Tema 3.4 - ViewModel

Descargar estos apuntes pdf o html

indice

¥ Introduccién

¥ Alcance de un ViewModel (ViewModel Scope)

» Ciclo de vida de un ViewModel

= |nstanciando un ViewModel

¥ Ejemplo de uso y definicién de un ViewModel
AhorcadoUiState.kt
AhorcadoEvent.kt
AhorcadoScreen.kt
AhorcadoViewModel.kt
Asociando el ViewModel a la Ul en MainActivity.kt

% Practicas no recomendadas

1/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_4_viewmodel.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_4_viewmodel.html

Introduccion

En anteriores temas cuando hablamos de la arquitectura de aplicaciones de Android ya
mencionamos este componente como parte de la Capa de Ul. En este tema vamos a centrarnos
en él para concretar la implementacion de MVVM en nuestra capa Ul de la arquitectura.

ViewModel es una de esas clases que Google definid, alla por 2018, en la primera version de
Jetpack para ayudar a los desarrolladores a crear aplicaciones de Android mas robustas y faciles
de mantener. viewModel es una clase que esta disenada para almacenar y administrar datos
relacionados con la interfaz de usuario de una manera que sobrevive a los cambios de
configuracion, como la rotacion de la pantalla.

Los beneficios clave de la clase ViewModel son basicamente dos:

e Te permite conservar el estado de la |U.
» Proporciona acceso a la l6gica empresarial, idealmente a través de casos de uso definidos en
el dominio.

Alcance de un ViewModel (ViewModel Scope)

Cuando se crea una instancia de VviewModel , se pasa un objeto que implementa la interfaz

ViewModelStoreOwner .
Los objetos que implementan ViewModelStoreOwner puede ser por ejemplo:

e Una Activity O ComponentActivity .
e Un Fragment .
e Un destino de Navigation NavBackStackEntry .

¢) Importante
El alcance de tu ViewModel se define en el Ciclo de vida del viewModelStoreowner . Esto es,

continua en la memoria hasta que su ViewModelStoreOwner desaparece de forma

permanente.

Cuando se destruye el fragmento o la actividad para los que se definio el alcance del ViewModel,
el trabajo asincrono continua en el ViewModel especifico. Esta es la clave de la persistencia.

2/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Cuando se definio la clase viewModel en la primera version de Jetpack, aun no existia Compose
y se usaba asociado a una vista como un Activity 0 a un Fragment . Nuestras aplicaciones de
Android se componian de una o mas Activity O Fragment Yy cada uno de ellos tenia su propio
ViewModel que se creaba como una instancia unica. viewModel se usaba para almacenar datos
que se necesitaban en la interfaz de usuario de la Activity/Fragment O el Fragment y queriamos
que sobrevivieran a los cambios de configuracion o queriamos compartir datos entre ellos.

Con la llegada de Jetpack Compose este enfoque ha cambiado y Google ahora recomienda
aplicaciones de actividad unica donde las diferentes pantallas se cargan como contenido dentro
de la misma actividad. Por tanto, un ViewModel utilizado por una actividad permanece en memoria
hasta que la actividad finalice esto es hasta que la aplicacion finalice.

Ciclo de vida de un ViewModel

e En el caso de una Activity , hasta que termina. (El mas comun)

o En-eclecaso-deun-Fragment-—cuande-se-desvinedla: (No se usa en Compose)
e En el caso de un NavBackStackEntry , hasta volvemos atras en el grafo.

En la imagen de la derecha vemos que el objeto viewModel cuyo
‘propietario’ (el viewModelStoreOwner) €S Una Activity que tiene
un cambio de configuracion (rotacién de pantalla) y por tanto se
destruye y vuelve a crearse su vista asociada.

1. Se crea al llamarse al método onCreate() dela Activity

Activity created onCreate
solo la primera vez y aunque se vuelva a llamar a onstare
onResume

onCreate() por un cambio de configuraciéon, no se vuelve a Activity rotated

onPause

crear permanece el mismo objeto viewModel que se cred en

enstep

la primera llamada. onbestroy
onCreate Vi;:u;:gel

2. No se destruye aunque la Activity destruya su vistay onstart

permanece en memoria hasta la finalizacion de la Activity , it onfesume

en ese momento se llama al método oncleared() del -

onStop

ViewModel para que realice las tareas de limpieza necesarias. J—

Finished onCleared()

3/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Instanciando un ViewModel

Hay muchas formas de instanciarlo y eso nos puede llevar a confusion. Pero nosotros vamos a
usar la mas sencilla y recomendada por Google. De todas formas, si quieres profundizar puedes
ver el siguiente ‘cheatsheet’ creado por los desarrolladores de Google.

1. Para definirlo deberemos crear una clase que herede de viewModel y que implemente la
l6gica de negocio que necesitemos.

class MiViewModel : ViewModel() { ... }

2. X No debemos hacer jamas una instancia direcra.

val mivm = MiViewModel() //(ee (s

Ya que el ciclo de vida de un ViewModel esta asociado a un viewModelStoreOwner Y por tanto
es la clase viewModelProvider la que se encarga de crearlo y mantenerlo en memoria.

// activity es el objeto que implementa ViewModelStoreOwner

val miVm = ViewModelProvider(activity).get(MiViewModel: :class.java)

El cédigo anterior, nosotros no tendremos que crearlo asi nunca, pues Jetpack nos
proporciona formas mas sencillas de hacerlo.

3. 4 Como en el fondo debe ser viewModelProvider quien lo crea, si pasamos parametros al
constructor de |la clase MiviewModel no nos va a dejar, mas adelante tendremos formas mas
sencillas de hacerlo. Por tanto, de momento, no deberiamos pasar parametros al constructor.

class MiViewModel(val param: String) : ViewModel() { ... } //@e (e

Si necesitaramos pasar parametros al constructor, deberemos crear una clase que
implemente viewModelProvider.Factory Y que se encargue de crear el objeto MiviewModel

como se indica en la documentacion oficial.

¢) Importante

Ya veremos mas adelante que la libreria Hilt (Jetpack) para inyeccion de dependencias
me facilita mucho esta tarea. Asi pues, no tendremos nunca que crear una clase que

implemente ViewModelProvider.Factory cuando pasemos parametros.

4/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

https://developer.android.com/static/images/topic/libraries/architecture/viewmodel-apis-cheatsheet.png?hl=es-419
https://developer.android.com/topic/libraries/architecture/viewmodel/viewmodel-factories

4. Delegado de creaciéon by viewModels() , si el propietario es una Activity .

class MainActivity : ComponentActivity() {
// Opcidn 1
// Lo defino como propiedad de la clase y delego su creacién que sera al ser us:

// primera vez después de llamarse el método onCreate() de la Activity y puede ¢

// accedido desde cualquier método de la Activity que usemos después del onCreat
// El delegado internamente llama a ViewModelProvider

val miVm: MiViewModel by viewModels()

override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

// Opcidén 2

// Lo defino en el método onCreate() y lo clausuramos al definir el arbol de
// seguira siendo destruido por ViewModelProvider al destruirse la

// Activity que es el ViewModelStoreOwner

val miVm: MiViewModel by viewModels()

setContent {

// Clausura de miVm

5. Creacion con viewModel() , si estamos dentro de una funcion @Composable
El viewModelStoreOwner serala Activity que renderiza la composicion. No importa que
viewModel() sea llamado mas veces a lo largo de las recomposiciones pues solo se
instanciara en la primera llamada.

@Composable
fun MiScreen(miVm: MiViewModel = viewModel()) { ... }

Esta ultima forma, tal y como indica el cheatSheet de Google, necesita de la siguiente
dependencia:

dependencies {
// androidx.lifecycle:lifecycle-viewmodel-compose:<version>

implementation(libs.androidx.lifecycle.viewmodel.compose)

por lo que en el 1ibs.versions.toml deberemos afadir la entrada correspondiente.

5/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

[libraries]

androidx-lifecycle-viewmodel-compose = {

group = "androidx.lifecycle",
name = "lifecycle-viewmodel-compose",
version.ref = "lifecycleRuntimeKtx"
}
Nota

Existen mas formas de crear un viewModel que veremos mas adelante.

6/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Ejemplo de uso y definicién de un ViewModel

Vamos a crear un simple juego del ahorcado para ver como se

implementa un viewModel . Para ello vamos a partir de un proyecto

donde ya hemos disenado una Ul con Jetpack Compose.

Android_|V]
. 7 m[com.ahorcado
e Puedes descargar el proyecto de partida de este enlace L L[ui]]
Ahorcado.zip. | mlfeatures]
=+ m[juego]
AhorcadoEvent.kt
Vamos a explicar la implementacion del interfaz de usuario antes de ver AhorcadoScreen.kt
. .. . AhorcadoUiState.kt
la implementacion del viewModel . Para ello, partimos de la estructura — a[theme]
. — m[views]
del proyecto que se muestra en la imagen de la derecha donde tenemos L MainActivitykt

un AhorcadoScreen.kt , Un AhorcadoUiState.kt que guardara el 'State'

del Ul'y un AhorcadoEvent.kt que gestionara los eventos que se

produzcan en el Ul.

AhorcadoUiState.kt

Como hemos comentado guardara el 'State' del Ul definido en AhorcadoScreen.kt Yy que

basicamente sera el estado del conocido juego del ahorcado.

data class AhorcadoUiState(

)

7/23

// Ultima letra introducida por el usuario, es una cadena de una sola letra.
val letralntroducida: String = "",

// Palabra que se tiene que adivinar, procedera de alguna fuente de datos.
val palabra: String = ""

// Cadena que lleva las letras que se han fallado en el juego.

val letrasFalladas: String = "",

// Cadena que lleva las letras que se han acertado de la palabra a adivinar.
val letrasAcertadas: String = "",

// Valor enumerado que guarda en que momento del juego estoy.

val estado: EstadoJuego = EstadoJuego.EMPEZAR

enum class EstadoJuego {
EMPEZAR, // E1l juego aun no ha empezado y no se ha generado la palabra a adivinar.
JUGANDO, // Estamos ya jugando y ya hay una palabra a adivinar.
GANADO, // El1 juego ha terminado ya y se ha ganado o se ha perdido. El usuario debe
PERDIDO // el resultado y debe aceptarlo para poder volver al estado EMPEZAR.

PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_4/Ahorcado_recurso.zip

AhorcadoEvent.kt

Lo eventos posibles que vamos a manejar en el Ul y que se produciran al interactuar con el mismo

los agrupamos en el siguiente sealed interface .

sealed interface AhorcadoEvent {

// Estamos en estado EMPEZAR y pasamos a JUGANDO.

object OnEmpezarJuego : AhorcadoEvent

// Ha finalizado el juego, estamos en estado GANADO y PERDIDO y pasamos al estado EMPEZAF
object OnAceptarResultadoFinalJuego : AhorcadoEvent

// Estamos JUGANDO hay una ** letralntroducida ** y la enviamos para que se compruebe.
object OnLetraEnviada : AhorcadoEvent

// El usuario introduce una letra y tenemos que comprobarla para ver si pertenece al

// alfabeto castellano (sin tildes) y no esta entre las acertadas y falladas.

// De esta manera después podremos jugar con ella.s

data class OnCambialLetraIntroducida(val letra: String) : AhorcadoEvent

AhorcadoScreen.kt

Definimos el Ul usando 3jetpack Compose Y aplicando 'State Hoisting ' con funciones composables

sin estado o 'stateless'. Es la parte mas extensa y vamos a describir los componentes mas

importantes.

8/23

PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// Recibe el numero de fallos y los representa con una
// de la imagenes del ahorcado definidas en los recursos.
@Composable
fun MuestraAhorcado(modifier: Modifier = Modifier, fallos: Int) {
val idRecurso = when (fallos) {
@ -> R.drawable.ahorcado®@ // No hay fallos

1 -> R.drawable.ahorcadol // 1 fallo
2 -> R.drawable.ahorcado2 // 2 fallos
3 -> R.drawable.ahorcado3 // ...

4 -> R.drawable.ahorcado4

5 -> R.drawable.ahorcado5

6 -> R.drawable.ahorcado6

else -> throw Exception("Numero de fallos incorrecto")

}
Image(

modifier = modifier.then(Modifier.fillMaxSize()),

painter = painterResource(idRecurso),

contentDescription = "Dibujo del ahorcado",

colorFilter = ColorFilter.tint(MaterialTheme.colorScheme.primary)
)

9/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// Recibe la palabra a adivinar y las letras acertadas y muestra las letras acertadas y

// las que faltan por acertar representadas por ' '. Tenemos pues un Row con Text para cada]
@Composable
fun Palabra(palabra: String, letrasAcertadas: String) = Row(

modifier = Modifier.fillMaxWidth(),

horizontalArrangement = Arrangement.Center

> { ...}

// Muestras las letras falladas en un Row con Text para cada letra.
@Composable
fun Fallos(letrasFalladas: String) = Row(

modifier = Modifier.fillMaxwWidth(),

horizontalArrangement = Arrangement.Start

)L ...}

// Muestra el estado del juego mientras estoy JUGANDO, esto es,
// la palabra parcialmente adivinada y las letras falladas.
@Composable
fun EstadoJuego(
palabra: String, letrasAcertadas: String, letrasFalladas: String
) o
Column(
modifier = Modifier.fillMaxWidth(),
verticalArrangement = Arrangement.Top,
) {
Spacer(modifier = Modifier.size(20.dp))
Palabra(palabra, letrasAcertadas)
Spacer(modifier = Modifier.size(20.dp))
Fallos(letrasFalladas)

10/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

// TextField encargado de introducir una letra. Su estado esta representado por letraState.
// Si hay letra parra jugar se muestra un Button para enviarla.
// Por esa razon elevamos dos eventos como la introduccion de una letra y el envio de la misn
// Esto solo se podra hacer si hay una letra valida para jugar.
@Composable
fun Juegaletra(

letraState: String, onCambialetraIntroducida: (String) -> Unit, onLetraEnviada: () -> Uni

) o
Row(
modifier = Modifier.fillMaxWidth(),
verticalAlignment = Alignment.CenterVertically
) A
// Hace que el foco recaiga sobre el OutlinedTextField
val focusRequester = remember { FocusRequester() }
OutlinedTextField(
modifier = Modifier.width(100.dp)
.padding(start = 5.dp, end = 5.dp)
.focusRequester(focusRequester),
value = letraState,
singlelLine = true,
onValueChange = { onCambialLetraIntroducida(it.uppercase()) },
label = { Text(text = "Letra") },
)
// Hace que el foco recaiga sobre el OutlinedTextField
LaunchedEffect(Unit) { focusRequester.requestFocus() }
// Si hay letra para jugar se muestra el Button para enviarla.
if (letraState.isNotEmpty()) {
val controller = LocalSoftwareKeyboardController.current
Button(
modifier = Modifier.padding(start = 5.dp, end = 5.dp),
onClick = {
// Ocultamos el teclado si esta visible antes de enviar la letra.
controller?.hide()
onLetraEnviada()
}
) { Text(text = "Jugar") }
}
}
}

// Componente que se muestra si el juego ha terminado y el estado es GANADO o PERDIDO.
// Mostramos el aviso correspondiente y un Button para aceptar el resultado y volver al estac

// Podria ser una AlertDialog.

11/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

@Composable

fun ResultadoFinalJuego(
modifier: Modifier = Modifier,
estadoJuego: AhorcadoUiState.EstadoJuego,

onAceptarResultadoFinalJuego: () -> Unit

) 1}

12/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

@Composable
fun Muestralnterface(
modifier: Modifier = Modifier,
ahorcadoState: AhorcadoUiState,
onEventSent: (AhorcadoEvent) -> Unit
) {
if (ahorcadoState.estado == AhorcadoUiState.EstadoJuego.EMPEZAR) {
BotonEmpezar(
modifier = modifier,
onClick = { onEventSent(AhorcadoEvent.OnEmpezarJuego) }

)
} else {

val scrollState: ScrollState = rememberScrollState()
Column(
verticalArrangement = Arrangement.Top,
modifier = modifier.then(
Modifier
.fillMaxWidth()
.verticalScroll(scrollState)

) o
EstadoJuego(

palabra = ahorcadoState.palabra,
letrasAcertadas = ahorcadoState.letrasAcertadas,

letrasFalladas = ahorcadoState.letrasFalladas

)
Spacer(modifier = Modifier.size(20.dp))

if (ahorcadoState.estado == AhorcadoUiState.EstadoJuego.JUGANDO) {
Juegaletra(
letraState = ahorcadoState.letralIntroducida,
onCambialLetraIntroducida = { letra ->
onEventSent (AhorcadoEvent.OnCambialLetraIntroducida(letra))
¥
onLetraEnviada = { onEventSent(AhorcadoEvent.OnLetraEnviada) })
} else {
ResultadoFinalJuego(
estadoJuego = ahorcadoState.estado,

onAceptarResultadoFinalJuego = { onEventSent(AhorcadoEvent.OnAceptarResul

13/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

14/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Layouts principales del juego y que gestionan la visualizacion de su estado en funcién de la

orientacion del dispositivo. Vamos a permitir el cambio de orientacion para probar qué sucede con
el estado del juego guardado en ArhorcadoUiState .

@Composable

fun AhorcadoPortrait(ahorcadoState: AhorcadoUiState, onEventSent: (AhorcadoEvent) -> Unit) {

@Composable

fun AhorcadolLandsacape(ahorcadoState: AhorcadoUiState, onEventSent: (AhorcadoEvent) -> Unit)

@Composable

fun AhorcaDoScreen(

) A

15/23

ahorcadoState: AhorcadoUiState,

onEventSent: (AhorcadoEvent) -> Unit

// Este es el layout principal que permite accder al tamano del ViewPort de la aplicacior
// maxWidth y maxHeight. En funcidn de estos valores se decide como se distribuyen los cc
BoxWithConstraints(
modifier = Modifier
.fillMaxSize()
.background(MaterialTheme.colorScheme.surface)
) A
// Query que decide como se pinta el UI en funciodn del ancho del ViewPort.
if (maxWidth < 600.dp) {
AhorcadoPortrait(
ahorcadoState = ahorcadoState,
onEventSent = onEventSent
)
} else {
AhorcadolLandsacape(
ahorcadoState = ahorcadoState,

onEventSent = onEventSent

PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

AhorcadoViewModel.kt

Esta definicion ira dentro del paquete com.ahorcado.ui.features.juego . Aqui definiremos el estado
del Ul y la l6gica de negocio del juego. Hasta aqui llegaran todos los eventos que se produzcan en
la Ul.

class AhorcadoViewModel : ViewModel() {

// En esta seccion definimos todas las propiedades y métodos de clase que necesitemos.
companion object {
private val MAXIMO_FALLOS = 6

// Comprueba si ya hemos acertado todas las letras de la palabra buscada.
fun palabraAcertada(palabra: String, letrasAcertadas: String): Boolean {
var acertada = true
for (letra in palabra) {
if (!letrasAcertadas.contains(letra)) {
acertada = false

break

}

return acertada

// Definimos el estado del UI

// No podemos usar el API remenber pues no estamos dentro de un @Composable y ademas
// al estar un ViewModel permanace en memoria hasta que se destruya la Activity.

var ahorcadoState by mutableStateOf(AhorcadoUiState())

Definiremos lo métodos que gestionan los cambios del estado de la Ul

16/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

private fun empiezaJuego() {
// Podria ser una fuente de datos.
val palabras = listOf("XUSA", "JUANJO", "PEPE", "COMPOSABLE")
ahorcadoState = ahorcadoState.copy/(
// Tomamos una palabra aleatoria a adivinar.
palabra = palabras[Random.nextInt(@, palabras.size)],
// El juego pasa a estado JUGANDO.
estado = AhorcadoUiState.EstadoJuego.JUGANDO

17/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

private fun reiniciaJuego() {
ahorcadoState = AhorcadoUiState()

// Método encargado de ver si la letra introducida en el TextField de 1la

// UI es valida para jugar y si es asi, guardar su estado para reflejarlo en el mismo.
// Aunque esté relacionado con dicho elemento de la UI, fijate que en ningun

// indicarlo en los nombres, ya que el ViewModel debe permanecer 'agnostico' de

// momento debemos como es la implementacion en la UI.

private fun gestionaletralntroducida(letra: String) {

// Si solo hay una letra, no esta entre las acertadas

// ni entre las falladas y estd entre la A-Z incluida N

ahorcadoState = if (letra.length ==
&& lahorcadoState.letrasAcertadas.contains(letra[@])
&& lahorcadoState.letrasFalladas.contains(letra[@])
&& Regex("~[A-ZN]$").matches(letra)

ahorcadoState.copy(letralntroducida = letra)
else

ahorcadoState.copy(letralntroducida = "")

// Método encargado de jugar la letra introducida
private fun juegaletraIntroducida() {
if (ahorcadoState.palabra.contains(ahorcadoState.letralntroducidal[@])) {
val letrasAcertadas = ahorcadoState.letrasAcertadas
+ ahorcadoState.letraIntroducida
ahorcadoState = ahorcadoState.copy(
letralIntroducida = "",
letrasAcertadas = letrasAcertadas,
estado = if (palabraAcertada(ahorcadoState.palabra, letrasAcertadas))
AhorcadoUiState.EstadoJuego.GANADO
else
AhorcadoUiState.EstadoJuego.JUGANDO
)
} else {
val letrasFalladas = ahorcadoState.letrasFalladas
+ ahorcadoState.letraIntroducida
ahorcadoState = ahorcadoState.copy(
letralntroducida = "",
letrasFalladas = letrasFalladas,
estado = if (letrasFalladas.length == MAXIMO_FALLOS)

18/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

AhorcadoUiState.EstadoJuego.PERDIDO
else
AhorcadoUiState.EstadoJuego.JUGANDO

19/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

fun onEventoAhorcado(evento : AhorcadoEvent) {
when (evento) {
is AhorcadoEvent.OnEmpezarJuego -> empiezaJuego()
is AhorcadoEvent.OnAceptarResultadoFinalJuego -> reiniciaJuego()
is AhorcadoEvent.OnCambialetralIntroducida -> gestionaletralntroducida(evento.letr

is AhorcadoEvent.OnLetraEnviada -> juegaletraIntroducida()

Asociando el ViewModel a la Ul en MainActivity.kt

VVamos ahora a usar nuestro ViewModel ...

1. X Supongamos que cramos el objeto viewModel sin mas en el onCreate() sin usar ningln

tipo de viewModelProvider

class MainActivity : ComponentActivity() {

lateinit var ahorcadoViewModel: AhorcadoViewModel

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
ahorcadoViewModel = AhorcadoViewModel() CONCYS
setContent {

AhorcadoTheme {
AhorcaDoScreen(
ahorcadoViewModel.ahorcadoState,

ahorcadoViewModel: :onEventoAhorcado

Si empezamos a jugar y giramos el movil se vuelve a llamar a onCreate() y el estado se

pierde.

20/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

| O

2. Lo hacemos correctamente u asignaremos el ViewModel ala Activity que es el

ViewModelStoreOwner primero usando VieModelProvider con el delegado viewModels()

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val ahorcadoViewModel: AhorcadoViewModel by viewModels() /
setContent {
AhorcadoTheme {
AhorcaDoScreen(
ahorcadoViewModel.ahorcadoState,

ahorcadoViewModel: :onEventoAhorcado

Ahora si volvemos a jugar y giramos el movil el viewModel permanece y el estado se redibuja.

7270 0 @ © vin

3. Por ultimo, vamos a probar a crear el viewModel dentro de una funcién @composable usando
la funcién composable viewModel() que requiere de las dependencias que hemos
comentado antes.

21/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
AhorcadoTheme {
val ahorcadoViewModel: AhorcadoViewModel = viewModel() //
AhorcaDoScreen(
ahorcadoViewModel.ahorcadoState,

ahorcadoViewModel: :onEventoAhorcado

22/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

Practicas no recomendadas

Las siguientes son varias practicas recomendadas clave que debes seguir cuando implementes

ViewModel :

o X NO definas viewModel para composables reutilizables en tu Ul o para componentes de U
que no sean de nivel superior. Deberiamos definirlos a nivel de Screen (pantalla).

X Los ViewModels NO deberian conocer los detalles de implementacién de la IU.
Mantén los nombres de los métodos que expone la API de ViewModel y los de los campos del

UlState lo mas genéricos posible.
X Como pueden tener una vida mas larga que el ViewModelStoreowner , los ViewModels NO

deberian contener ninguna referencia de APIs relacionadas con el ciclo de vida, como
Context O Resources para evitar fugas de memoria.

X NO pases ViewModels a funciones ni otros componentes de la IU. Esto evita que los
componentes de nivel inferior accedan a mas datos y l6gica de los que necesitan.

X Derivado del anterior NO instancies directamente un objeto ViewModels. En su lugar,
usa algun tipo de ‘proveedor de ViewModels' para obtener una instancia del mismo.

23/23 PMDM 2° DAM Tema 3.4 - ViewModel Rev. 12/10/2024 IES Doctor Balmis

