
Tema 3.3 - Componentes de Material
Design
Descargar estos apuntes pdf o html

Índice
Introducción
Material Design

Material Design 2 vs. Material Design 3
Material 2
Material 3

Componentes Material Design 3
Introducción Componentes Material Design 3
Botones
CheckBox
Cards
TextField (Campos de Texto)
Chips
Diálogos

Resumen

1/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_3_componentes_material_design.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_3_componentes_material_design.html

Introducción
En el proceso de diseño de una aplicación, el desarrollador debe tener en cuenta la experiencia de
usuario (UX) y la interfaz de usuario (UI). La experiencia de usuario se refiere a cómo se siente el
usuario al interactuar con la aplicación, mientras que la interfaz de usuario se refiere a cómo se ve la
aplicación y cómo se organizan los elementos de la interfaz de usuario.

Tradicionalmente en muchos frameworks de diseño de aplicaciones, se ha intentado separar el diseño
de la interfaz de usuario de la implementación de la lógica de la aplicación. Esto permite que los
diseñadores de aplicaciones y los desarrolladores de aplicaciones trabajen en paralelo. Existiendo por
tanto, una parte del equipo especializada en diseño gráfico y otra en programación.

Sin embargo, esta separación puede ser problemática por ciertos motivos:

1. Sucederá que el diseñador y el programador no trabajan en paralelo, sino que el diseñador
entrega un diseño a un programador que debe implementarlo. En este caso, el programador debe
entender el diseño y el diseñador debe entender las limitaciones de la implementación.

2. Por la razón anterior, en entornos medios o pequeños, lo más común es que el diseño y la
programación la realiza la misma persona que suele ser un programador carente, la mayoría de
las veces, de conocimientos suficientes de diseño gráfico. Por tanto, el programador, además de
tener gusto por el diseño, debe aprender a utilizar herramientas de diseño gráfico RAD cómo las
que incluyen los propios IDE para de forma visual generar el XML que define el interfaz y que a
menudo consumían mucho tiempo de desarrollo.

3. Se produce la mezcla de lenguajes de programación con lenguajes de diseño gráfico. Por
ejemplo, en Android, el diseño de la interfaz de usuario se define en archivos XML y la lógica de la
aplicación se implementa en Java o Kotlin. Esto obligaba al programador a mantener dos fuentes
de código diferentes para una sola pantalla de la aplicación. En la mayoría de los casos el
programador iba directamente al código XML y no utilizaba las herramientas visuales de diseño o
producía errores al intentar renderizar los cambios pues al ser XML un lenguaje para máquinas era
fácil cometer errores y encontrarlos.

4. La reusabilidad de los componentes de la interfaz de usuario era más compleja pues en el caso
de Android se lograba a través, de estructuras como Fragments , que añaden capas de complejidad
al código.

5. Por último, la separación de la lógica de la aplicación y la interfaz de usuario puede hacer que el
programador no tenga en cuenta la experiencia de usuario y se centre en la funcionalidad de la
aplicación. Esto puede dar lugar a aplicaciones que funcionan correctamente pero que no son
fáciles de usar o reconocibles por los usuarios.

Resumen

2/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://es.wikipedia.org/wiki/Desarrollo_r%C3%A1pido_de_aplicaciones

Material Design
Documentación oficial: Material Design
Documentación oficial: Android

Para evitar muchos de los inconvenientes anteriores, Google ha desarrollado Material Design. Material
Design es un conjunto de pautas de diseño que se pueden utilizar para crear aplicaciones con una
interfaz de usuario moderna y coherente. Material Design también incluye un conjunto de
componentes de interfaz de usuario que se pueden utilizar para crear diseños de interfaz de usuario
creados expertos en diseño gráfico y UX. Por hacer una analogía simple, podemos decir que Material
Design es a Android lo que Bootstrap es a la web.

En Material Design, los elementos de la interfaz de usuario se denominan componentes. Los
componentes de Material Design se pueden utilizar para crear diseños de interfaz de usuario que se
pueden utilizar en diferentes dispositivos y tamaños de pantalla. Los componentes de Material Design
también se pueden utilizar para crear diseños de interfaz de usuario que se pueden adaptar a
diferentes modos de luz y oscuridad, así como a diferentes paletas de colores y tipografías a este
concepto se le llama tematización.

Material genera diseños comunes para las aplicaciones de Android, iOS, Flutter y la web. Por tanto,
podemos decir que Material Design es un lenguaje de diseño que se puede utilizar para crear
aplicaciones para diferentes plataformas. En este tema nos centraremos en el uso de Material Design
para crear aplicaciones de Android.

Dentro de android, Material Design se puede utilizar de dos formas:

MDC-Android: Componentes para las vistas XML de Android. Aunque usemos vistas XML, el uso
de estos componentes minimiza algunas de las desventajas que hemos mencionado en la
introducción.
Jetpack Compose: Componentes para la nueva forma de crear interfaces de usuario en Android
de forma declarativa..

El desarrollador de aplicaciones móviles debe tener en cuenta:

La necesidad reusabilidad de los componentes de la interfaz de usuario.
Lo que usuarios esperan que las aplicaciones se comporten de una manera determinada.
Esto es, debemos tener en cuenta la experiencia de usuario UX.
Que debe desentenderse, en la medida de lo posible, del diseño gráfico y centrarse en la
funcionalidad de la aplicación.
La facilidad para adaptar la interfaz de usuario a diferentes dispositivos y tamaños de
pantalla. Así como cambiar fácilmente nuestros diseños de tipografía, paleta de colores,
modos de luz y oscuridad, etc.

3/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://material.io/design
https://developer.android.com/guide/topics/ui/look-and-feel?hl=es-419

No obstante, el uso de Material Design no es excluyente y se puede combinar con diseños
personalizados. De hecho, pese a su 'juventud', empiezan a aparecer librerías de componentes
OpenSource de terceros en GitHub o webs de recopilación de estos como:

https://www.jetpackcompose.app/compose-catalog (Libre)
https://composables.com/
https://composeexamples.com/components (Suscripción)

Además, un diseñador puede crear un diseño personalizado con herramientas genéricas como Figma y
el desarrollador puede implementar usar esos diseños en JetpackCompose utilizando herramientas de
importación como el Plug-in Relay para Android Studio. (Vídeo Ejemplo1, Vídeo Ejemplo2).

Nota:

Nosotros en estos apuntes vamos a tratar solo algunos componentes de básicos de Material
Design 3 por ser la versión más reciente. Además, profundizar en temas de diseño gráfico y UX
está fuera del alcance de este módulo y más en el Diseño de Interfaces.



4/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://www.jetpackcompose.app/compose-catalog
https://composables.com/
https://composeexamples.com/components
https://es.wikipedia.org/wiki/Figma
https://developer.android.com/jetpack/compose/tooling/relay?hl=es-419
https://www.youtube.com/watch?v=N3t7SIlFPrQ
https://www.youtube.com/watch?v=-_zp8x5L5eo

Material Design 2 vs. Material Design 3
En el momento de crear estos apuntes, Google aún está en proceso de migración de Material Design 2
a Material Design 3. Aunque al crear un proyecto nuevo en Android Studio ya utiliza por defecto Material
Design 3.

Una de las principales novedades de Material 3 respecto a sus versiones anteriores, es el soporte de
colores dinámicos. Este permite que los colores utilizados en las aplicaciones se adapten
automáticamente para coincidir con la selección de fondo de pantalla del usuario. Aunque como hemos
comentado, nosotros no vamos a profundizar en tanto detalle.

Puede que encontraremos muchos proyectos de ejemplo en Internet que aún utilicen Material Design 2
y por tanto componentes que aún no están migrados a Material Design 3 o incluso que ya no van a
existir en esta versión. Por lo que es conveniente saber distinguirlas y usar, por coherencia de interfaz,
solamente los componentes de la 3.

Material 2

 androidx.compose.material Actualmente va por la versión 1.8.0 aún en versión beta. (Última estable
1.7.3)

Aunque es una versión anterior aún tiene mantenimiento para aquellas aplicaciones que la usan.

Material 3

Actualmente va por la versión 1.4.0 aún en versión alfa está. (Última estable 1.3.0), Nosotros la
tenemos incluida en nuestro proyecto de ejemplo en los archivos...

En el libs.versions.toml

[libraries]

Al no indicar la versión, tomaría la última estable.

androidx-material3 = { group = "androidx.compose.material3", name = "material3" }

En el build.gradle.kts (Módulo App)

dependencies {

 implementation(libs.androidx.material3)

}

Nota:

5/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/compose-material
https://developer.android.com/jetpack/androidx/releases/compose-material3

Además, material3 tiene una versión especial con componentes adaptativos que aunque aún está
en sus primeras etapas, permite adaptar de forma automática ciertos layouts canónicos a los tamaños
de pantalla y resoluciones de los dispositivos.

Componentes Material Design 3

Introducción Componentes Material Design 3

Documentación oficial: Components Material Design 3
Vídeo Tutorial Inglés (Introducción): Philipp Lackner
Vídeo Tutorial Inglés (Avanzado): Philipp Lackner
Vídeo Tutorial Inglés: Stevdza-San

Puesto que son muchos componentes y esta documentación no pretende ser una copia de la página
oficial de material. Vamos a ver algunos de los componentes más básicos y que más se usan. Para ver
el resto de componentes, puedes consultar la documentación oficial de Material Design 3. Además, más
adelante trataremos componentes de navegación y scaffolding con más detalle.

Los podemos clasificar en:

1. Acciones
Botones normales
Botones flotantes (FAB)
Botones extendidos flotantes (extended FABs)
Botones con texto e iconos.
Botones Segmentados

2. Comunicación
Snackbars
Badges
Progress indicators

3. Contenedores
Cards
Bottom sheets
Carousels
Diálogos
Divider
Listas
Side sheets

4. Navegación
Top app bar
Bottom app bar
Navigation bar
Navigation drawer
Navigation rail
Tabs

5. Selección
Checkboxes
Radio buttons
Switches
Sliders
Chips
Menus
Pickers (Time & Date)

6. Entrada de texto
Text fields

Por tanto, cualquier componente fuera de material3-android:1.3.0 no lo vamos poder usar y si
indicamos en el libs.versions.toml una la versión material3-android:1.4.0-alpha01 al estar en
versión alfa (debe pasar aún por beta y release) es susceptible de cambios y errores.

6/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/compose-material3-adaptive
https://m3.material.io/foundations/layout/canonical-layouts/overview
https://m3.material.io/components
https://www.youtube.com/watch?v=I3eT32LXAKc
https://www.youtube.com/watch?v=h7K4n9C2jkI
https://www.youtube.com/watch?v=h_JYW2hdI8U
https://developer.android.com/jetpack/androidx/releases/compose-material3#compose_material3_version_13_2
https://developer.android.com/jetpack/androidx/releases/compose-material3#1.4.0-alpha01

Tooltips

7/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

No todos los componentes están disponible para todas las plataformas. Deberemos consultar su
disponibilidad para Jetpack Compose en los recursos de desarrollo. Por ejemplo, el botón común
tiene:

Enlaces Importantes

1. Documentación oficial de los Componentes básicos en Jetpack Compose. Aquí, puedes
encontrar la documentación en la que nos basaremos en esta documentación y la de los
componentes que no trataemos en el tema.

2. Documentación oficial de Todo el paquete de Material 3 para Jetpack Compose. Aquí,
puedes encontrar configuraciones más avanzadas de los componentes que no trataremos en
el tema.

3. Google además, tiene una App en el Play Store denominada Compose Material Catalog.
Esta App tiene un catálogo de componentes de Material Design 3 del que puedes ver su
código fuente. Si quieres acceder a los ejemplos se encuentran disponibles en los
siguientes repositorios de Google o en este de GitHub.



8/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://m3.material.io/components
https://m3.material.io/components/buttons/overview#26686b3a-1ecb-4bf1-b071-cf740fe3a315
https://developer.android.com/jetpack/compose/components
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary
https://play.google.com/store/apps/details?id=androidx.compose.material.catalog&hl=es_419
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/material3/material3/samples/src/main/java/androidx/compose/material3/samples/
https://github.com/androidx/androidx/tree/androidx-main/compose/material3/material3/samples/src/main/java/androidx/compose/material3/samples

Botones

Documentación oficial: Buttons
Documentación oficial: Material 3

Algunas de las cosas que vamos a contar para botones, son aplicables para el resto de
componentes de Material Design 3.

Material me proveerá de muchos tipos de botones ya predefinidos que se adaptan sus guías de
diseño de Material Design. Lo más adecuado, es usarlos sin ningún tipo de modificador de
aspecto y funcionalidad.

Por ejemplo, aquí tenemos tres casos simples descritos en la documentación.

@Preview(showBackground = true)

@Composable

private fun BotonesPreview() {

 ProyectoBaseTheme {

 Row(horizontalArrangement = Arrangement.SpaceEvenly) {

 Button(onClick = { /*TODO*/ }) { Text(text = "IES Balmis") }

 OutlinedButton(onClick = { /*TODO*/ }) { Text(text = "IES Balmis") }

 FilledTonalButton(onClick = { /*TODO*/ }) { Text(text = "IES Balmis") }

 }

 }

}

De hecho, si colocamos el ratón sobre la función @Composable Button en el propio Android Studio, nos
aparecerá el siguiente interfaz.

9/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/button
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Button(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Boolean,androidx.compose.ui.graphics.Shape,androidx.compose.material3.ButtonColors,androidx.compose.material3.ButtonElevation,androidx.compose.foundation.BorderStroke,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.interaction.MutableInteractionSource,kotlin.Function1)

En el podemos observar que muchos de los parámetros tienen valores por defecto como
 ButtonDefaults.shape , ButtonDefaults.buttonElevation() , ButtonDefaults.buttonColors() o
 ButtonDefaults.ContentPadding todos ellos definidos en Material 3 sobre los valores de diseño
concretos de Material Design 3.

Además, como en la mayoría de funciones composables el último parámetro content es un landa
composable que me permite añadir otros elementos composables dentro del botón como Textos,
Imágenes, etc. Con un layout RowScope que me permite añadir elementos en horizontal.

Si por algún casual, quisiéramos crear un botón más personalizado. Deberíamos aplicar en la medida
por defecto los valores de diseño de Material Design 3. Por ejemplo, si quisiéramos crear un
composable botón personalizado como el del siguiente ejemplo:

@Preview(showBackground = true)

@Composable

private fun BotonePreview() {

 HolaMundoTheme {

 ButtonLikeBalmis(onClick = { /*TODO*/ })

 }

}

Fíjate que en todos los casos no personalizados hemos mantenido los valores por defecto de Material
Design 3.

Debes descargar el siguiente recurso y añadirlo al proyecto favorite_24px.xml, para probar el
fragmento de código.

@Composable

fun Button(

 onClick: () -> Unit,

 modifier: Modifier = Modifier,

 enabled: Boolean = true,

 shape: Shape = ButtonDefaults.shape,

 colors: ButtonColors = ButtonDefaults.buttonColors(),

 elevation: ButtonElevation? = ButtonDefaults.buttonElevation(),

 border: BorderStroke? = null,

 contentPadding: PaddingValues = ButtonDefaults.ContentPadding,

 interactionSource: MutableInteractionSource? = null,

 content: @Composable RowScope.() -> Unit

)

12

10/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/tema_3_3/favorite_24px.xml

@Composable

private fun ButtonLikeBalmis(onClick: () -> Unit) {

 // Va a ser un botón con los colores de borde de Material Design 3,

 // pero cambiando el contentColor a Rojo.

 val colors: ButtonColors = ButtonDefaults.outlinedButtonColors(

 contentColor = Color.Red

)

 Button(

 onClick = onClick,

 // El bode tendrá el color del contentColor pero mantedrá

 // el grosor definido de Material 3 para los botones con borde.

 border = BorderStroke(

 width = ButtonDefaults.outlinedButtonBorder.width,

 color = colors.contentColor

),

 colors = colors,

 // El padding será el mismo que usen los botones con Icono.

 contentPadding = ButtonDefaults.ButtonWithIconContentPadding

) {

 // La imagen será un Icono de Material Design 3 pero ...

 Image(

 // Su tamaño será el de los iconos en los botones de Material 3.

 modifier = Modifier.size(ButtonDefaults.IconSize),

 // Icono añadido a los recursos

 painter = painterResource(id = R.drawable.favorite_24px),

 contentDescription = "Favorite",

 // El color del icono será también contentColor

 colorFilter = ColorFilter.tint(colors.contentColor)

)

 // El espaciado tiene el mismo tamaño que el de los botones con Icono.

 Spacer(Modifier.size(ButtonDefaults.IconSpacing))

 Text("I love Balmis")

 }

}

Como ves, para dibujar un simple botón personalizado, hemos tenido que tener muchas cosas en
cuenta y más si queremos mantener la coherencia de UX con el resto de botones de la aplicación.
Por tanto, lo más adecuado es usar los botones predefinidos de Material Design 3, donde lan gran
mayoría de casos de uso de botones están cubiertos en sus guías de uso donde nos indicará una sería
de buenas y malas prácticas de uso de botones según el tipo. Esto además, es aplicable al resto de
componentes.

11/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://m3.material.io/components/buttons/guidelines

CheckBox

Documentación oficial: Material 3

Básicamente es una caja con dos estados, marcado o no marcado. Normalmente va asociado a un texto
por lo que sería interesante definirnos un componente personalizado.

Una posible implementación de este componente más complejo podría ser CheckboxWithLabel :

// Estará preparado para hacer State Hoisting por tanto es Stateless

@Composable

private fun CheckboxWithLabel(

 label: String,

 modifier: Modifier = Modifier,

 checkedState: Boolean,

 enabledState: Boolean = true,

 onStateChange: (Boolean) -> Unit) {

 // Definimos un Row para alinear Checkbox y Texto

 Row(

 modifier = modifier,

 verticalAlignment = Alignment.CenterVertically,

 horizontalArrangement = Arrangement.Start

) {

 Checkbox(

 checked = checkedState,

 onCheckedChange = onStateChange,

 enabled = enabledState,

)

 Text(

 text = label,

 maxLines = 1,

 style = MaterialTheme.typography.bodySmall

)

 }

}

12/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Checkbox(kotlin.Boolean,kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Boolean,androidx.compose.material3.CheckboxColors,androidx.compose.foundation.interaction.MutableInteractionSource)

Por ejemplo, para probar nuestro componente podemos usar el siguiente @Preview ...

@Preview(showBackground = true, name = "CheckBoxPreview")

@Composable

fun CheckBoxPreview() {

 var checkedState by remember { mutableStateOf(true) }

 HolaMundoTheme {

 Box {

 CheckboxWithLabel(

 label = "I Love Balmis",

 modifier = Modifier.padding(12.dp)

 .wrapContentWidth(),

 checkedState = checkedState,

 onStateChange = { checkedState = it }

)

 }

 }

}

La previsualización sería la siguiente ...

Guía de uso de CheckBox

Seleccionar una o más opciones de una lista.
Aceptar los términos y condiciones de un contrato o solicitud.
Cuando queramos seleccionar una lista multiple de opciones o sub-opciones que también
contengan una CheckBox.
No deberemos usarlo cuando queramos seleccionar una única opción de una lista de opciones. En
ese caso, deberemos usar RadioButtons.

13/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Cards

Documentación oficial: Cards
Documentación oficial: Material 3

El componible Card (Tarjeta) actúa como un contenedor de Material Design para tu interfaz de usuario.
Lo podemos encontrar en otros frameworks como Bootstrap o Materialize y por lo general, las tarjetas
presentan un único y coherente elemento de contenido.

El enfoque es representar un único elemento de contenido lo que distingue a Card de otros
contenedores como Surface , Box , etc. Por ejemplo, una tarjeta puede contener un texto, una imagen y
un botón, pero no debe contener una lista de elementos.

Cuando y como usar Cards

Deben ser fáciles de ver de un vistazo para encontrar información.
Los elementos e imagenes deben colocarse de forma que indiquen claramente la jerarquía.
Pueden ofrecernos un punto de entrada a niveles más profundos de detalle o navegación.
Pueden ser mostradas juntas en una cuadrícula, lista vertical o carrusel.

Algunos parámetros clave para tener en cuenta son los siguientes:

 elevation : Agrega una sombra al componente que hace que
parezca elevado sobre el fondo.
 colors : Utiliza el tipo CardColors para establecer el color
predeterminado tanto del contenedor como de cualquier hijo.
 enabled : Si se pasa false para este parámetro, la tarjeta
aparece como deshabilitada y no responde a la entrada del
usuario.

Como realmente un card es un contenedor. Lo más importante es seguir la guía de diseño de Material
Design 3 para rellenarlo. Por ejemplo, para diseñar la anatomía básica de un card propuesta por
material y que se muestra en la imagen de ejemplo de arriba, podríamos generar el siguiente código...

Decargar ejemplo

14/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/card
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Card(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Shape,androidx.compose.material3.CardColors,androidx.compose.material3.CardElevation,androidx.compose.foundation.BorderStroke,kotlin.Function1)
https://m3.material.io/components/cards/guidelines
https://m3.material.io/components/cards/guidelines
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_3/TarjetaBalmis.kt

@Composable

private fun TarjetaBalmis(modifier: Modifier = Modifier) = ElevatedCard(

 modifier = modifier.then(Modifier.wrapContentSize()),

 elevation = CardDefaults.cardElevation(defaultElevation = 6.dp)

) {

 Column {

 Surface(

 modifier = Modifier.clip(CardDefaults.shape),

 color = MaterialTheme.colorScheme.primary

) {

 Image(

 modifier = Modifier.fillMaxWidth(),

 painter = painterResource(id = R.drawable.balmis),

 contentDescription = "IES Doctor Balmis",

 contentScale = ContentScale.FillWidth,

 alpha = 0.8f

)

 }

 Spacer(modifier = Modifier.size(12.dp))

 Text(

 modifier = Modifier.padding(start = 12.dp, end = 12.dp),

 text = "IES Doctor Balmis",

 style = MaterialTheme.typography.headlineLarge

)

 Text(

 modifier = Modifier.padding(start = 12.dp, end = 12.dp),

 text = "Alicante",

 style = MaterialTheme.typography.headlineSmall

)

 Spacer(modifier = Modifier.size(12.dp))

 Text(

 modifier = Modifier.padding(start = 12.dp, end = 12.dp),

 text = "Instituto de Educación Secundaria donde se imparte el Ciclo Formativo"

 + " de Grado Superior de Desarrollo de Aplicaciones Multiplataforma",

 style = MaterialTheme.typography.bodyMedium

)

 Row(

 modifier = Modifier.fillMaxWidth().padding(12.dp),

 horizontalArrangement = Arrangement.End

) {

 Button(onClick = { }) {

 Text(text = "Saber más")

 }

 }

15/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

 }

}

16/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

TextField (Campos de Texto)

Documentación oficial: Material 3
Video Tutorial Inglés: Philipp Lackner
Video Tutorial Inglés: Stevdza-San
Video Tutorial Español: DevExperto
Video Tutorial Español: Martin Kiperszmid

Usaremos un campo de texto cuando alguien necesite introducir texto en una interfaz de usuario, como
rellenar información de contacto o de pago.

Hay dos tipos de campos de texto. Ambos usan un contenedor para proporcionar una pista visual para
la interacción y proporcionan la misma funcionalidad. La única diferencia es el aspecto visual.

1. TexField : Campos de texto rellenos
2. OutlinedTexField : Campos de texto con contorno. Estos tienen menos énfasis visual que los

campos de texto rellenos. Cuando aparecen en lugares como formularios (donde se colocan
muchos campos de texto juntos) su énfasis reducido ayuda a simplificar el diseño.

Veamos un ejemplo de uso de un OutlineTextField propio a partir del proporcionado por Material
Design 3. En él decidiremos que los mensajes de error se muestren debajo del campo de texto y
añadiremos el carácter * tras el label cuando haya un error.

Puedes descargar el proyecto de ejemplo de este componente en el siguiente enlace:
OutlinedTextFieldWithErrorState

Primero, definiremos una clase para pasar el estado de error del TextField si lo hubiese. Por ejemplo
....

interface Validacion {

 val hayError: Boolean // Si hay error o no.

 get() = false

 val mensajeError: String? // EL mensaje asociado al error.

 get() = null

}

Veamos una posible implementación de nuestro OutlinedTextField derivado al que denominaremos
 OutlinedTextFieldWithErrorState .

17/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#TextField(kotlin.String,kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Boolean,kotlin.Boolean,androidx.compose.ui.text.TextStyle,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Boolean,androidx.compose.ui.text.input.VisualTransformation,androidx.compose.foundation.text.KeyboardOptions,androidx.compose.foundation.text.KeyboardActions,kotlin.Boolean,kotlin.Int,kotlin.Int,androidx.compose.foundation.interaction.MutableInteractionSource,androidx.compose.ui.graphics.Shape,androidx.compose.material3.TextFieldColors)
https://www.youtube.com/watch?v=ZERIxmBYP-U&t=1021s
https://www.youtube.com/watch?v=6w4l-3jC21E
https://www.youtube.com/watch?v=WjcJPQ5N3Fo
https://www.youtube.com/watch?v=OAG4Qphl9AQ
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_3/OutlinedTextFieldWithErrorState.kt

@Composable

private fun OutlinedTextFieldWithErrorState(

 modifier: Modifier = Modifier,

 label: String,

 textoState: String,

 textoPista: String = "",

 leadingIcon: @Composable (() -> Unit)? = null,

 validacionState: Validacion,

 keyboardOptions: KeyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Text),

 keyboardActions: KeyboardActions = KeyboardActions(),

 onValueChange: (String) -> Unit

) {

 OutlinedTextField(

 modifier = modifier,

 value = textoState,

 onValueChange = onValueChange,

 singleLine = true,

 // Icono al principio del TextField por defecto vale null.

 leadingIcon = leadingIcon,

 // Como vamos a mostrar el texto de la pista o hint cuando estemos editando.

 // por defecto la pista es la cadena vacía.

 placeholder = {

 Text(

 text = textoPista,

 style = TextStyle(

 color = MaterialTheme.colorScheme

 .onSurfaceVariant.copy(alpha = 0.4f)

)

)

 },

 // Etiqueta personalizada que se muestra cuando no hay texto o

 // encima del TextField cuando estamos editando.

 // Le ponemos un asterisco si hay error como hemos especificado.

 label = { Text(if (validacionState.hayError) "${label}*" else label) },

 // La opciones del teclado permitirán la entrada alfanumérica.

 keyboardOptions = keyboardOptions,

 // Composable bajo el TextField que se muestra cuando hay error.

 supportingText = {

 if (validacionState.hayError) {

 Text(text = validacionState.mensajeError!!)

 }

 },

 // Parámetro con el estado del error.

 isError = validacionState.hayError,

 keyboardActions = keyboardActions

18/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

)

}

A continuación, vamos a definir un componente derivado de OutlinedTextFieldWithErrorState que nos
permita introducir correos electrónicos y validarlos denominado OutlinedTextFieldEmail

@Composable

private fun OutlinedTextFieldEmail(

 modifier: Modifier = Modifier,

 label: String = "Email",

 emailState: String,

 validacionState: Validacion,

 onValueChange: (String) -> Unit

) {

 OutlinedTextFieldWithErrorState(

 modifier = modifier,

 label = label,

 textoState = emailState,

 // La pista cambiará.

 textoPista = "ejemplo@correo.com",

 // Las opciones de teclado serán para un email.

 keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Email),

 // El icono será el de un email.

 leadingIcon = {

 Icon(

 imageVector = Icons.Filled.Email,

 contentDescription = "Email"

)

 },

 // Será Stateles y la forma de validar la decidiremos al usarlo.

 validacionState = validacionState,

 onValueChange = onValueChange

)

}

En el siguiente ejemplo, podemos ver como quedarán la redefinición de nuestro composables
 OutlinedTextFieldEmail y OutlinedTextFieldWithErrorState con el código de @Preview .

19/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

@PreviewLightDark

@Composable

private fun TextFiledPreview() {

 var nombreState by remember { mutableStateOf("") }

 var validacionNombre by remember { mutableStateOf(object : Validacion {} as Validacion) }

 var emailState by remember { mutableStateOf("") }

 var validacionEmail by remember { mutableStateOf(object : Validacion {} as Validacion) }

 ProyectoBaseTheme {

 Surface {

 Column {

 OutlinedTextFieldWithErrorState(

 modifier = Modifier.fillMaxWidth(),

 label = "Nombre", textoState = nombreState,

 validacionState = validacionNombre,

 onValueChange = {

 nombreState = it

 validacionNombre = object : Validacion {

 override val hayError: Boolean

 get() = it.isEmpty()

 override val mensajeError: String?

 get() = "El nombre no puede estar vacío"

 }

 }

)

 OutlinedTextFieldEmail(

 modifier = Modifier.fillMaxWidth(), emailState = emailState,

 validacionState = validacionEmail,

 onValueChange = {

 emailState = it

 validacionEmail = object : Validacion {

 override val hayError: Boolean

 get() = it.isEmpty()

 || !Regex("^[A-Za-z](.*)([@]{1})(.{1,})(\\.)(.{1,})$")

 .matches(it)

 override val mensajeError: String?

 get() = "El email no es válido"

 }

 }

)

 }

 }

 }

}

20/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Importante

Durante el curso dispondrás de una versión actualizada de estos componentes en el repositorio
público de GitHub de la asignatura. Repositorio de Componentes. Entre ellos, diferentes
implementaciones de TextField con gestión de errores como los que hemos visto en este tema.

Para usarlos en tus proyectos asegúrate de tener la siguiente configuración que ya está en tu
proyecto base:

En el libs.versions.toml

[versions]

pmdmIesBalmisVersion = "24.1"

[libraries]

pmdm-ies-balmis-components

= { group = "com.github.pmdmiesbalmis", name = "components", version.ref = "pmdmIesBalmisVer

En el build.gradle.kts (Módulo App)

dependencies {

 implementation(libs.pmdm.ies.balmis.components)

}

Por último, debes usar los imports necesarios:

import com.github.pmdmiesbalmis.components.validacion.*

import com.github.pmdmiesbalmis.components.ui.composables.*

import com.github.pmdmiesbalmis.components.validacion.validadores.*



21/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://github.com/pmdmiesbalmis/components

Si modificamos el ejemplo anterior podemos dejar únicamente el @Preview .

@PreviewLightDark

@Composable

private fun TextFiledPreview() {

 var nombreState by remember { mutableStateOf("") }

 var validacionNombre by remember {

 mutableStateOf(object : Validacion {} as Validacion) }

 // Ya tienes un montón de validadores predefinidos.

 var validadorNombre = remember {

 ValidadorTextoNoVacio("El nombre no puede estar vacío") }

 var emailState by remember { mutableStateOf("") }

 var validacionEmail by remember {

 mutableStateOf(object : Validacion {} as Validacion) }

 // Además, puedes combinarlos para hacer validaciones más complejas.

 val validadorCorreo = remember { ValidadorCompuesto<String>()

 .add(ValidadorTextoNoVacio("El correo no puede estar vacío"))

 .add(ValidadorCorreo("El correo no es válido"))

 }

 ProyectoBaseTheme {

 Surface {

 Column {

 OutlinedTextFieldWithErrorState(

 modifier = Modifier.fillMaxWidth(),

 label = "Nombre", textoState = nombreState,

 validacionState = validacionNombre,

 onValueChange = {

 nombreState = it

 validacionNombre = validadorNombre.valida(it)

 }

)

 OutlinedTextFieldEmail(

 modifier = Modifier.fillMaxWidth(), emailState = emailState,

 validacionState = validacionEmail,

 onValueChange = {

 emailState = it

 validacionEmail = validadorCorreo.valida(it)

 }

)

 }

 }

 }

}

7

13

27

35

22/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Chips

Documentación oficial: Chips
Documentación oficial: Material 3

El componente Chip es un elemento de interfaz de usuario compacto e interactivo. Representa
entidades complejas como un contacto o una etiqueta, a menudo con un icono y una etiqueta. Puede
ser seleccionable, eliminable o clickeable.

Diferencia con los botones

Los Botones:
Se utilizan siempre para iniciar acciones.
Deben aparecer en grupos de uno o dos elementos.
Son estáticos y predefinidos. Esto es, no cambian de aspecto según su contexto.

Los Chips:
Deben aparecer de manera dinámica como un grupo de múltiples elementos interactivos.
No se utilizan para iniciar acciones, sino para representar un estado o atributo, o para
realizar una acción secundaria.
Pueden aparecer en grupos de más de dos elementos.
Son reactivos y contextuales, Esto es, deben ofrecer una acción diferente según la
naturaleza del contenido que respalda.
Representan bifurcaciones o posibles caminos en una experiencia.
Pueden tener scroll horizontal.

Tipos de Chips

Los cuatro tipos de chips y dónde podrías usarlos son los siguientes:

Además de estos composables, tendremos una versión con elevación con el prefijo Elevated . Por
ejemplo, ElevatedFilterChip .

 AssistChip (Ayuda): Guía al usuario durante una tarea. A menudo aparece como un elemento de
interfaz de usuario temporal en respuesta a la entrada del usuario.
 FilterChip (Filtro): Permite a los usuarios refinar el contenido de un conjunto de opciones.
Pueden ser seleccionados o deseleccionados, y pueden incluir un icono de marca de verificación
cuando están seleccionados.
 InputChip (Entrada): Representa información proporcionada por el usuario, como selecciones en
un menú. Pueden contener un icono y texto, y proporcionan una ' X ' para eliminarlos.
 SuggestionChp (Sugerencia): Proporciona recomendaciones al usuario basadas en su actividad o
entrada reciente. Suelen aparecer debajo de un campo de entrada para provocar acciones del
usuario.

Por ejemplo, veamos como crear un FilterChip personalizado.

23/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/chip
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary

@Composable

fun FilterChipWithIcon(

 modifier: Modifier = Modifier,

 seleccionadoState: Boolean = true,

 textoState: String = "Etiqueta",

 iconState: Painter? = null,

 onClick: () -> Unit = {}

) {

 FilterChip(

 modifier = modifier.then(Modifier.height(FilterChipDefaults.Height)),

 selected = seleccionadoState,

 onClick = onClick,

 label = { Text(textoState) },

 leadingIcon = {

 // Al estar seleccionado, mostramos el icono de selección

 // y sustituimos el icono iconState por este.

 if (seleccionadoState) {

 Icon(

 painter = Filled.getCheckIcon(),

 contentDescription = "Icono seleccionado",

 modifier = Modifier.size(FilterChipDefaults.IconSize)

)

 } else {

 iconState?.let {

 Icon(

 painter = it,

 contentDescription = "Icono asociado a la etiqueta",

 modifier = Modifier.size(FilterChipDefaults.IconSize)

)

 }

 }

 }

)

}

A continuación podemos ver un ejemplo de uso de este componente personalizado. El cual nos permite
filtrar por estudiantes de 2DAM.

24/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

@PreviewLightDark

@Composable

fun ChipPreview() {

 var filtrarPor2DAM by remember { mutableStateOf(false) }

 ProyectoBaseTheme {

 Surface (modifier = Modifier.background(MaterialTheme.colorScheme.surface)

 .padding(8.dp))

 {

 FilterChipWithIcon(

 seleccionadoState = filtrarPor2DAM,

 textoState = "Estudiante 2DAM",

 iconState = Filled.getPersonIcon(),

 onClick = { filtrarPor2DAM = !filtrarPor2DAM }

)

 }

 }

}

Este código de ejemplo nos generaría el siguiente chip personalizado, donde podemos ver sus dos
estados posibles.

Nota

Aunque en el ejemplo solo se visualiza una opción de filtrado, recuerda que debería haber más de
dos opciones de filtrado para que el uso de este componente tenga sentido. Es caso contrario
podríamos usar un CheckBox .



25/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Diálogos

Documentación oficial: Dialogs
Video Tutorial Español: AristiDevs

El componente Dialog muestra mensajes emergentes o solicita la entrada del usuario en una capa
por encima del contenido principal de la aplicación. Crea una experiencia de interfaz de usuario
interrumpida para captar la atención del usuario.

Entre los casos de uso de un diálogo se incluyen los siguientes:

1. Confirmar la acción del usuario, como al eliminar un archivo.
2. Solicitar la entrada del usuario, como en una aplicación de lista de tareas pendientes.
3. Presentar una lista de opciones para que el usuario elija, como seleccionar un país en la

configuración de un perfil.

AlertDialog

Proporciona una API conveniente para crear un cuadro de diálogo con temática de Material Design.
 AlertDialog tiene parámetros específicos para manejar elementos particulares del diálogo. Entre ellos
se incluyen los siguientes:

 title : El texto que aparece en la parte superior del cuadro de diálogo.
 text : El texto que aparece centrado en el cuadro de diálogo.
 icon : El gráfico que aparece en la parte superior del cuadro de diálogo.
 onDismissRequest : La función que se llama cuando el usuario cierra el cuadro de diálogo, como al
tocar fuera de él.
 dismissButton : Un composable que sirve como botón de cierre.
 confirmButton : Un composable que sirve como botón de confirmación.

El siguiente ejemplo tendremos un Box con un botón que al pulsarlo nos mostrará una oferta de entre
tres aleatorias en un AlertDialog . Si en el dialogo pulsamos en el botón de Aceptar , se mostrará un
mensaje en el Box de despedida 'alegre'; si pulsamos el botón de Rechazar , se mostrará un mensaje
de despedida 'triste' y si cancelamos el dialogo, se volverá a mostrar el botón.

Puedes el código de ejemplo a continuación aquí: DialogoOferta.kt
Recurso apartment_24px.xml

// Definimos una clase con los tres posibles contenidos del Box.

enum class ContenidoCaja { BOTON, DESPEDIDA_TRISTE, DESPEDIDA_ALEGRE }

26/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/dialog
https://www.youtube.com/watch?v=2rCyXaYkTp0
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_3/DialogoOferta.kt
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/tema_3_3/gifts_24px.xml

// Composable Stateless que nos genera el composable con el contenido

// del Box según el estado gestionado por el AlertDialog

@Composable

fun ContenidoCaja(

 contenidoCajaState: ContenidoCaja,

 // Función que se ejecutará cuando pulsemos el botón de ver oferta.

 // y que cambiará el estado para mostrar el AlertDialog.

 onClickVerOferta: () -> Unit

) {

 when (contenidoCajaState) {

 ContenidoCaja.BOTON -> {

 Button(onClick = onClickVerOferta) {

 Text(text = "Ver Oferta")

 }

 }

 ContenidoCaja.DESPEDIDA_TRISTE -> {

 Text(text = "Adios, tu te lo pierdes")

 }

 ContenidoCaja.DESPEDIDA_ALEGRE -> {

 Text(text = "Enhorabuena, excelente elección")

 }

 }

}

27/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

@Composable

fun DialogoOferta(

 onAceptarDialogoOferta: () -> Unit,

 onRechazarDialogoOferta: () -> Unit,

 onCalcelaDialogoOferta: () -> Unit

) =

 // AlertDialog de Material 3

 AlertDialog(

 icon = {

 Icon(

 painterResource(R.drawable.gifts_24px),

 contentDescription = "Pregunta"

)

 },

 title = { Text(text = "Oferta") },

 text = {

 // La lista la recordamos para no volver a generarla en cada recomposición.

 val ofertas = remember {

 listOf(

 "Apartamento en Torrevieja (Alicante)",

 "Aston Martin DB9",

 "100 Ceniceros del IES Balmis"

)

 }

 // Mostramos una oferta aleatoria de la lista.

 Text(text = ofertas.random())

 },

 // Lo que hacemos al pulsar fuera del AlertDialog para cancelarlo.

 onDismissRequest = onCalcelaDialogoOferta,

 confirmButton = {

 // En los AlertDialog de Material 3, el botón de confirmación

 // debería ser un TextButton

 TextButton(onClick = {

 // Acción de Aceptar la oferta.

 onAceptarDialogoOferta()

 onCalcelaDialogoOferta()

 }) {

 Text("Aceptar")

 }

 },

 dismissButton = {

 TextButton(onClick = {

 / Acción de Rechazar la oferta.

 onRechazarDialogoOferta()

 onCalcelaDialogoOferta()

 }) {

28/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

 Text("Rechazar")

 }

 }

)

29/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

// Componente Box que implementará la lógica de la oferta.

@Composable

fun BoxOferta() = Box(

 modifier = Modifier

 .fillMaxWidth().size(height = 300.dp, width = 0.dp),

 contentAlignment = Alignment.Center

) {

 var verDialogoOferta by remember { mutableStateOf(false) }

 var contenidoCaja by remember { mutableStateOf(ContenidoCaja.BOTON) }

 ContenidoCaja(

 contenidoCajaState = contenidoCaja,

 onClickVerOferta = { verDialogoOferta = true }

)

 if (verDialogoOferta) {

 DialogoOferta(

 onAceptarDialogoOferta = {

 contenidoCaja = ContenidoCaja.DESPEDIDA_ALEGRE

 },

 onRechazarDialogoOferta = {

 contenidoCaja = ContenidoCaja.DESPEDIDA_TRISTE

 },

) {

 verDialogoOferta = false

 }

 }

}

Si hacemos un @Preview de este último componente, veremos un resultado similar al siguiente si
pulsamos aceptar.

30/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Resumen
En este tema hemos visto algunos conceptos básicos de Material Design 3 y como usarlos en nuestras
aplicaciones. Además, hemos visto como usar algunos componentes, personalizados y crear
concreciones de los mismos.

Aunque existen más componentes, son muy similares en uso y conceptos a los que hemos visto en este
tema. Por tanto, si necesitas usar alguno de ellos, puedes consultar la documentación oficial de Material
Design 3.

Otros componentes relacionados con Menús, Navegación, Listas, Maquetación, etc. los veremos en
temas posteriores.

31/31 PMDM 2º DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

