Tema 3.3 - Componentes de Material
Design

Descargar estos apuntes pdf o html

indice

= |ntroduccion
¥ Material Design
¥ Material Design 2 vs. Material Design 3
= Material 2
= Material 3
¥ Componentes Material Design 3
= [ntroduccion Componentes Material Design 3
= Botones
= CheckBox
= Cards
= TextField (Campos de Texto)
= Chips
= Dialogos
= Resumen

1/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_3_componentes_material_design.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_3_componentes_material_design.html

Introduccion

En el proceso de disefio de una aplicacion, el desarrollador debe tener en cuenta la experiencia de
usuario (UX) y la interfaz de usuario (Ul). La experiencia de usuario se refiere a como se siente el
usuario al interactuar con la aplicacion, mientras que la interfaz de usuario se refiere a como se ve la
aplicacion y como se organizan los elementos de la interfaz de usuario.

Tradicionalmente en muchos frameworks de disefio de aplicaciones, se ha intentado separar el disefio
de la interfaz de usuario de la implementacién de la l6gica de la aplicacién. Esto permite que los
disenadores de aplicaciones y los desarrolladores de aplicaciones trabajen en paralelo. Existiendo por
tanto, una parte del equipo especializada en disefo grafico y otra en programacion.

Sin embargo, esta separacion puede ser problematica por ciertos motivos:

1. Sucedera que el disefiador y el programador no trabajan en paralelo, sino que el disenador
entrega un disefio a un programador que debe implementarlo. En este caso, el programador debe
entender el disefio y el disefiador debe entender las limitaciones de la implementacion.

2. Por la razén anterior, en entornos medios o pequefos, lo mas comun es que el disefio y la
programacion la realiza la misma persona que suele ser un programador carente, la mayoria de
las veces, de conocimientos suficientes de disefio grafico. Por tanto, el programador, ademas de
tener gusto por el disefio, debe aprender a utilizar herramientas de disefio grafico RAD como las
que incluyen los propios IDE para de forma visual generar el XML que define el interfaz y que a
menudo consumian mucho tiempo de desarrollo.

3. Se produce la mezcla de lenguajes de programacioén con lenguajes de diseno grafico. Por
ejemplo, en Android, el disefo de la interfaz de usuario se define en archivos XML y la l6gica de la
aplicacion se implementa en Java o Kotlin. Esto obligaba al programador a mantener dos fuentes
de cédigo diferentes para una sola pantalla de la aplicacion. En la mayoria de los casos el
programador iba directamente al c6digo XML y no utilizaba las herramientas visuales de disefio o
producia errores al intentar renderizar los cambios pues al ser XML un lenguaje para maquinas era
facil cometer errores y encontrarlos.

4. La reusabilidad de los componentes de la interfaz de usuario era mas compleja pues en el caso
de Android se lograba a través, de estructuras como Fragments , que afiaden capas de complejidad
al codigo.

5. Por ultimo, la separacion de la logica de la aplicacion y la interfaz de usuario puede hacer que el
programador no tenga en cuenta la experiencia de usuario y se centre en la funcionalidad de la
aplicacion. Esto puede dar lugar a aplicaciones que funcionan correctamente pero que no son
faciles de usar o reconocibles por los usuarios.

= Resumen

2/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://es.wikipedia.org/wiki/Desarrollo_r%C3%A1pido_de_aplicaciones

El desarrollador de aplicaciones méviles debe tener en cuenta:

» La necesidad reusabilidad de los componentes de la interfaz de usuario.

e Lo que usuarios esperan que las aplicaciones se comporten de una manera determinada.
Esto es, debemos tener en cuenta la experiencia de usuario UX.

¢ Que debe desentenderse, en la medida de lo posible, del disefio grafico y centrarse en la
funcionalidad de la aplicacion.

» La facilidad para adaptar la interfaz de usuario a diferentes dispositivos y tamafios de
pantalla. Asi como cambiar facilmente nuestros disefios de tipografia, paleta de colores,

modos de luz y oscuridad, etc.

Material Design

o Documentacion oficial: Material Design

¢ Documentacion oficial: Android

Para evitar muchos de los inconvenientes anteriores, Google ha desarrollado Material Design. Material
Design es un conjunto de pautas de disefio que se pueden utilizar para crear aplicaciones con una
interfaz de usuario moderna y coherente. Material Design también incluye un conjunto de
componentes de interfaz de usuario que se pueden utilizar para crear disefos de interfaz de usuario
creados expertos en disefo grafico y UX. Por hacer una analogia simple, podemos decir que Material
Design es a Android lo que Bootstrap es a la web.

En Material Design, los elementos de la interfaz de usuario se denominan componentes. Los
componentes de Material Design se pueden utilizar para crear disefios de interfaz de usuario que se
pueden utilizar en diferentes dispositivos y tamanos de pantalla. Los componentes de Material Design
también se pueden utilizar para crear diseilos de interfaz de usuario que se pueden adaptar a
diferentes modos de luz y oscuridad, asi como a diferentes paletas de colores y tipografias a este
concepto se le llama tematizacién.

Material genera disefios comunes para las aplicaciones de Android, iOS, Flutter y la web. Por tanto,
podemos decir que Material Design es un lenguaje de disefo que se puede utilizar para crear
aplicaciones para diferentes plataformas. En este tema nos centraremos en el uso de Material Design
para crear aplicaciones de Android.

Dentro de android, Material Design se puede utilizar de dos formas:

e MDC-Android: Componentes para las vistas XML de Android. Aunque usemos vistas XML, el uso
de estos componentes minimiza algunas de las desventajas que hemos mencionado en la

introduccion.
+ Jetpack Compose: Componentes para la nueva forma de crear interfaces de usuario en Android

de forma declarativa..

3/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://material.io/design
https://developer.android.com/guide/topics/ui/look-and-feel?hl=es-419

No obstante, el uso de Material Design no es excluyente y se puede combinar con disefios
personalizados. De hecho, pese a su juventud', empiezan a aparecer librerias de componentes
OpenSource de terceros en GitHub o webs de recopilacion de estos como:

 https://www.jetpackcompose.app/compose-catalog (Libre)
¢ https://composables.com/
https://composeexamples.com/components (Suscripcidn)

Ademas, un disefiador puede crear un disefio personalizado con herramientas genéricas como Figma y
el desarrollador puede implementar usar esos disefios en JetpackCompose utilizando herramientas de
importacién como el Plug-in Relay para Android Studio. (Video Ejemplo1, Video Ejemplo2).

2" Nota:
Nosotros en estos apuntes vamos a tratar solo algunos componentes de basicos de Material

Design 3 por ser la version mas reciente. Ademas, profundizar en temas de diseno grafico y UX
esta fuera del alcance de este médulo y mas en el Disefio de Interfaces.

4/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://www.jetpackcompose.app/compose-catalog
https://composables.com/
https://composeexamples.com/components
https://es.wikipedia.org/wiki/Figma
https://developer.android.com/jetpack/compose/tooling/relay?hl=es-419
https://www.youtube.com/watch?v=N3t7SIlFPrQ
https://www.youtube.com/watch?v=-_zp8x5L5eo

Material Design 2 vs. Material Design 3

En el momento de crear estos apuntes, Google aun esta en proceso de migracion de Material Design 2
a Material Design 3. Aunque al crear un proyecto nuevo en Android Studio ya utiliza por defecto Material

Design 3.

Una de las principales novedades de Material 3 respecto a sus versiones anteriores, es el soporte de
colores dinamicos. Este permite que los colores utilizados en las aplicaciones se adapten
automaticamente para coincidir con la seleccion de fondo de pantalla del usuario. Aunque como hemos
comentado, nosotros no vamos a profundizar en tanto detalle.

Puede que encontraremos muchos proyectos de ejemplo en Internet que aun utilicen Material Design 2
y por tanto componentes que aun no estan migrados a Material Design 3 o incluso que ya no van a
existir en esta version. Por lo que es conveniente saber distinguirlas y usar, por coherencia de interfaz,
solamente los componentes de la 3.

Material 2

androidx.compose.material Actualmente va por la version 1.8.0 aun en version beta. (Ultima estable
1.7.3)

Aunque es una versién anterior aun tiene mantenimiento para aquellas aplicaciones que la usan.

Material 3

Actualmente va por la version 1.4.0 atin en version alfa esta. (Ultima estable 1.3.0), Nosotros la
tenemos incluida en nuestro proyecto de ejemplo en los archivos...

e Enel 1ibs.versions.toml

[libraries]
Al no indicar la versidén, tomaria la ultima estable.
androidx-material3 = { group = "androidx.compose.material3", name = "material3" }

e Enel build.gradle.kts (Modulo App)

dependencies {
implementation(libs.androidx.material3)

Nota:

5/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/compose-material
https://developer.android.com/jetpack/androidx/releases/compose-material3

Por tanto, cualquier componente fuera de material3-android:1.3.0 no lo vamos poder usar y si
indicamos en el libs.versions.toml una la versién material3-android:1.4.0-alpha01 al estar en
version alfa (debe pasar aun por beta y release) es susceptible de cambios y errores.

Ademas, material3 tiene una version especial con componentes adaptativos que aunque aun esta
en sus primeras etapas, permite adaptar de forma automatica ciertos layouts canoénicos a los tamafos
de pantalla y resoluciones de los dispositivos.

Componentes Material Design 3

Introduccion Componentes Material Design 3

Documentacion oficial: Components Material Design 3

Video Tutorial Inglés (Introduccién): Philipp Lackner

Video Tutorial Inglés (Avanzado): Philipp Lackner

Video Tutorial Inglés: Stevdza-San

Puesto que son muchos componentes y esta documentacion no pretende ser una copia de la pagina
oficial de material. Vamos a ver algunos de los componentes mas basicos y que mas se usan. Para ver
el resto de componentes, puedes consultar la documentacién oficial de Material Design 3. Ademas, mas
adelante trataremos componentes de navegacién y scaffolding con mas detalle.

Los podemos clasificar en:

1. Acciones
o Botones normales 4. Navegacion
o Botones flotantes (FAB) o Top app bar
o Botones extendidos flotantes (extended FABS) o Bottom app bar
o Botones con texto e iconos. o Navigation bar
o Botones Segmentados o Navigation drawer
2. Comunicacion o Navigation rail
o Snackbars o Tabs
o Badges 5. Seleccién
o Progress indicators o Checkboxes
3. Contenedores o Radio buttons
o Cards o Switches
o Bottom sheets o Sliders
o Carousels o Chips
o Dialogos o Menus
o Divider o Pickers (Time & Date)
o Listas 6. Entrada de texto
o Side sheets o Text fields

6/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/androidx/releases/compose-material3-adaptive
https://m3.material.io/foundations/layout/canonical-layouts/overview
https://m3.material.io/components
https://www.youtube.com/watch?v=I3eT32LXAKc
https://www.youtube.com/watch?v=h7K4n9C2jkI
https://www.youtube.com/watch?v=h_JYW2hdI8U
https://developer.android.com/jetpack/androidx/releases/compose-material3#compose_material3_version_13_2
https://developer.android.com/jetpack/androidx/releases/compose-material3#1.4.0-alpha01

o Tooltips

7/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

No todos los componentes estan disponible para todas las plataformas. Deberemos consultar su
disponibilidad para Jetpack Compose en los recursos de desarrollo. Por ejemplo, el botén comun

tiene:

Type Resource Status

Design
Design Kit (Figma) Available

Implementation

4% Flutter Available
& Jetpack Compose i Available
& MDC- Android Available
@ Web - MWC Available

¢) Enlaces Importantes

1. Documentacién oficial de los Componentes basicos en Jetpack Compose. Aqui, puedes
encontrar la documentacion en la que nos basaremos en esta documentacién y la de los
componentes que no trataemos en el tema.

2. Documentacion oficial de Todo el paquete de Material 3 para Jetpack Compose. Aqui,
puedes encontrar configuraciones mas avanzadas de los componentes que no trataremos en
el tema.

3. Google ademas, tiene una App en el Play Store denominada Compose Material Catalog.
Esta App tiene un catalogo de componentes de Material Design 3 del que puedes ver su
codigo fuente. Si quieres acceder a los ejemplos se encuentran disponibles en los
siguientes repositorios de Google o en este de GitHub.

8/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://m3.material.io/components
https://m3.material.io/components/buttons/overview#26686b3a-1ecb-4bf1-b071-cf740fe3a315
https://developer.android.com/jetpack/compose/components
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary
https://play.google.com/store/apps/details?id=androidx.compose.material.catalog&hl=es_419
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/material3/material3/samples/src/main/java/androidx/compose/material3/samples/
https://github.com/androidx/androidx/tree/androidx-main/compose/material3/material3/samples/src/main/java/androidx/compose/material3/samples

Botones

e Documentacion oficial: Buttons
e Documentacion oficial: Material 3

Algunas de las cosas que vamos a contar para botones, son aplicables para el resto de
componentes de Material Design 3.

Material me proveera de muchos tipos de botones ya predefinidos que se adaptan sus guias de
diseno de Material Design. Lo mas adecuado, es usarlos sin ningun tipo de modificador de
aspecto y funcionalidad.

Por ejemplo, aqui tenemos tres casos simples descritos en la documentacion.

@Preview(showBackground = true)

@Composable

private fun BotonesPreview() {

ProyectoBaseTheme {
Row(horizontalArrangement = Arrangement.SpaceEvenly) {

Button(onClick = { /*ToDO*/ }) { Text(text = "IES Balmis") }
OutlinedButton(onClick = { /*TODO*/ }) { Text(text = "IES Balmis") }
FilledTonalButton(onClick = { /*TODO*/ }) { Text(text = "IES Balmis") }

IES Balmis IES Balmis IES Balmis

De hecho, si colocamos el ratén sobre la funcion @composable Button en el propio Android Studio, nos
aparecera el siguiente interfaz.

9/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/button
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Button(kotlin.Function0,androidx.compose.ui.Modifier,kotlin.Boolean,androidx.compose.ui.graphics.Shape,androidx.compose.material3.ButtonColors,androidx.compose.material3.ButtonElevation,androidx.compose.foundation.BorderStroke,androidx.compose.foundation.layout.PaddingValues,androidx.compose.foundation.interaction.MutableInteractionSource,kotlin.Function1)

@Composable
fun Button(
onClick: () -> Unit,
modifier: Modifier = Modifier,
enabled: Boolean = true,
shape: Shape = ButtonDefaults.shape,
colors: ButtonColors = ButtonDefaults.buttonColors(),
elevation: ButtonElevation? = ButtonDefaults.buttonElevation(),
border: BorderStroke? = null,
contentPadding: PaddingValues = ButtonDefaults.ContentPadding,
interactionSource: MutableInteractionSource? = null,
content: @Composable RowScope.() -> Unit

En el podemos observar que muchos de los parametros tienen valores por defecto como
ButtonDefaults.shape , ButtonDefaults.buttonElevation() , ButtonDefaults.buttonColors() O
ButtonDefaults.ContentPadding todos ellos definidos en Material 3 sobre los valores de disefio
concretos de Material Design 3.

Ademas, como en la mayoria de funciones composables el ultimo parametro content €s un landa
composable que me permite afiadir otros elementos composables dentro del boton como Textos,
Imagenes, etc. Con un layout RowScope que me permite anadir elementos en horizontal.

Si por algun casual, quisiéramos crear un botén mas personalizado. Deberiamos aplicar en la medida
por defecto los valores de disefio de Material Design 3. Por ejemplo, si quisiéramos crear un
composable botén personalizado como el del siguiente ejemplo:

@Preview(showBackground = true)

@Composable

private fun BotonePreview() {

HolaMundoTheme { (' | love Balmis

ButtonLikeBalmis(onClick = { /*TODO*/ })

Fijate que en todos los casos no personalizados hemos mantenido los valores por defecto de Material
Design 3.

Debes descargar el siguiente recurso y anadirlo al proyecto favorite_24px.xml, para probar el
fragmento de codigo.

10/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/tema_3_3/favorite_24px.xml

@Composable
private fun ButtonLikeBalmis(onClick: () -> Unit) {
// Va a ser un botén con los colores de borde de Material Design 3,
// pero cambiando el contentColor a Rojo.
val colors: ButtonColors = ButtonDefaults.outlinedButtonColors(
contentColor = Color.Red
)
Button(
onClick = onClick,
// El bode tendra el color del contentColor pero mantedra
// el grosor definido de Material 3 para los botones con borde.
border = BorderStroke(
width ButtonDefaults.outlinedButtonBorder.width,

color = colors.contentColor
)>
colors = colors,
// El padding sera el mismo que usen los botones con Icono.
contentPadding = ButtonDefaults.ButtonWithIconContentPadding
) {
// La imagen serd un Icono de Material Design 3 pero ...
Image(
// Su tamano sera el de los iconos en los botones de Material 3.
modifier = Modifier.size(ButtonDefaults.IconSize),
// Icono anadido a los recursos
painter = painterResource(id = R.drawable.favorite_24px),
contentDescription = "Favorite",
// El color del icono sera también contentColor
colorFilter = ColorFilter.tint(colors.contentColor)
)
// El espaciado tiene el mismo tamano que el de los botones con Icono.
Spacer(Modifier.size(ButtonDefaults.IconSpacing))
Text("I love Balmis")

Como ves, para dibujar un simple botén personalizado, hemos tenido que tener muchas cosas en
cuenta y mas si queremos mantener la coherencia de UX con el resto de botones de la aplicacién.
Por tanto, lo mas adecuado es usar los botones predefinidos de Material Design 3, donde lan gran
mayoria de casos de uso de botones estan cubiertos en sus guias de uso donde nos indicara una seria
de buenas y malas practicas de uso de botones segun el tipo. Esto ademas, es aplicable al resto de
componentes.

11/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design ~ Rev. 07/10/2024 IES Doctor Balmis

https://m3.material.io/components/buttons/guidelines

CheckBox

e Documentacion oficial: Material 3

Basicamente es una caja con dos estados, marcado o no marcado. Normalmente va asociado a un texto
por lo que seria interesante definirnos un componente personalizado.

Una posible implementacion de este componente mas complejo podria ser CheckboxWithLabel :

@Composable

private fun CheckboxWithLabel(
label: String,
modifier: Modifier = Modifier,
checkedState: Boolean,
enabledState: Boolean = true,
onStateChange: (Boolean) -> Unit) {

Row (
modifier = modifier,
verticalAlignment = Alignment.CenterVertically,

horizontalArrangement = Arrangement.Start

) A
Checkbox(
checked = checkedState,
onCheckedChange = onStateChange,
enabled = enabledState,
)
Text(
text = label,
maxLines = 1,
style = MaterialTheme.typography.bodySmall
)
}

12/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Checkbox(kotlin.Boolean,kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Boolean,androidx.compose.material3.CheckboxColors,androidx.compose.foundation.interaction.MutableInteractionSource)

Por ejemplo, para probar nuestro componente podemos usar el siguiente @Preview ...

@Preview(showBackground = true, name = "CheckBoxPreview")
@Composable
fun CheckBoxPreview() {
var checkedState by remember { mutableStateOf(true) }
HolaMundoTheme {

Box {
CheckboxWithLabel(
label = "I Love Balmis",
modifier = Modifier.padding(12.dp)
.wrapContentWidth(),
checkedState = checkedState,
onStateChange = { checkedState = it }
)
}

La previsualizacion seria la siguiente ...

| Love Balmis

Guia de uso de CheckBox

» Seleccionar una o mas opciones de una lista.

o Aceptar los términos y condiciones de un contrato o solicitud.

o Cuando queramos seleccionar una lista multiple de opciones o sub-opciones que también
contengan una CheckBox.

* No deberemos usarlo cuando queramos seleccionar una unica opcion de una lista de opciones. En
ese caso, deberemos usar RadioButtons.

13/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Cards

e Documentacion oficial: Cards
e Documentacion oficial: Material 3

El componible card (Tarjeta) actia como un contenedor de Material Design para tu interfaz de usuario.
Lo podemos encontrar en otros frameworks como Bootstrap o Materialize y por lo general, las tarjetas
presentan un unico y coherente elemento de contenido.

El enfoque es representar un unico elemento de contenido lo que distingue a Card de otros
contenedores como Surface , Box, etc. Por ejemplo, una tarjeta puede contener un texto, una imagen y
un botdn, pero no debe contener una lista de elementos.

Cuando y como usar Cards

» Deben ser faciles de ver de un vistazo para encontrar informacion.
» Los elementos e imagenes deben colocarse de forma que indiquen claramente la jerarquia.
o Pueden ofrecernos un punto de entrada a niveles mas profundos de detalle o navegacion.

» Pueden ser mostradas juntas en una cuadricula, lista vertical o carrusel.
Algunos parametros clave para tener en cuenta son los siguientes:

e elevation : Agrega una sombra al componente que hace que

parezca elevado sobre el fondo. .
|IES Doctor Balmis

e colors : Utiliza el tipo cardColors para establecer el color _
Alicante

predeterminado tanto del contenedor como de cualquier hijo.

Instituto de Educacion Secundaria donde se imparte el

* enabled : Si se pasa false para este parametro, la tarjeta Ciclo Formativo de Grado SUperior de Desarrollo de

Aplicaciones Multiplataforma

aparece como deshabilitada y no responde a la entrada del

|
usuario.

Como realmente un card es un contenedor. Lo mas importante es seguir la guia de disefio de Material
Design 3 para rellenarlo. Por ejemplo, para disefiar la anatomia basica de un card propuesta por
material y que se muestra en la imagen de ejemplo de arriba, podriamos generar el siguiente codigo...

o Decargar ejemplo

14/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/card
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#Card(androidx.compose.ui.Modifier,androidx.compose.ui.graphics.Shape,androidx.compose.material3.CardColors,androidx.compose.material3.CardElevation,androidx.compose.foundation.BorderStroke,kotlin.Function1)
https://m3.material.io/components/cards/guidelines
https://m3.material.io/components/cards/guidelines
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_3/TarjetaBalmis.kt

@Composable
private fun TarjetaBalmis(modifier: Modifier = Modifier) = ElevatedCard(

modifier = modifier.then(Modifier.wrapContentSize()),

elevation = CardDefaults.cardElevation(defaultElevation = 6.dp)
) A

Column {

Surface(
modifier = Modifier.clip(CardDefaults.shape),

color = MaterialTheme.colorScheme.primary

) 1
Image(
modifier = Modifier.fillMaxWidth(),
painter = painterResource(id = R.drawable.balmis),
contentDescription = "IES Doctor Balmis",
contentScale = ContentScale.FillWidth,
alpha = 0.8f
)
}
Spacer(modifier = Modifier.size(12.dp))
Text(
modifier = Modifier.padding(start = 12.dp, end = 12.dp),
text = "IES Doctor Balmis",
style = MaterialTheme.typography.headlinelLarge
)
Text(
modifier = Modifier.padding(start = 12.dp, end = 12.dp),
text = "Alicante",
style = MaterialTheme.typography.headlineSmall
)
Spacer(modifier = Modifier.size(12.dp))
Text (
modifier = Modifier.padding(start = 12.dp, end = 12.dp),
text = "Instituto de Educacién Secundaria donde se imparte el Ciclo Formativo"
+ " de Grado Superior de Desarrollo de Aplicaciones Multiplataforma”,
style = MaterialTheme.typography.bodyMedium
)
Row (
modifier = Modifier.fillMaxWidth().padding(12.dp),
horizontalArrangement = Arrangement.End
) 1
Button(onClick = { }) {
Text(text = "Saber mas")
}
}

15/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

16/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

TextField (Campos de Texto)

e Documentacion oficial: Material 3

Video Tutorial Inglés: Philipp Lackner

Video Tutorial Inglés: Stevdza-San

Video Tutorial Espafiol: DevExperto
Video Tutorial Espafiol: Martin Kiperszmid

Usaremos un campo de texto cuando alguien necesite introducir texto en una interfaz de usuario, como

rellenar informacion de contacto o de pago.

Hay dos tipos de campos de texto. Ambos usan un contenedor para proporcionar una pista visual para
la interaccion y proporcionan la misma funcionalidad. La unica diferencia es el aspecto visual.

1. TexField : Campos de texto rellenos

2. outlinedTexField : Campos de texto con contorno. Estos tienen menos énfasis visual que los
campos de texto rellenos. Cuando aparecen en lugares como formularios (donde se colocan
muchos campos de texto juntos) su énfasis reducido ayuda a simplificar el disefio.

Veamos un ejemplo de uso de un outlineTextField propio a partir del proporcionado por Material
Design 3. En él decidiremos que los mensajes de error se muestren debajo del campo de texto y
afnadiremos el caracter * tras el label cuando haya un error.

» Puedes descargar el proyecto de ejemplo de este componente en el siguiente enlace:
OutlinedTextFieldWithErrorState

Primero, definiremos una clase para pasar el estado de error del TextField silo hubiese. Por ejemplo

interface Validacion {
val hayError: Boolean // Si hay error o no.
get() = false
val mensajeError: String? // EL mensaje asociado al error.

get() = null

Veamos una posible implementacién de nuestro outlinedTextField derivado al que denominaremos
OutlinedTextFieldWithErrorState .

17/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary#TextField(kotlin.String,kotlin.Function1,androidx.compose.ui.Modifier,kotlin.Boolean,kotlin.Boolean,androidx.compose.ui.text.TextStyle,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Function0,kotlin.Boolean,androidx.compose.ui.text.input.VisualTransformation,androidx.compose.foundation.text.KeyboardOptions,androidx.compose.foundation.text.KeyboardActions,kotlin.Boolean,kotlin.Int,kotlin.Int,androidx.compose.foundation.interaction.MutableInteractionSource,androidx.compose.ui.graphics.Shape,androidx.compose.material3.TextFieldColors)
https://www.youtube.com/watch?v=ZERIxmBYP-U&t=1021s
https://www.youtube.com/watch?v=6w4l-3jC21E
https://www.youtube.com/watch?v=WjcJPQ5N3Fo
https://www.youtube.com/watch?v=OAG4Qphl9AQ
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_3/OutlinedTextFieldWithErrorState.kt

@Composable

private fun OutlinedTextFieldWithErrorState(
modifier: Modifier = Modifier,
label: String,
textoState: String,
textoPista: String = "",
leadingIcon: @Composable (() -> Unit)? = null,
validacionState: Validacion,

keyboardOptions: KeyboardOptions

KeyboardOptions(keyboardType = KeyboardType.Text),
keyboardActions: KeyboardActions = KeyboardActions(),
onValueChange: (String) -> Unit
) o
OutlinedTextField(
modifier = modifier,
value = textoState,
onValueChange = onValueChange,
singlelLine = true,
// Icono al principio del TextField por defecto vale null.
leadingIcon = leadingIcon,
// Como vamos a mostrar el texto de la pista o hint cuando estemos editando.
// por defecto la pista es la cadena vacia.
placeholder = {
Text(
text = textoPista,
style = TextStyle(
color = MaterialTheme.colorScheme
.onSurfaceVariant.copy(alpha = 0.4f)

¥
// Etiqueta personalizada que se muestra cuando no hay texto o
// encima del TextField cuando estamos editando.
// Le ponemos un asterisco si hay error como hemos especificado.
label = { Text(if (validacionState.hayError) "${label}*" else label) },
// La opciones del teclado permitiran la entrada alfanumérica.
keyboardOptions = keyboardOptions,
// Composable bajo el TextField que se muestra cuando hay error.
supportingText = {

if (validacionState.hayError) {

Text(text = validacionState.mensajeError!!)

¥

// Parametro con el estado del error.
isError = validacionState.hayError,

keyboardActions = keyboardActions

18/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

A continuacion, vamos a definir un componente derivado de OutlinedTextFieldWithErrorState que nos
permita introducir correos electronicos y validarlos denominado OutlinedTextFieldEmail

@Composable
private fun OutlinedTextFieldEmail(
modifier: Modifier = Modifier,
label: String = "Email",
emailState: String,
validacionState: Validacion,
onValueChange: (String) -> Unit
) A
OutlinedTextFieldWithErrorState(
modifier = modifier,
label = label,
textoState = emailState,
// La pista cambiara.
textoPista = "ejemplo@correo.com",
// Las opciones de teclado seran para un email.
keyboardOptions = KeyboardOptions(keyboardType = KeyboardType.Email),
// E1l icono serd el de un email.
leadingIcon = {
Icon(
imageVector = Icons.Filled.Email,

contentDescription = "Email"

¥

// Sera Stateles y la forma de validar la decidiremos al usarlo.
validacionState = validacionState,

onValueChange = onValueChange

En el siguiente ejemplo, podemos ver como quedaran la redefinicion de nuestro composables

OutlinedTextFieldEmail Yy OutlinedTextFieldWithErrorState con el cddigo de @Preview .

‘ Nombre ‘ Nombre*
El nombre no puede estar vacio
Email

‘ B4 Email ‘ {_ﬁﬂ |

19/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

@PreviewlLightDark

@Composable

private fun TextFiledPreview() {
var nombreState by remember { mutableStateOf("") }
var validacionNombre by remember { mutableStateOf(object : Validacion {} as Validacion) }
var emailState by remember { mutableStateOf("") }

var validacionEmail by remember { mutableStateOf(object : Validacion {} as Validacion) }

ProyectoBaseTheme {
Surface {
Column {
OutlinedTextFieldWithErrorState(

modifier = Modifier.fillMaxWidth(),
label = "Nombre", textoState = nombreState,
validacionState = validacionNombre,
onValueChange = {

nombreState it

validacionNombre = object : Validacion {
override val hayError: Boolean
get() = it.isEmpty()
override val mensajeError: String?

get() = "E1 nombre no puede estar vacio"

)
OutlinedTextFieldEmail(
modifier = Modifier.fillMaxWidth(), emailState = emailState,
validacionState = validacionEmail,
onValueChange = {
emailState = it
validacionEmail = object : Validacion {
override val hayError: Boolean
get() = it.isEmpty()
|| !Regex("~[A-Za-z](.*)([@1{1}) (.{1, H(\\.)(.{1,})$")
.matches(it)
override val mensajeError: String?

get() = "E1 email no es valido"

20/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

¢) Importante

Durante el curso dispondras de una version actualizada de estos componentes en el repositorio
publico de GitHub de la asignatura. Repositorio de Componentes. Entre ellos, diferentes
implementaciones de TextField con gestion de errores como los que hemos visto en este tema.

Para usarlos en tus proyectos asegurate de tener la siguiente configuracion que ya esta en tu

proyecto base:

En el 1libs.versions.toml

[versions]

pmdmIesBalmisVersion = "24.1"

[libraries]
pmdm-ies-balmis-components
= { group = "com.github.pmdmiesbalmis", name = "components", version.ref = "pmdmIesBalmisVer

En el build.gradle.kts (Modulo App)

dependencies {
implementation(libs.pmdm.ies.balmis.components)

Por ultimo, debes usar los imports necesarios:

import com.github.pmdmiesbalmis.components.validacion.*
import com.github.pmdmiesbalmis.components.ui.composables.*

import com.github.pmdmiesbalmis.components.validacion.validadores.*

21/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://github.com/pmdmiesbalmis/components

Si modificamos el ejemplo anterior podemos dejar Unicamente el @Preview .

@PreviewlLightDark
@Composable
private fun TextFiledPreview() {
var nombreState by remember { mutableStateOf("") }
var validacionNombre by remember {
mutableStateOf(object : Validacion {} as Validacion) }
// Ya tienes un monton de validadores predefinidos.
var validadorNombre = remember {
ValidadorTextoNoVacio("E1l nombre no puede estar vacio") }
var emailState by remember { mutableStateOf("") }
var validacionEmail by remember {
mutableStateOf(object : Validacion {} as Validacion) }
// Ademas, puedes combinarlos para hacer validaciones mas complejas.
val validadorCorreo = remember { ValidadorCompuesto<String>()
.add(ValidadorTextoNoVacio("El correo no puede estar vacio"))

.add(ValidadorCorreo("El correo no es valido"))

}
ProyectoBaseTheme {
Surface {
Column {

OutlinedTextFieldWithErrorState(
modifier = Modifier.fillMaxWidth(),
label = "Nombre", textoState = nombreState,
validacionState = validacionNombre,
onValueChange = {

nombreState it

validacionNombre = validadorNombre.valida(it)

)
OutlinedTextFieldEmail(

modifier = Modifier.fillMaxWidth(), emailState = emailState,
validacionState = validacionEmail,
onValueChange = {

emailState = it

validacionEmail = validadorCorreo.valida(it)

22/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Chips

e Documentacion oficial: Chips
e Documentacion oficial: Material 3

El componente chip es un elemento de interfaz de usuario compacto e interactivo. Representa
entidades complejas como un contacto o una etiqueta, a menudo con un icono y una etiqueta. Puede
ser seleccionable, eliminable o clickeable.

Diferencia con los botones

e Los Botones:
o Se utilizan siempre para iniciar acciones.
o Deben aparecer en grupos de uno o dos elementos.
o Son estaticos y predefinidos. Esto es, no cambian de aspecto segun su contexto.
e Los Chips:
o Deben aparecer de manera dinamica como un grupo de multiples elementos interactivos.
o No se utilizan para iniciar acciones, sino para representar un estado o atributo, o para
realizar una accién secundaria.
o Pueden aparecer en grupos de mas de dos elementos.
o Son reactivos y contextuales, Esto es, deben ofrecer una accién diferente segun la
naturaleza del contenido que respalda.
o Representan bifurcaciones o posibles caminos en una experiencia.
o Pueden tener scroll horizontal.

Tipos de Chips

Los cuatro tipos de chips y déonde podrias usarlos son los siguientes:

Ademas de estos composables, tendremos una version con elevacion con el prefijjo Elevated . Por
ejemplo, ElevatedFilterChip .

e AssistChip (Ayuda): Guia al usuario durante una tarea. A menudo aparece como un elemento de
interfaz de usuario temporal en respuesta a la entrada del usuario.

e Filterchip (Filtro): Permite a los usuarios refinar el contenido de un conjunto de opciones.
Pueden ser seleccionados o deseleccionados, y pueden incluir un icono de marca de verificacion
cuando estan seleccionados.

e InputChip (Entrada): Representa informacion proporcionada por el usuario, como selecciones en
un menu. Pueden contener un icono y texto, y proporcionan una ' x ' para eliminarlos.

e SuggestionChp (Sugerencia): Proporciona recomendaciones al usuario basadas en su actividad o
entrada reciente. Suelen aparecer debajo de un campo de entrada para provocar acciones del
usuario.

Por ejemplo, veamos como crear un FilterChip personalizado.

23/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/chip
https://developer.android.com/reference/kotlin/androidx/compose/material3/package-summary

@Composable

fun FilterChipWithIcon(
modifier: Modifier = Modifier,
seleccionadoState: Boolean = true,
textoState: String = "Etiqueta",
iconState: Painter? = null,
onClick: () -> Unit = {}

) o
FilterChip(
modifier = modifier.then(Modifier.height(FilterChipDefaults.Height)),
selected = seleccionadoState,
onClick = onClick,
label = { Text(textoState) },
leadingIcon = {
if (seleccionadoState) {
Icon(
painter = Filled.getCheckIcon(),
contentDescription = "Icono seleccionado”,
modifier = Modifier.size(FilterChipDefaults.IconSize)
)
} else {
iconState?.let {
Icon(
painter = it,
contentDescription = "Icono asociado a la etiqueta",
modifier = Modifier.size(FilterChipDefaults.IconSize)
)
}
}
}
)
}

A continuacién podemos ver un ejemplo de uso de este componente personalizado. El cual nos permite
filtrar por estudiantes de 2DAM.

24/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

2" Nota

Aunque en el ejemplo solo se visualiza una opcion de filtrado, recuerda que deberia haber mas de
dos opciones de filtrado para que el uso de este componente tenga sentido. Es caso contrario

podriamos usar un CheckBox .

@PreviewlLightDark
@Composable
fun ChipPreview() {
var filtrarPor2DAM by remember { mutableStateOf(false) }
ProyectoBaseTheme {
Surface (modifier = Modifier.background(MaterialTheme.colorScheme.surface)
.padding(8.dp))

{
FilterChipWithIcon(
seleccionadoState = filtrarPor2DAM,
textoState = "Estudiante 2DAM",
iconState = Filled.getPersonIcon(),
onClick = { filtrarPor2DAM = !filtrarPor2DAM }
)
}

Este codigo de ejemplo nos generaria el siguiente chip personalizado, donde podemos ver sus dos

estados posibles.

)
L:. Estudiante 2DAM] + Estudiante 2DAM

25/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Dialogos

o Documentacion oficial: Dialogs
» Video Tutorial Espafiol: AristiDevs

El componente Dialog muestra mensajes emergentes o solicita la entrada del usuario en una capa
por encima del contenido principal de la aplicacion. Crea una experiencia de interfaz de usuario
interrumpida para captar la atencién del usuario.

Entre los casos de uso de un dialogo se incluyen los siguientes:

1. Confirmar la accion del usuario, como al eliminar un archivo.

2. Solicitar la entrada del usuario, como en una aplicacion de lista de tareas pendientes.

3. Presentar una lista de opciones para que el usuario elija, como seleccionar un pais en la
configuracion de un perfil.

AlertDialog

Proporciona una APl conveniente para crear un cuadro de dialogo con tematica de Material Design.
AlertDialog tiene parametros especificos para manejar elementos particulares del dialogo. Entre ellos
se incluyen los siguientes:

o title : El texto que aparece en la parte superior del cuadro de dialogo.

* text : El texto que aparece centrado en el cuadro de dialogo.

e icon : El grafico que aparece en la parte superior del cuadro de dialogo.

e onDismissRequest : La funcidén que se llama cuando el usuario cierra el cuadro de didlogo, como al
tocar fuera de él.

e dismissButton : Un composable que sirve como botdn de cierre.

e confirmButton : Un composable que sirve como botén de confirmacion.

El siguiente ejemplo tendremos un Box con un botdn que al pulsarlo nos mostrara una oferta de entre
tres aleatorias en un AlertDialog . Si en el dialogo pulsamos en el botén de Aceptar , se mostrara un
mensaje en el Box de despedida ‘alegre’; si pulsamos el botédn de Rechazar , sSe mostrara un mensaje
de despedida 'triste'y si cancelamos el dialogo, se volvera a mostrar el boton.

o Puedes el cédigo de ejemplo a continuacion aqui: DialogoOferta.kt

¢ Recurso apartment_24px.xml

// Definimos una clase con los tres posibles contenidos del Box.

enum class ContenidoCaja { BOTON, DESPEDIDA TRISTE, DESPEDIDA_ALEGRE }

26/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/components/dialog
https://www.youtube.com/watch?v=2rCyXaYkTp0
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_3/DialogoOferta.kt
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/tema_3_3/gifts_24px.xml

// Composable Stateless que nos genera el composable con el contenido
// del Box segun el estado gestionado por el AlertDialog
@Composable
fun ContenidoCaja(

contenidoCajaState: ContenidoCaja,

// Funcidén que se ejecutara cuando pulsemos el botén de ver oferta.

// y que cambiara el estado para mostrar el AlertDialog.

onClickVerOferta: () -> Unit
) A

when (contenidoCajaState) {

ContenidoCaja.BOTON -> {
Button(onClick = onClickVerOferta) {
Text(text = "Ver Oferta")

}
ContenidoCaja.DESPEDIDA_TRISTE -> {
Text(text = "Adios, tu te lo pierdes")

}
ContenidoCaja.DESPEDIDA_ALEGRE -> {

Text(text = "Enhorabuena, excelente eleccidn")
}

27/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

@Composable

fun DialogoOferta(

onAceptarDialogoOferta: () -> Unit,

onRechazarDialogoOferta: () -> Unit,

onCalcelaDialogoOferta: () -> Unit

// AlertDialog de Material 3

AlertDialog(

icon = {

}s

Icon(
painterResource(R.drawable.gifts_24px),
contentDescription = "Pregunta”

title = { Text(text = "Oferta") },
text = {

¥

// La lista la recordamos para no volver a generarla en cada recomposiciodn.
val ofertas = remember {
1istOf(
"Apartamento en Torrevieja (Alicante)",
"Aston Martin DB9",
"100 Ceniceros del IES Balmis"

}

// Mostramos una oferta aleatoria de la lista.

Text(text = ofertas.random())

// Lo que hacemos al pulsar fuera del AlertDialog para cancelarlo.

onDismissRequest = onCalcelaDialogoOferta,

confirmButton = {

}s

// En los AlertDialog de Material 3, el botdn de confirmaciodn
// deberia ser un TextButton
TextButton(onClick = {

// Accidén de Aceptar la oferta.

onAceptarDialogoOferta()

onCalcelaDialogoOferta()

A
Text("Aceptar")

dismissButton = {

TextButton(onClick = {
/ Accidén de Rechazar la oferta.
onRechazarDialogoOferta()

onCalcelaDialogoOferta()
» A

28/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Text("Rechazar")

29/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

// Componente Box que implementara la légica de la oferta.
@Composable
fun BoxOferta() = Box(
modifier = Modifier
fillMaxWidth().size(height = 300.dp, width = 0.dp),
contentAlignment = Alignment.Center
) A
var verDialogoOferta by remember { mutableStateOf(false) }
var contenidoCaja by remember { mutableStateOf(ContenidoCaja.BOTON) }

ContenidoCaja(
contenidoCajaState = contenidoCaja,
onClickVerOferta = { verDialogoOferta = true }

if (verDialogoOferta) {
DialogoOferta(
onAceptarDialogoOferta = {
contenidoCaja = ContenidoCaja.DESPEDIDA_ALEGRE
¥
onRechazarDialogoOferta = {
contenidoCaja = ContenidoCaja.DESPEDIDA_TRISTE
s
) 1

verDialogoOferta = false

Si hacemos un @pPreview de este ultimo componente, veremos un resultado similar al siguiente si
pulsamos aceptar.

Oferta
Apartamento en Torrevieja (Alicante) Enhorabuena, excelente eleccidn

Rechazar Aceptar

30/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

Resumen

En este tema hemos visto algunos conceptos basicos de Material Design 3 y como usarlos en nuestras
aplicaciones. Ademas, hemos visto como usar algunos componentes, personalizados y crear

concreciones de los mismos.

Aunque existen mas componentes, son muy similares en uso y conceptos a los que hemos visto en este
tema. Por tanto, si necesitas usar alguno de ellos, puedes consultar la documentacion oficial de Material

Design 3.

Otros componentes relacionados con Menus, Navegacion, Listas, Maquetacion, etc. los veremos en

temas posteriores.

31/31 PMDM 2° DAM Tema 3.3 - Componentes de Material Design Rev. 07/10/2024 IES Doctor Balmis

