewModelStoreOwner

 val miVm: MiViewModel by viewModels()

 setContent {

 // Clausura de miVm

 }

 }

}

2

7

12

16

5/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

[libraries]

androidx-lifecycle-viewmodel-compose = {

 group = "androidx.lifecycle",

 name = "lifecycle-viewmodel-compose",

 version.ref = "lifecycleRuntimeKtx"

}

Nota

Existen más formas de crear un ViewModel que veremos más adelante.



6/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Ejemplo de uso y definición de un ViewModel
Vamos a crear un simple juego del ahorcado para ver cómo se
implementa un ViewModel . Para ello vamos a partir de un proyecto
donde ya hemos diseñado una UI con Jetpack Compose.

Puedes descargar el proyecto de partida de este enlace
Ahorcado.zip.

Vamos a explicar la implementación del interfaz de usuario antes de ver
la implementación del ViewModel . Para ello, partimos de la estructura
del proyecto que se muestra en la imagen de la derecha donde tenemos
un AhorcadoScreen.kt , un AhorcadoUiState.kt que guardará el 'State'
del UI y un AhorcadoEvent.kt que gestionará los eventos que se
produzcan en el UI.

Android
[com.ahorcado]

[ui]
[features]

[juego]
AhorcadoEvent.kt
AhorcadoScreen.kt
AhorcadoUiState.kt

[theme]
[views]
MainActivity.kt

AhorcadoUiState.kt

Como hemos comentado guardará el 'State' del UI definido en AhorcadoScreen.kt y que
básicamente será el estado del conocido juego del ahorcado.

data class AhorcadoUiState(

 // Última letra introducida por el usuario, es una cadena de una sola letra.

 val letraIntroducida: String = "",

 // Palabra que se tiene que adivinar, procederá de alguna fuente de datos.

 val palabra: String = "",

 // Cadena que lleva las letras que se han fallado en el juego.

 val letrasFalladas: String = "",

 // Cadena que lleva las letras que se han acertado de la palabra a adivinar.

 val letrasAcertadas: String = "",

 // Valor enumerado que guarda en que momento del juego estoy.

 val estado: EstadoJuego = EstadoJuego.EMPEZAR

) {

 enum class EstadoJuego {

 EMPEZAR, // El juego aún no ha empezado y no se ha generado la palabra a adivinar.

 JUGANDO, // Estamos ya jugando y ya hay una palabra a adivinar.

 GANADO, // El juego ha terminado ya y se ha ganado o se ha perdido. El usuario debe

 PERDIDO // el resultado y debe aceptarlo para poder volver al estado EMPEZAR.

 }

}

7/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_4/Ahorcado_recurso.zip

AhorcadoEvent.kt

Lo eventos posibles que vamos a manejar en el UI y que se producirán al interactuar con el mismo
los agrupamos en el siguiente sealed interface .

sealed interface AhorcadoEvent {

 // Estamos en estado EMPEZAR y pasamos a JUGANDO.

 object OnEmpezarJuego : AhorcadoEvent

 // Ha finalizado el juego, estamos en estado GANADO y PERDIDO y pasamos al estado EMPEZAR

 object OnAceptarResultadoFinalJuego : AhorcadoEvent

 // Estamos JUGANDO hay una **`letraIntroducida`** y la enviamos para que se compruebe.

 object OnLetraEnviada : AhorcadoEvent

 // El usuario introduce una letra y tenemos que comprobarla para ver si pertenece al

 // alfabeto castellano (sin tildes) y no está entre las acertadas y falladas.

 // De esta manera después podremos jugar con ella.s

 data class OnCambiaLetraIntroducida(val letra: String) : AhorcadoEvent

}

AhorcadoScreen.kt

Definimos el UI usando Jetpack Compose y aplicando 'State Hoisting ' con funciones composables
sin estado o 'stateless'. Es la parte más extensa y vamos a describir los componentes más
importantes.

8/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// Recibe el número de fallos y los representa con una

// de la imágenes del ahorcado definidas en los recursos.

@Composable

fun MuestraAhorcado(modifier: Modifier = Modifier, fallos: Int) {

 val idRecurso = when (fallos) {

 0 -> R.drawable.ahorcado0 // No hay fallos

 1 -> R.drawable.ahorcado1 // 1 fallo

 2 -> R.drawable.ahorcado2 // 2 fallos

 3 -> R.drawable.ahorcado3 // ...

 4 -> R.drawable.ahorcado4

 5 -> R.drawable.ahorcado5

 6 -> R.drawable.ahorcado6

 else -> throw Exception("Número de fallos incorrecto")

 }

 Image(

 modifier = modifier.then(Modifier.fillMaxSize()),

 painter = painterResource(idRecurso),

 contentDescription = "Dibujo del ahorcado",

 colorFilter = ColorFilter.tint(MaterialTheme.colorScheme.primary)

)

}

9/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// Recibe la palabra a adivinar y las letras acertadas y muestra las letras acertadas y

// las que faltan por acertar representadas por '_'. Tenemos pues un Row con Text para cada l

@Composable

fun Palabra(palabra: String, letrasAcertadas: String) = Row(

 modifier = Modifier.fillMaxWidth(),

 horizontalArrangement = Arrangement.Center

) { ... }

// Muestras las letras falladas en un Row con Text para cada letra.

@Composable

fun Fallos(letrasFalladas: String) = Row(

 modifier = Modifier.fillMaxWidth(),

 horizontalArrangement = Arrangement.Start

) { ... }

// Muestra el estado del juego mientras estoy JUGANDO, esto es,

// la palabra parcialmente adivinada y las letras falladas.

@Composable

fun EstadoJuego(

 palabra: String, letrasAcertadas: String, letrasFalladas: String

) {

 Column(

 modifier = Modifier.fillMaxWidth(),

 verticalArrangement = Arrangement.Top,

) {

 Spacer(modifier = Modifier.size(20.dp))

 Palabra(palabra, letrasAcertadas)

 Spacer(modifier = Modifier.size(20.dp))

 Fallos(letrasFalladas)

 }

}

10/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// TextField encargado de introducir una letra. Su estado está representado por letraState.

// Si hay letra parra jugar se muestra un Button para enviarla.

// Por esa razón elevamos dos eventos como la introducción de una letra y el envío de la mism

// Esto solo se podrá hacer si hay una letra válida para jugar.

@Composable

fun JuegaLetra(

 letraState: String, onCambiaLetraIntroducida: (String) -> Unit, onLetraEnviada: () -> Uni

) {

 Row(

 modifier = Modifier.fillMaxWidth(),

 verticalAlignment = Alignment.CenterVertically

) {

 // Hace que el foco recaiga sobre el OutlinedTextField

 val focusRequester = remember { FocusRequester() }

 OutlinedTextField(

 modifier = Modifier.width(100.dp)

 .padding(start = 5.dp, end = 5.dp)

 .focusRequester(focusRequester),

 value = letraState,

 singleLine = true,

 onValueChange = { onCambiaLetraIntroducida(it.uppercase()) },

 label = { Text(text = "Letra") },

)

 // Hace que el foco recaiga sobre el OutlinedTextField

 LaunchedEffect(Unit) { focusRequester.requestFocus() }

 // Si hay letra para jugar se muestra el Button para enviarla.

 if (letraState.isNotEmpty()) {

 val controller = LocalSoftwareKeyboardController.current

 Button(

 modifier = Modifier.padding(start = 5.dp, end = 5.dp),

 onClick = {

 // Ocultamos el teclado si está visible antes de enviar la letra.

 controller?.hide()

 onLetraEnviada()

 }

) { Text(text = "Jugar") }

 }

 }

}

// Componente que se muestra si el juego ha terminado y el estado es GANADO o PERDIDO.

// Mostramos el aviso correspondiente y un Button para aceptar el resultado y volver al estad

// Podría ser una AlertDialog.

11/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

@Composable

fun ResultadoFinalJuego(

 modifier: Modifier = Modifier,

 estadoJuego: AhorcadoUiState.EstadoJuego,

 onAceptarResultadoFinalJuego: () -> Unit

) { }

12/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// Gestión de los estados de juego y su composición de la UI.

@Composable

fun MuestraInterface(

 modifier: Modifier = Modifier,

 ahorcadoState: AhorcadoUiState,

 onEventSent: (AhorcadoEvent) -> Unit

) {

 if (ahorcadoState.estado == AhorcadoUiState.EstadoJuego.EMPEZAR) {

 BotonEmpezar(

 modifier = modifier,

 onClick = { onEventSent(AhorcadoEvent.OnEmpezarJuego) }

)

 } else {

 val scrollState: ScrollState = rememberScrollState()

 Column(

 verticalArrangement = Arrangement.Top,

 modifier = modifier.then(

 Modifier

 .fillMaxWidth()

 .verticalScroll(scrollState)

)

) {

 EstadoJuego(

 palabra = ahorcadoState.palabra,

 letrasAcertadas = ahorcadoState.letrasAcertadas,

 letrasFalladas = ahorcadoState.letrasFalladas

)

 Spacer(modifier = Modifier.size(20.dp))

 if (ahorcadoState.estado == AhorcadoUiState.EstadoJuego.JUGANDO) {

 JuegaLetra(

 letraState = ahorcadoState.letraIntroducida,

 onCambiaLetraIntroducida = { letra ->

 onEventSent(AhorcadoEvent.OnCambiaLetraIntroducida(letra))

 },

 onLetraEnviada = { onEventSent(AhorcadoEvent.OnLetraEnviada) })

 } else {

 ResultadoFinalJuego(

 estadoJuego = ahorcadoState.estado,

 onAceptarResultadoFinalJuego = { onEventSent(AhorcadoEvent.OnAceptarResul

)

 }

 }

13/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

 }

}

14/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Layouts principales del juego y que gestionan la visualización de su estado en función de la
orientación del dispositivo. Vamos a permitir el cambio de orientación para probar qué sucede con
el estado del juego guardado en ArhorcadoUiState .

@Composable

fun AhorcadoPortrait(ahorcadoState: AhorcadoUiState, onEventSent: (AhorcadoEvent) -> Unit) {

@Composable

fun AhorcadoLandsacape(ahorcadoState: AhorcadoUiState, onEventSent: (AhorcadoEvent) -> Unit)

@Composable

fun AhorcaDoScreen(

 ahorcadoState: AhorcadoUiState,

 onEventSent: (AhorcadoEvent) -> Unit

) {

 // Este es el layout principal que permite accder al tamaño del ViewPort de la aplicación

 // maxWidth y maxHeight. En función de estos valores se decide como se distribuyen los co

 BoxWithConstraints(

 modifier = Modifier

 .fillMaxSize()

 .background(MaterialTheme.colorScheme.surface)

) {

 // Query que decide cómo se pinta el UI en función del ancho del ViewPort.

 if (maxWidth < 600.dp) {

 AhorcadoPortrait(

 ahorcadoState = ahorcadoState,

 onEventSent = onEventSent

)

 } else {

 AhorcadoLandsacape(

 ahorcadoState = ahorcadoState,

 onEventSent = onEventSent

)

 }

 }

}

15/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

AhorcadoViewModel.kt

Esta definición irá dentro del paquete com.ahorcado.ui.features.juego . Aquí definiremos el estado
del UI y la lógica de negocio del juego. Hasta aquí llegarán todos los eventos que se produzcan en
la UI.

class AhorcadoViewModel : ViewModel() {

 // En esta sección definimos todas las propiedades y métodos de clase que necesitemos.

 companion object {

 private val MAXIMO_FALLOS = 6

 // Comprueba si ya hemos acertado todas las letras de la palabra buscada.

 fun palabraAcertada(palabra: String, letrasAcertadas: String): Boolean {

 var acertada = true

 for (letra in palabra) {

 if (!letrasAcertadas.contains(letra)) {

 acertada = false

 break

 }

 }

 return acertada

 }

 }

 // Definimos el estado del UI

 // No podemos usar el API remenber pues no estamos dentro de un @Composable y además

 // al estar un ViewModel permanace en memoria hasta que se destruya la Activity.

 var ahorcadoState by mutableStateOf(AhorcadoUiState())

 ...

Definiremos lo métodos que gestionan los cambios del estado de la UI

16/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

 private fun empiezaJuego() {

 // Podría ser una fuente de datos.

 val palabras = listOf("XUSA", "JUANJO", "PEPE", "COMPOSABLE")

 ahorcadoState = ahorcadoState.copy(

 // Tomamos una palabra aleatoria a adivinar.

 palabra = palabras[Random.nextInt(0, palabras.size)],

 // El juego pasa a estado JUGANDO.

 estado = AhorcadoUiState.EstadoJuego.JUGANDO

)

 }

17/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

 private fun reiniciaJuego() {

 ahorcadoState = AhorcadoUiState()

 }

 // Método encargado de ver si la letra introducida en el TextField de la

 // UI es válida para jugar y si es así, guardar su estado para reflejarlo en el mismo.

 // Aunque esté relacionado con dicho elemento de la UI, fíjate que en ningún

 // indicarlo en los nombres, ya que el ViewModel debe permanecer 'agnóstico' de

 // momento debemos cómo es la implementación en la UI.

 private fun gestionaLetraIntroducida(letra: String) {

 // Si solo hay una letra, no está entre las acertadas

 // ni entre las falladas y está entre la A-Z incluida Ñ

 ahorcadoState = if (letra.length == 1

 && !ahorcadoState.letrasAcertadas.contains(letra[0])

 && !ahorcadoState.letrasFalladas.contains(letra[0])

 && Regex("^[A-ZÑ]$").matches(letra)

)

 ahorcadoState.copy(letraIntroducida = letra)

 else

 ahorcadoState.copy(letraIntroducida = "")

 }

 // Método encargado de jugar la letra introducida

 private fun juegaLetraIntroducida() {

 if (ahorcadoState.palabra.contains(ahorcadoState.letraIntroducida[0])) {

 val letrasAcertadas = ahorcadoState.letrasAcertadas

 + ahorcadoState.letraIntroducida

 ahorcadoState = ahorcadoState.copy(

 letraIntroducida = "",

 letrasAcertadas = letrasAcertadas,

 estado = if (palabraAcertada(ahorcadoState.palabra, letrasAcertadas))

 AhorcadoUiState.EstadoJuego.GANADO

 else

 AhorcadoUiState.EstadoJuego.JUGANDO

)

 } else {

 val letrasFalladas = ahorcadoState.letrasFalladas

 + ahorcadoState.letraIntroducida

 ahorcadoState = ahorcadoState.copy(

 letraIntroducida = "",

 letrasFalladas = letrasFalladas,

 estado = if (letrasFalladas.length == MAXIMO_FALLOS)

18/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

 AhorcadoUiState.EstadoJuego.PERDIDO

 else

 AhorcadoUiState.EstadoJuego.JUGANDO

)

 }

 }

19/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

 // Método encargado de gestionar los eventos que se produzcan en la UI.

 fun onEventoAhorcado(evento : AhorcadoEvent) {

 when (evento) {

 is AhorcadoEvent.OnEmpezarJuego -> empiezaJuego()

 is AhorcadoEvent.OnAceptarResultadoFinalJuego -> reiniciaJuego()

 is AhorcadoEvent.OnCambiaLetraIntroducida -> gestionaLetraIntroducida(evento.letr

 is AhorcadoEvent.OnLetraEnviada -> juegaLetraIntroducida()

 }

 }

} // Fin de la clase AhorcadoViewModel

Asociando el ViewModel a la UI en MainActivity.kt

Vamos ahora a usar nuestro ViewModel ...

1. ❌ Supongamos que cramos el objeto ViewModel sin más en el onCreate() sin usar ningún
tipo de ViewModelProvider

Si empezamos a jugar y giramos el movil se vuelve a llamar a onCreate() y el estado se
pierde.

class MainActivity : ComponentActivity() {

 lateinit var ahorcadoViewModel: AhorcadoViewModel

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 ahorcadoViewModel = AhorcadoViewModel() // 💀💀

 setContent {

 AhorcadoTheme {

 AhorcaDoScreen(

 ahorcadoViewModel.ahorcadoState,

 ahorcadoViewModel::onEventoAhorcado

)

 }

 }

 }

}

2

5

20/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

2. Lo hacemos correctamente u asignaremos el ViewModel a la Activity que es el
 ViewModelStoreOwner primero usando VieModelProvider con el delegado viewModels()

Ahora si volvemos a jugar y giramos el movil el ViewModel permanece y el estado se redibuja.

3. Por último, vamos a probar a crear el ViewModel dentro de una función @Composable usando
la función composable viewModel() que requiere de las dependencias que hemos
comentado antes.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 val ahorcadoViewModel: AhorcadoViewModel by viewModels() // ✅

 setContent {

 AhorcadoTheme {

 AhorcaDoScreen(

 ahorcadoViewModel.ahorcadoState,

 ahorcadoViewModel::onEventoAhorcado

)

 }

 }

 }

}

4

21/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 AhorcadoTheme {

 val ahorcadoViewModel: AhorcadoViewModel = viewModel() // ✅

 AhorcaDoScreen(

 ahorcadoViewModel.ahorcadoState,

 ahorcadoViewModel::onEventoAhorcado

)

 }

 }

 }

}

6

22/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

✋ Prácticas no recomendadas
Las siguientes son varias prácticas recomendadas clave que debes seguir cuando implementes
 ViewModel :

❌ NO definas ViewModel para composables reutilizables en tu UI o para componentes de IU
que no sean de nivel superior. Deberíamos definirlos a nivel de Screen (pantalla).
❌ Los ViewModels NO deberían conocer los detalles de implementación de la IU.
Mantén los nombres de los métodos que expone la API de ViewModel y los de los campos del
UIState lo más genéricos posible.
❌ Como pueden tener una vida más larga que el ViewModelStoreOwner , los ViewModels NO
deberían contener ninguna referencia de APIs relacionadas con el ciclo de vida, como
 Context o Resources para evitar fugas de memoria.
❌ NO pases ViewModels a funciones ni otros componentes de la IU. Esto evita que los
componentes de nivel inferior accedan a más datos y lógica de los que necesitan.
❌ Derivado del anterior NO instancies directamente un objeto ViewModels. En su lugar,
usa algún tipo de 'proveedor de ViewModels' para obtener una instancia del mismo.

23/23 PMDM 2º DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

