
Tema 3.2 - Maquetando nuestra UI
Descargar estos apuntes pdf o html

Índice
Introducción
Conceptos iniciales
Modificadores de Compose

Unidades de medida
El orden de los modificadores es importante
Combinando modificadores

Profundizando en el trabajo con Textos
Creando un estilo de texto
Establecer varios estilos sobre un mismo texto

Brushes (Pinceles)
Layouts básicos

Surface
Box
Column y Row

Pesos en Column y Row
FlowColumn y FlowRow

Imágenes
Formas de manejar un recurso imagen
Parámetros más comunes
Cargando Imágenes de forma asíncrona (Coil)

1/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_2_maquetando_nuestra_UI.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_2_maquetando_nuestra_UI.html

Introducción
En el primer tema ya hemos hablado de algunos componentes básicos de la capa de Runtime
como son State , remember , @Composable etc.

En este tema vamos a ver cómo maquetar nuestro UI utilizando diferentes componentes de
compose definidos en las capas de la librería que hablamos en el anterior tema, como son la
capa de UI, Fundation y Material.

Conceptos iniciales
Ya hemos visto que las funciones 'Composables' pueden tener diferentes elementos, como por
ejemplo dos textos.

Necesitaremos, en primer lugar, de algún tipo de layout que nos permita poner los elementos uno
al lado de otro. Como por ejemplo el 'composable' Column que los irá poniendo uno debajo de otro
en vertical.

Nota

Muchos de los elementos de diseño no se pueden ver aislados unos de otros. Por lo que en
muchos ejemplos vamos a usar elementos que serán explicados más adelante en
profundidad.



@Preview (showBackground = true, name = "CabeceraPreview")

@Composable

fun Cabecera() {

 // Sin contenedor los componentes se superponen

 Text("IES Doctor Balmis")

 Text("Módulo PMDM 2º DAM")

}

4

2/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/package-summary
https://developer.android.com/jetpack/compose/layering?hl=es-419

@Preview (showBackground = true, name = "CabeceraPreview")

@Composable

fun Cabecera() {

 Column {

 Text("IES Doctor Balmis")

 Text("Módulo PMDM 2º DAM")

 }

}

Además, muchos de los elementos de diseño tienen parámetros que nos permiten modificar su
comportamiento. Por ejemplo, en el componente Text podemos ver que son bastantes.

@Composable

fun Text(

 text: String,

 modifier: Modifier = Modifier,

 color: Color = Color.Unspecified,

 fontSize: TextUnit = TextUnit.Unspecified,

 fontStyle: FontStyle? = null,

 fontWeight: FontWeight? = null,

 fontFamily: FontFamily? = null,

 ...

 style: TextStyle = LocalTextStyle.current,

 ...

)

Sin embargo, la gran mayoría de ellos no son obligatorios y tienen un valor por defecto asignado
en la propia declaración. Además, en varios de estos componentes, para modificarlos deberíamos
hacerlo a través del tema de la aplicación y sus estilos.

Por ejemplo, si queremos cambiar el color y tamaño del texto, deberíamos hacerlo a través del
tema base.

3/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Al poner ProyectoBaseTheme como composable raíz de la aplicación, todos los elementos que
estén dentro de él, heredarán sus estilos. Por tanto, esto no deberemos hacerlo en cada
componente, sino siempre en la raíz de nuestro árbol de composables.

Los estilos y colores los hemos puesto a través de las definiciones de MaterialTheme , a través de
ella estaremos accediendo a las definiciones del tema de Material Design que es el que viene por
defecto en Compose y define ProyectoBaseTheme .

De esta manera, toda nuestra aplicación tendrá un aspecto coherente y consistente y podremos
cambiarlo fácilmente sin tener que ir componente a componente.

Por último, tendremos una serie de modificadores que nos permitirán modificar el espacio que
ocupan los componentes, como el padding o la alineación, incluso comportamientos como el de
 clickable . No obstante, como veremos más adelante, estos modificadores dependerán del tipo
de layout que estemos usando o las características de propio componente.

@Preview(showBackground = true, name = "CabeceraPreview")

@Composable

fun Cabecera() {

 ProyectoBaseTheme {

 Column {

 Text(

 text = "IES Doctor Balmis",

 style = MaterialTheme.typography.titleLarge,

 color = MaterialTheme.colorScheme.primary

)

 Text(

 text = "Módulo PMDM 2º DAM",

 style = MaterialTheme.typography.titleSmall,

 color = MaterialTheme.colorScheme.secondary

)

 }

 }

}

4

8

9

13

14

4/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

En los siguiente puntos vamos a hablar un poco más en profundidad de cada uno de estos
conceptos: 'layouts', 'modifiers' y 'Material Design', este último ya en el tema siguiente.

@Preview(showBackground = true, name = "CabeceraPreview")

@Composable

fun Cabecera() {

 ProyectoBaseTheme {

 Column(

 modifier = Modifier

 .fillMaxWidth()

 .border(

 width = 2.dp,

 color = MaterialTheme.colorScheme.primary,

 shape = MaterialTheme.shapes.medium

)

 .padding(12.dp)

) {

 Text(

 text = "IES Doctor Balmis",

 style = MaterialTheme.typography.titleLarge,

 color = MaterialTheme.colorScheme.primary

)

 Text(

 modifier = Modifier.align(Alignment.End),

 text = "Módulo PMDM 2º DAM",

 style = MaterialTheme.typography.titleSmall,

 color = MaterialTheme.colorScheme.secondary

)

 }

 }

}

6

13

21

5/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Importante

Vamos a suponer que previsualizamos los ejemplos siguientes con el proyecto
 ProyectoBase que hemos creado anteriormente y usamos por tanto el tema
 ProyectoBaseTheme . Para no repetir el código de previsualización en cada ejemplo, vamos a
usar la siguiente plantilla:

@Preview(showBackground = true, name = "Test")

@Composable

fun TestPreview() {

 ProyectoBaseTheme {

 // Aquí irá el componente a probar

 }

}



6/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Modificadores de Compose
Documentación oficial: Modificadores de Compose
Vídeo Español (DevExperto): Modificadores de Compose

Estos están definidos en la capa de UI y nos permiten modificar el comportamiento de otros
componentes de capas superiores.

Los modificadores te permiten decorar o aumentar un elemento composable. Por ejemplo,
puedes hacer todo esto:

Cambiar el tamaño, el diseño y el aspecto del elemento composable e incluso como se
debe comportar dentro de su contenedor o layout padre.
Agregar interacciones de nivel superior, (p. ej., hacer que un elemento sea apto para hacer
clic, desplazable, arrastrable o ampliable).
Agregar información (p. ej., etiquetas de accesibilidad)
Procesar entradas del usuario.

Existen muchos y además dependerán, como hemos comentado, de nuestro contenedor o el
scope en que nos encontremos. Por ese motivo los iremos viendo poco a poco a lo largo del curso.
Sin embargo, podemos destacar los más comunes:

 background - Dibuja una forma de color sólido detrás del composable.
 clickable - Especifica un controlador que se llamará cuando se haga clic en el composable.
También causa un efecto de ondulación cuando se realiza el clic.
 clip - Recorta el contenido composable a una forma especificada.
 fillMaxHeight - El composable se dimensionará para ajustarse a la altura máxima permitida
por su padre.
 fillMaxSize - El composable se dimensionará para ajustarse a la altura y ancho máximos
permitidos por su padre.
 fillMaxWidth - El composable se dimensionará para ajustarse al ancho máximo permitido por
su padre.
 offset - Posiciona el composable a la distancia especificada desde su posición actual a lo
largo del eje x e y.
 padding - Agrega espacio alrededor de un composable. Se pueden utilizar parámetros para
aplicar espaciado a los cuatro lados o para especificar un relleno diferente para cada lado.
 rotate - Rota el composable en su punto central por un número especificado de grados.
 scale - Aumenta o reduce el tamaño del composable por el factor de escala especificado.

7/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/modifiers?hl=es-419
https://www.youtube.com/watch?v=jej6DiUAlvk
https://developer.android.com/reference/kotlin/androidx/compose/ui/package-summary

 scrollable - Habilita el desplazamiento para un composable que se extiende más allá del
área visible del diseño en el que está contenido.
 size - Se utiliza para especificar la altura y el ancho de un composable. En ausencia de una
configuración de tamaño, el composable se dimensionará para acomodar su contenido
(denominado envoltura).

Unidades de medida
dp: Este es un valor de dimensión que representa píxeles independientes de la densidad
de píxeles (dpi) del dispositivo. Por ejemplo:

1 píxel en un dispositivo de densidad de pantalla de 160 dpi es igual a 1 dp.
1 píxel en un dispositivo de densidad de pantalla de 240 dpi es igual a 1.5 dp.

sp: Acrónimo de (Scaled Pixeles). Son como dp pero para fuentes. Además de tener en
cuenta la densidad en dpi, también son escalados en función de las preferencias de texto del
usuario.

El orden de los modificadores es importante
El orden de las funciones de los modificadores es importante. Como cada función realiza
cambios en el Modifier que muestra la función anterior, la secuencia afecta al resultado final.

Supongamos el código anterior de la cabecera donde aplicabamos los modificadores en el
siguiente orden:

1. fillMaxWidth - Ajustarse al ancho máximo permitido por su padre.
2. border - Dibuja un borde alrededor del composable de un color y ancho especificados.
3. padding - Agrega espacio alrededor de un composable de 12 dp .

8/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/ui/unit/Dp
https://developer.android.com/training/multiscreen/screendensities?hl=es-419
https://developer.android.com/training/multiscreen/screendensities?hl=es-419
https://developer.android.com/jetpack/compose/modifiers?hl=es-419#order-modifier-matters

@Composable

fun Cabecera() {

 Column(

 modifier = Modifier

 .fillMaxWidth()

 .border(

 width = 2.dp,

 color = MaterialTheme.colorScheme.primary,

 shape = MaterialTheme.shapes.medium

)

 .padding(12.dp)

) {

 ... // Código omitido por abreviar

 }

}

Pero, ¿Qué sucede si aplicamos el padding antes de dibujar el borde?

Si te fijas en la imagen de resultado el borde se dibuja por encima del padding. Esto es porque el
borde se dibuja en el borde del composable que en ese momento es el que tiene el tamaño
original. Por lo que el padding se aplica después y por tanto el borde se dibuja por encima.

Este es un aspecto a tener en cuenta si en algún momento no obtenemos el resultado esperado.

9/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Combinando modificadores
Los modificadores se pueden combinar para crear un único modificador que se puede reutilizar en
varios lugares. Por ejemplo, queremos añadir el borde y padding en varios lugares y no queremos
repetir código de tal manera que al cambiarlo en un sitio se cambie en todos.

Podemos definir una función de extensión para el tipo Modifiers de la siguiente manera:

Otra forma de hacerlo es con Modifier.then() que nos permite combinar modificadores de la
siguiente manera.

private fun Modifier.miBordeYPadding(

 color: Color = Color.Transparent,

 shape: Shape

) = border(width = 2.dp, color = color, shape = shape).padding(12.dp)

@Composable

fun Cabecera() {

 Column(

 modifier = Modifier

 .fillMaxWidth()

 .miBordeYPadding()

) {

 ... // Código omitido por abreviar

 }

}

1

11

Importante

Si vamos a utilizar este modificador en varios sitios, lo mejor es definirlo en un archivo
separado en algún paquete de utilidades en la jerarquía de paquetes pero dentro el paquete
de ui . Además, todas las funciones de extensión sobre Modifiers deben permanecer
cómo publicas para ser accesibles. Recuerda además, que cada vez que uses un
modificador compuesto definido por tí, estás creando una dependencia fuerte entre el
componente y el modificador fuera de las librerías de la capa de compose.ui . Por lo que
deberías pensar si es necesario o no.



10/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Imaginemos nuestro 'composable' Cabecera que va a ser usado en varios sitios, pero va a tener
un background diferente en cada uno de ellos.

Podemos hacer lo siguiente ...

Si modificamos nuestro 'preview' de la siguiente manera para probarlo...

// Le pasamos un modificador a nuestro componente

// un modificador que se aplicará antes que cualquier otro

// le pasaremos el valor por defecto Modifier si no queremos

// aplicar ningún modificador

@Composable

fun Cabecera(modifier: Modifier = Modifier) {

 Column(

 // Asignamos el modificador y luego el operador then

 // para que se aplique después de los modificadores recibidos.

 modifier = modifier.then(

 Modifier

 .fillMaxWidth()

 .miBordeYPadding()

)

) {

 ... // Código omitido por abreviar

 }

}

6

10

11/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

@Preview(showBackground = true, name = "Test")

@Composable

private fun Test() {

 ProyectoBaseTheme {

 Column {

 // Sin aplicar ningún modificador

 Cabecera()

 // Cambiando el color de nuestra cabecera a Cyan

 Cabecera(modifier = Modifier.background(Color.Cyan))

 // Escalando la cabecera a 0.75 (75% del tamaño original)

 // y después aplicando el background Amarillo.

 Cabecera(

 modifier = Modifier

 .scale(0.75f)

 .background(Color.Yellow)

)

 }

 }

}

Obtendremos el siguiente resultado

12/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Profundizando en el trabajo con Textos
Documentación oficial: Textos en Compose
Puedes bajar el código de los ejemplo de EjTextosBanner.kt

Creando un estilo de texto
Aunque no es lo recomendado y no corresponde al trabajo de un desarrollador, puede darse
el caso que al estar creando uno de nuestros componentes, queramos crear un estilo de texto
fuera de los definidos por defecto en MaterialTheme . Incluso en las adaptaciones de los mismos
que podamos hacer en com.holamundo.ui.theme → Theme.kt

Importante

En este caso ya no podremos hacer una función de extensión sobre TextStyle para
modificar una de sus propiedades porque son objetos inmutables. Además, deberemos de
llevar cuidado de aplicar sobre el objeto que modifique el estilo el calificativo
 remember { objeto } para que no se cree en cada composición.



13/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/text?hl=es-419
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/EjTextosBanner.kt

private fun sombra() = Shadow(

 color = Color.Gray,

 offset = Offset(4f, 4f),

 blurRadius = 4f

)

@Composable

fun Cabecera(modifier: Modifier = Modifier) {

 Column(

 modifier = modifier.then(

 Modifier.fillMaxWidth().miBordeYPadding()

)

) {

 Text(

 text = "IES Doctor Balmis",

 // Copiamos (por ser inmutable) del estilo que aplicábamos de MaterialTheme

 // y le asignamos un nuevo valor a la propiedad sombra.

 style = MaterialTheme.typography.titleLarge.copy(

 // OJO!! Para no crear el objeto sombra en cada composición le

 // aplicaremos el modificador remember.

 shadow = remember { sombra() }

),

 color = MaterialTheme.colorScheme.primary

)

 ... // Código omitido por abreviar

 }

}

1

5

16

22

14/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Establecer varios estilos sobre un mismo texto
En ocasiones querremos que partes de un mismo texto tengan diferentes estilos sin tener que
crear varios textos dentro de un layout Row . Para ello podemos usar la función AnnotatedString
que nos permite establecer diferentes estilos a diferentes partes de un mismo texto.

AnnotatedString es una clase de datos que contiene lo siguiente:

Un valor Text
Una List de SpanStyleRange , equivalente al estilo intercalado con el rango de posición dentro
del valor de texto
Una List de ParagraphStyleRange que especifica la alineación del texto, la dirección del texto,
la altura de la línea y el estilo de sangría del texto.

 TextStyle ya lo hemos usado y es para uso en el elemento componible Text, mientras que
SpanStyle y ParagraphStyle se usan en AnnotatedString.

Además, siempre vamos a poder convertir un TextStyle en un SpanStyle y un ParagraphStyle
con la funciones toSpanStyle() y toParagraphStyle() respectivamente.

La diferencia entre SpanStyle y ParagraphStyle es que ParagraphStyle se puede aplicar a un
párrafo completo, mientras que SpanStyle puede aplicarse a nivel de carácter. Una vez que una
parte del texto se marca con un ParagraphStyle, esa parte queda separada del resto como si
tuviera feeds de líneas al principio y al final. Por poner un símil, es como si aplicáramos a ese texto
las etiquetas <p>...</p> de HTML.

Nota

No vamos a ver todas las combinaciones y usos por su complejidad. Pero puedes visitar
este enlace a la documentación oficial.



15/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/ui/text/AnnotatedString
https://developer.android.com/reference/kotlin/androidx/compose/ui/text/SpanStyle
https://developer.android.com/reference/kotlin/androidx/compose/ui/text/ParagraphStyle
https://developer.android.com/jetpack/compose/text?hl=es-419#multiple-styles

@Composable

fun Cabecera(modifier: Modifier = Modifier) {

 Column(

 modifier = modifier.then(

 Modifier

 .fillMaxWidth()

 .miBordeYPadding(

 color = MaterialTheme.colorScheme.primary,

 shape = MaterialTheme.shapes.medium

)

)

) {

 ... // Código omitido por abreviar

 Text(

 modifier = Modifier.align(Alignment.End),

 style = MaterialTheme.typography.titleSmall,

 color = MaterialTheme.colorScheme.secondary,

 text = buildAnnotatedString {

 append("Módulo ")

 withStyle(

 style = SpanStyle(

 fontSize = MaterialTheme.typography.titleMedium.fontSize,

 color = MaterialTheme.colorScheme.inversePrimary

)

) {

 append("PMDM") // Aplicamos el estilo solo a PMDM

 }

 append(" 2º DAM")

 })

 }

}

18

29

16/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Brushes (Pinceles)
Documentación oficial: Pinceles en Compose

Aunque este también es un tema más avanzado y específico de diseñadores gráficos. Vamos a
verlo por encima para que sepas que existe y puedas usarlo en caso de que tengas algún pincel
definido en el tema que quieras usar.

En Compose, los pinceles se utilizan para pintar formas y trazos en un lienzo o canvas. Pero
también los podemos usar para pintar el fondo de un composable como un layout a través
del modificador background .

Por ejemplo, si añadimos un pincel a nuestra cabecera.

Obtendremos el siguiente resultado ...

@Composable

fun Cabecera(modifier: Modifier = Modifier) {

 // Creamos el objeto pincel con remember para que no se cree en cada composición.

 val colorI = MaterialTheme.colorScheme.primaryContainer

 val colorF = MaterialTheme.colorScheme.tertiaryContainer

 val pincel = remember { Brush.horizontalGradient(listOf(colorI, colorF)) }

 Column(

 modifier = modifier.then(

 Modifier

 // Aplicamos el pincel al background al principio del modificador.

 // Recuerda que el orden importa.

 .background(pincel)

 .fillMaxWidth()

 .miBordeYPadding(

 color = MaterialTheme.colorScheme.primary,

 shape = MaterialTheme.shapes.medium

)

)

) {

 }

}

3

6

10

12

17/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/develop/ui/compose/graphics/draw/brush

18/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Supongamos que queremos pintar un fondo de un texto o un layout con una imagen a modo de
pincel. Podemos hacerlo de la siguiente manera...

Descarga la imagen balmis.png y ponla en la carpeta res/drawable de tu proyecto.

@Composable

fun Cabecera(modifier: Modifier = Modifier) {

 // En este caso no podemos usar remember porque imageResource

 // es una función composable y no puede ser llamada desde una función remember.

 val pincel = ShaderBrush(ImageShader(ImageBitmap.imageResource(id = R.drawable.balmis)))

 Column(

 modifier = modifier.then(

 Modifier

 .background(pincel)

 .fillMaxWidth()

 .miBordeYPadding(

 color = MaterialTheme.colorScheme.primary,

 shape = MaterialTheme.shapes.medium

)

)

) {

 ... // Código omitido por abreviar

 }

}

Obtendremos el siguiente resultado ...

Importante

El usar una imagen como pincel es más util para pintar textos que para pintar layouts. Ya
que en el caso de los layouts, la imagen se repite en el eje x e y. Por lo que si el layout es
más grande que la imagen, se verá la imagen repetida. En el caso de querer que el layout
tenga un fondo con una imagen, lo mejor es usar un layout Box y asignarle un componente
 Image de fondo, sobre el que tendremos un mejor control de visualización como veremos en
el siguiente tema.



19/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/balmis.png

Layouts básicos
Documentación oficial: Conceptos básicos de diseño
⭐ Vídeo en Inglés (Android Developers): Lista de reproducción
Vídeo en Inglés (Android Developers): Workshop about basic layouts in Compose
Vídeo en Español (DevExperto): Box, Column y Row en Jetpack Compose

Los layouts son los encargados de distribuir los elementos de nuestra UI. En Compose, los
layouts son también composables y por tanto, podemos anidarlos unos dentro de otros.

Los básicos están definidos en la capa de Fundation y son los siguientes:

Surface
Surface es un layout que nos permite añadir una forma, color de fondo y elevación a un
composable que no los tenga. Es decir, que podemos aplicarle un sombreado y una elevación
como si fuera un CardView de XML.

Pero lo más interesante, es que nos permite establecer un tema diferente al que tengamos en el
resto de la aplicación. Ya que este se aplica automáticamente a todos su contenido. Por eso
veremos que si le asignamos un color, el color de los textos cambia en función del tema.

Por esta razón, vamos a usarlo para definir un componente TextoConForma que de ahora en
adelante usaremos para probar los diferentes layouts de los ejemplos.

20/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/layouts/basics?hl=es-419
https://www.youtube.com/watch?v=LjeHsvPIdpY&list=PLWz5rJ2EKKc94tpHND8pW8Qt8ZfT1a4cq
https://www.youtube.com/watch?v=kyH01Lg4G1E
https://www.youtube.com/watch?v=xyBkLS5OPtk
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
https://developer.android.com/reference/kotlin/android/view/Surface

@Composable

fun TextoConForma(

 modifier: Modifier = Modifier,

 texto : String = "Hola Mundo",

 color : Color = MaterialTheme.colorScheme.primary) {

 Surface(

 modifier = modifier.then(Modifier.padding(1.dp)),

 color = color,

 shape = RoundedCornerShape(10.dp)

) {

 Text(

 modifier = Modifier.padding(20.dp),

 textAlign = TextAlign.Center,

 text = texto)

 }

}

Si usamos el siguiente preview para probarlo ...

Obtendremos el siguiente resultado ...

@Preview(showBackground = true, name = "Test")

@Composable

fun Test() {

 ProyectoBaseTheme {

 Row {

 TextoConForma(texto = "IES")

 TextoConForma(texto = "Doctor")

 // Fíjate en este caso como el color del texto se adapta al color de fondo.

 // Esto no sucederá en otros layouts como Box o Column.

 TextoConForma(

 // Intentará ocupar el ancho que quede libre.

 modifier = Modifier.fillMaxWidth(),

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary)

 }

 }

}

8

14

21/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Box
Documentación oficial (capa fundation): Box
Vídeo en Inglés (Stevdza-San): Box Layout
Descarga el código de los ejemplos: Box.kt

@Composable

inline fun Box(

 modifier: Modifier = Modifier,

 contentAlignment: Alignment = Alignment.TopStart,

 propagateMinConstraints: Boolean = false,

 content: @Composable BoxScope.() -> Unit

): Unit

 Box se dimensionará para ajustarse al contenido, sujeto a las restricciones de su contenedor.

Cuando los hijos son más pequeños que el padre, por defecto se posicionarán dentro del Box,
según la alineación de contenido. Para especificar individualmente las alineaciones de los diseños
secundarios, use el modificador BoxScope.align .

Por defecto, el contenido se medirá sin las restricciones mínimas entrantes de la Box, a menos que
 propagateMinConstraints sea true . Si propagateMinConstraints se establece en true , el tamaño
mínimo establecido en la Box también se aplicará al contenido, mientras que de lo contrario el
tamaño mínimo solo se aplicará al Box .

Ejemplo: Se puede establecer propagateMinConstraints a true cuando el Box tiene contenido en
el que no se pueden especificar modificadores directamente y se necesita establecer un tamaño
mínimo en el contenido del Box .

Es importante tener en cuenta que, cuando el Box tiene más de un hijo, estos se apilarán uno
encima del otro (posicionados como se explica arriba) en el orden de composición.

En el siguiente ejemplo todos los composables TextoConForma se apilarán uno encima del otro en
el centro porque hemos indicado contentAlignment = Alignment.Center y como hemos comentado
el tamaño del Box se ajustará al más grande en la pila.

Cuidado

Si pusiéramos el TextoConForma de mayor dimensión al final. este taparía a todos los
demás.



22/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#Box(androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,kotlin.Boolean,kotlin.Function1)
https://www.youtube.com/watch?v=8XVtGK2P2mE
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/Box.kt

En el siguiente ejemplo, hemos ajustado de forma independiente la alineación de cada uno de los
composables TextoConForma .

@Composable

fun BoxApiladoAlCento() {

 Box (contentAlignment = Alignment.Center) {

 TextoConForma(

 modifier = Modifier.size(150.dp, 150.dp),

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary)

 TextoConForma(

 texto = "Doctor",

 color = MaterialTheme.colorScheme.tertiary)

 TextoConForma(

 texto = "IES")

 }

}

5

23/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Esto es posible, porque dentro del Composable Box tenemos acceso a un BoxScope (ámbito o
alcance del Box) que nos permite aplicar modificadores a cada uno de los hijos de forma
independiente. Estos modificadores adicionales que aparecen son...

 align() : Alinea el hijo dentro del área de contenido de la Box utilizando el valor de alineación
especificado.
 matchParentSize() : Dimensiona el hijo al que se aplica el modificador para que coincida con
el tamaño de la Box principal.

@Composable

fun BoxConAlineacionesIndependientes() {

 Box {

 TextoConForma(

 modifier = Modifier.align(Alignment.Center)

 .size(150.dp, 150.dp),

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary)

 TextoConForma(

 modifier = Modifier.align(Alignment.CenterStart),

 texto = "Doctor",

 color = MaterialTheme.colorScheme.tertiary)

 TextoConForma(

 modifier = Modifier.align(Alignment.BottomEnd),

 texto = "IES")

 }

}

5

10

14

Importante

Piénsalo, ¿Qué sentido tendría aplicar un modificador align() a nuestro TextoConForma si
no estuviera dentro de algo que lo contuviera?. Además, tenemos que saber como dispone



24/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

nuestro contenedor a su continente para saber de que formas podemos alinear.
Esto nos va asuceder también con otros layouts como Column o Row que veremos a
continuación.

25/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Column y Row
Documentación oficial (capa fundation): Column
Documentación oficial (capa fundation): Row
Vídeo en Inglés (Stevdza-San): Rows and Columns
Vídeo en Inglés (Philipp Lackner): Rows and Columns
Descarga el código de los ejemplos: ColumnYRow.kt

 Column y Row son layouts composables que colocan a sus hijos en una secuencia vertical y
horizontal respectivamente.

Deberemos tener en cuenta que, por defecto, los elementos no se desplazan. Consulta los
modificadores Modifier.verticalScroll y Modifier.horizontalScroll para obtener este
comportamiento

Cuando el tamaño de la columna o fila es mayor que la suma de los tamaños de sus
elementos hijos, se puede especificar un verticalArrangement o horizontalArrangement para
definir la posición de los elementos hijos dentro.

Veamos un ejemplo de disposiciones en un Row .

Todo lo aplicado en este ejemplo se puede aplicar también a un Column de forma análoga pues su
comportamiento es idéntico pero en el eje y .

Importante

Al igual que sucede con el Box los hijos dentro de un Column o un Row estarán dentro de
un ámbito o alcance determinado por el ColumnScope o el RowScope respectivamente. Esto
permitirá que sus hijos puedan aplicar modificadores adicionales como weight o align
relacionados con su contenedor respectivo.



26/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#Column(androidx.compose.ui.Modifier,androidx.compose.foundation.layout.Arrangement.Vertical,androidx.compose.ui.Alignment.Horizontal,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#Row(androidx.compose.ui.Modifier,androidx.compose.foundation.layout.Arrangement.Horizontal,androidx.compose.ui.Alignment.Vertical,kotlin.Function1)
https://www.youtube.com/watch?v=kg7EWKOberk
https://www.youtube.com/watch?v=rHKeRWK3zL4
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/ColumnYRow.kt

// Definimos un componente Row con una propiedad horizontalArrangement

// y otra verticalAlignment para definir la disposición de los elementos

@Composable

fun MyRow(

 horizontalArrangement: Arrangement.Horizontal,

 verticalAlignment : Alignment.Vertical

) {

 Row(

 // Aplicamos un modificador para que se ajuste al ancho máximo

 // y le aplicamos un borde para que se vea el tamaño que ocupa.

 modifier = Modifier.fillMaxWidth().border(1.dp, Color.Gray),

 horizontalArrangement = horizontalArrangement,

 verticalAlignment = verticalAlignment

) {

 // La primera caja en la fila me indicará la disposición

 // que se ha aplicado a todo el Row.

 val disposicion = horizontalArrangement.toString()

 TextoConForma(

 texto = "Disposición\n" + disposicion.substring(

 disposicion.indexOf('#') + 1

),

 color = Color.LightGray

)

 // Ignorará la alineación vertical general del Row y se alineará

 // en la parte baja del row siempre.

 TextoConForma(

 modifier = Modifier.align(Alignment.Bottom),

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary

)

 // Si no indico nada la alineación vertical será la general del Row

 TextoConForma(

 texto = "Doctor",

 color = MaterialTheme.colorScheme.tertiary

)

 TextoConForma(texto = "IES")

 }

}

27/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Vamos a usar el composable MyRow para probar las diferentes disposiciones que podemos aplicar
a un Row . Para ell, definimos un composable RowsWithColumns que contendrá un Column con
varios hijos MyRow .

@Composable

fun ColumnsWithRows() {

 Column(

 modifier = Modifier.fillMaxWidth()

) {

 // Todos se disponen en horizontal al final del Row (Derecha)

 // Todos se alinean en vertical arriba del Row salvo lo que

 // tengan una alineación personalizada.

 MyRow(

 horizontalArrangement = Arrangement.End,

 verticalAlignment = Alignment.Top

)

 // Todos se disponen en horizontal espaciados de forma equitativa

 // salvo el primero y el último que se ajustarán a los extremos.

 // Todos se alinean en vertical centrados del Row salvo lo que

 // tengan una alineación personalizada.

 MyRow(

 horizontalArrangement = Arrangement.SpaceBetween,

 verticalAlignment = Alignment.CenterVertically

)

 // Todos se disponen en horizontal espaciados de forma equitativa.

 // Todos se alinean en vertical abajo del Row salvo lo que

 // tengan una alineación personalizada.

 MyRow(

 horizontalArrangement = Arrangement.SpaceEvenly,

 verticalAlignment = Alignment.Bottom

)

 }

}

28/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Pesos en Column y Row

El diseño Column es capaz de asignar alturas máximas respecto al alto total del Column a los
hijos, según sus pesos proporcionados mediante el modificador ColumnScope.weight lo mismo
sucederá con Row pero con RowScope.weight para asignar anchos máximos respecto al ancho
total del Row.

En el siguiente ejemplo vamos a definir composable RowConPesosIguales para probar los pesos
que podemos asignar a los hijos de un Row . A todos los hijos les asignaremos el mismo peso para
que se repartan el espacio disponible de forma equitativa y al ser 3 cada uno ocupará 1/3 del
espacio disponible. Además, fíjate que todas las cajas tienen el modificador fillMaxWidth() para
intentar expandirse al máximo dentro del espacio que le corresponda según el peso.

@Composable

fun RowConPesosIguales() {

 Row(

 modifier = Modifier.fillMaxWidth().border(1.dp, Color.Gray),

 horizontalArrangement = Arrangement.SpaceEvenly,

 verticalAlignment = Alignment.CenterVertically

) {

 TextoConForma(

 modifier = Modifier.fillMaxWidth().weight(1/3f),

 texto = "Pesos\nIguales",

 color = Color.LightGray

)

 TextoConForma(

 modifier = Modifier.fillMaxWidth().weight(1/3f),

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary

)

 TextoConForma(

 modifier = Modifier.fillMaxWidth().weight(1/3f)

 .align(Alignment.Top),

 texto = "IES",

 color = MaterialTheme.colorScheme.tertiary

)

 }

}

9

14

19

29/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Realmente el valor que le pasa al modificador weight es un Float que representa el porcentaje o
tanto por uno del espacio disponible que ocupará el hijo.

En el siguiente ejemplo, las dos primeras cajas ocuparán el 0.4f o el 40% del espacio disponible y
la tercera el 0.2f o el 20%. Todos los valores deben sumar 1.0f o 100% del espacio disponible.

Si un hijo no tiene un peso asignado, se le pedirá su altura o ancho preferido antes de que se
calculen los tamaños de los hijos con pesos proporcionalmente a su peso en función del espacio
disponible restante.

Ten en cuenta que, si el Column o el Row tienen aplicado su modificador de scroll, se ignorarán
los pesos proporcionados, ya que el espacio disponible restante será infinito.

@Composable

fun RowConPesosDistintos() {

 Row(

 modifier = Modifier.fillMaxWidth().border(1.dp, Color.Gray),

 horizontalArrangement = Arrangement.SpaceEvenly

) {

 TextoConForma(

 modifier = Modifier.fillMaxWidth().weight(0.40f),

 texto = "Pesos Distintos\n40%",

 color = Color.LightGray

)

 TextoConForma(

 modifier = Modifier.fillMaxWidth().weight(0.40f),

 texto = "Balmis\n40%",

 color = MaterialTheme.colorScheme.inversePrimary

)

 TextoConForma(

 modifier = Modifier.fillMaxWidth().weight(0.20f),

 texto = "IES\n20%",

 color = MaterialTheme.colorScheme.tertiary

)

 }

}

8

13

18

30/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

FlowColumn y FlowRow
Aunque en esta sección solo vamos a hablar de FlowRow por no extendernos. Todo lo que se diga
es aplicable a FlowColumn de forma análoga. Además, este tipo de layout no son muy comunes en
aplicaciones de uso general y sí posiblemente en los casos en que se necesite un diseño más
complejo y adaptable a diferentes tamaños de pantalla.

Documentación oficial (capa fundation): FlowRow

 FlowRow es un diseño que rellena elementos de izquierda a derecha (ltr) en diseños LTR o de
derecha a izquierda (rtl) en diseños RTL y cuando se queda sin espacio, se mueve a la siguiente
"fila" o "línea" colocada en la parte inferior y, a continuación, continúa rellenando elementos hasta
que se agotan los elementos. Por hacer un símil con css podría equivaler a un
 display: flex; flex-wrap: wrap; .

Si especificamos un maxItemsInEachRow al FlowRow , este se rellenará la fila hasta que se acaben
los elementos o se llegue al número máximo de elementos por fila que hemos especificado y
saltará a la siguiente si queda alguno.

Si especificamos un RowScope.weight a sus elementos, este peso se aplicará en función de los
elementos que le acompañen en la misma fila.

Por ejemplo, supongamos las siguientes condiciones:

Añadimos 12 elementos a nuestro FlowRow .
Todos tienen un peso de 0.5f .
El máximo de elementos por fila es de 5 .
👁️ Nuestro FlowRow tiene el suficiente ancho para albergar 5 elementos.

@Composable

@ExperimentalLayoutApi

inline fun FlowRow(

 modifier: Modifier = Modifier,

 horizontalArrangement: Arrangement.Horizontal = Arrangement.Start,

 verticalArrangement: Arrangement.Vertical = Arrangement.Top,

 maxItemsInEachRow: Int = Int.MAX_VALUE,

 content: @Composable FlowRowScope.() -> Unit

): Unit

2

31/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#FlowRow(androidx.compose.ui.Modifier,androidx.compose.foundation.layout.Arrangement.Horizontal,androidx.compose.foundation.layout.Arrangement.Vertical,kotlin.Int,kotlin.Function1)

entonces...

En las dos primeras filas se colocarán 5 elementos cada una el peso total será de
 0.5 x 5 = 2.5 . Por tanto, el anchó de cada elemento ocupará 0.5 / 2.5 = 0.2 esto es un
20% del ancho de la fila.
En la última fila se colocarán 2 elementos, que son los que quedan. Por tanto, el peso total
será de 0.5 x 2 = 1 por lo que el anchó de cada elemento ocupará 0.5 / 1 = 0.5 esto es
un 50% del ancho de la fila.

Esta es solo una de los cientos de casuísticas que se pueden dar. Por lo que te recomiendo que
pruebes y experimentes con este layout.

Ejemplo: Vamos a ver algunas combinaciones que puedes descargar del siguiente fuente
FlowRow.kt.

En este caso mostraremos la pantalla de previsualización que nos ha devuelto el código de
ejemplo.

Para crear esta composición hemos usado el siguiente código de Preview con un área de 900 dp
x 600 dp. Además, los FlowRow q la izquierda tienen un área de 500 dp x 300 dp y los a la
derecha de 400 dp X 300 dp.

32/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/FlowRow.kt

El código del preview sería ...

@Preview(

 showBackground = true, name = "FlowColumnYRowPreview",

 device = "spec:width=900dp,height=600dp,dpi=480"

)

@Composable

fun FlowColumnYRowPreview() {

 ProyectoBaseTheme {

 Column()

 {

 Row()

 {

 FlowRowConPesos(500.dp, 300.dp)

 FlowRowConPesos(400.dp, 300.dp)

 }

 Row()

 {

 FlowRowSinPesos(500.dp, 300.dp)

 FlowRowSinPesos(400.dp, 300.dp)

 }

 }

 }

}

En los FlowRow con pesos de la parte superior tendremos:

1. maxItemsInEachRow = 5
2. horizontalArrangement = Arrangement.Start Sin efectos al intentar todos los elementos

expandirse al máximo ancho.
3. verticalArrangement = Arrangement.SpaceEvenly Rellena el espacio verticalmente entre las

filas de elementos de forma equitativa.
4. verticalAlignment = Alignment.CenterVertically De cada elemento de forma personalizada

al centro verticalmente en la fila que le corresponde.
5. Todos los elementos intentan expandirse al máximo en el eje X con fillMaxWidth() .
6. Todos los elementos tienen un peso de 1 / 10 = 0.1f por lo que si hay 5 elementos en la fila

cada uno ocupará 0.1 / 0.5 = 0.2 esto es un 20% del ancho de la fila.

33/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

El código que genera los FlowRow con pesos de la parte superior sería ...

@OptIn(ExperimentalLayoutApi::class)

@Composable

fun FlowRowConPesos(ancho: Dp, alto: Dp) {

 val maxHijosPorFila = 5

 val filas = 2

 val hijos = maxHijosPorFila * filas

 FlowRow(

 modifier = Modifier.size(ancho, alto),

 horizontalArrangement = Arrangement.Start,

 verticalArrangement = Arrangement.SpaceEvenly,

 maxItemsInEachRow = maxHijosPorFila

) {

 TextoConForma(

 modifier = Modifier.fillMaxWidth(),

 texto = "Pesos iguales evenly\n"

 + "Ancho = ${ancho} ${maxHijosPorFila} items x fila",

 color = Color.LightGray

)

 for (i in 1..ceil(hijos / 2f).toInt()) {

 TextoConForma(

 modifier = Modifier

 .fillMaxWidth()

 .weight(1 / hijos.toFloat())

 .align(Alignment.CenterVertically),

 texto = "IES",

 color = MaterialTheme.colorScheme.tertiary

)

 TextoConForma(

 modifier = Modifier

 .fillMaxWidth()

 .weight(1 / hijos.toFloat()),

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary

)

 }

 }

}

En los FlowRow sin pesos de la parte inferior tendremos:

1. maxItemsInEachRow = 7

34/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

2. horizontalArrangement = Arrangement.Start Ahora sí tiene efectos.
3. verticalArrangement = Arrangement.spacedBy(5.dp) Rellena el espacio verticalmente entre las

filas de elementos con un espacio de 5 dp.
4. Al ser 7 elementos en el FlowRow inferior-izquierdo le caben los 7 y los alinea a Start. Pero en

el FlowRow inferior-derecho solo caben 6 elementos por lo que hay una fila más donde coloca
los 2 que le quedan.

El código que genera los FlowRow con pesos de la parte superior sería ...

@OptIn(ExperimentalLayoutApi::class)

@Composable

fun FlowRowSinPesos(ancho: Dp, alto: Dp) {

 val maxHijosPorFila = 7

 val filas = 2

 val hijos = maxHijosPorFila * filas

 FlowRow(

 modifier = Modifier.size(ancho, alto),

 horizontalArrangement = Arrangement.Start,

 verticalArrangement = Arrangement.spacedBy(5.dp),

 maxItemsInEachRow = maxHijosPorFila

) {

 TextoConForma(

 modifier = Modifier.fillMaxWidth(),

 texto = "Sin pesos spaced by 5dp\n"

 + "Ancho = ${ancho} ${maxHijosPorFila} items x fila",

 color = Color.LightGray

)

 for (i in 1..ceil(hijos / 2f).toInt()) {

 TextoConForma(

 texto = "IES",

 color = MaterialTheme.colorScheme.tertiary

)

 TextoConForma(

 texto = "Balmis",

 color = MaterialTheme.colorScheme.inversePrimary

)

 }

 }

}

35/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Consideraciones importantes

 FlowRow y FlowColumn no están pensados para representar datos de una fuente de
datos. Para eso tenemos LazyColumn , LazyRow y LazyGrid que trataremos en temas
posteriores.
Su uso está pensado para diseños dinámicos o responsive, esto es, que se ajusten a
las dimensiones de la pantalla de forma fluida. Por ejemplo: Queremos que ciertos
elementos se distribuyan al girar la pantalla sin hacer un diseño específico o nuestro
diseño tiene que adaptarse a Móvil, Android Tv o Desktop.
En ocasiones los cálculos pueden ser complejos y no se obtiene el resultado
esperado. Por lo que es recomendable probar y experimentar con los diferentes
parámetros que nos ofrece.



36/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Imágenes
Documentación oficial: Imágenes en Jetpack Compose
Documentación oficial: Component Image Fundation Layer

Usaremos el elemento composable Image para mostrar un gráfico en la pantalla.

Encontraremos diferentes sobrecargas del composable Image que nos permitirán cargar
diferentes formas de declarar las imágenes.

@Composable

fun Image(imageVector: ImageVector, ...)

@Composable

fun Image(bitmap: ImageBitmap, ...)

@Composable

fun Image(painter: Painter, ...)

...

Formas de manejar un recurso imagen
1. Painter

Abstracción para algo que se puede dibujar. Dibuja en un área delimitada especificada y
ofrece algunos mecanismos de alto nivel que los usuarios pueden utilizar para configurar
cómo se dibuja el contenido.
Para cargar una imagen (por ejemplo: PNG, JPEG, WEBP) o un recurso vectorial del disco,
usa la API de painterResource con tu imagen de referencia.

// La opción más adecuada para obtener un recurso dibujable en Compose

val painter = painterResource(id = R.drawable.balmis)

2. ImageBitmap
Representa un mapa de bits de imagen. Para cargar una imagen (por ejemplo: PNG, JPEG,
WEBP) del disco, usa la API de imageResource definida en ImageBitmap . Podemos usar el
constructor BitmapPainter para obtener un Painter a partir de un ImageBitmap y así
asignarla a la abstracción Painter .

37/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/graphics/images
https://developer.android.com/reference/kotlin/androidx/compose/foundation/package-summary#Image(androidx.compose.ui.graphics.vector.ImageVector,kotlin.String,androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,androidx.compose.ui.layout.ContentScale,kotlin.Float,androidx.compose.ui.graphics.ColorFilter)
https://developer.android.com/reference/kotlin/androidx/compose/foundation/package-summary#Image(androidx.compose.ui.graphics.vector.ImageVector,kotlin.String,androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,androidx.compose.ui.layout.ContentScale,kotlin.Float,androidx.compose.ui.graphics.ColorFilter)
https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/painter/Painter
https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/ImageBitmap

val imageBitmap : ImageBitmap = ImageBitmap.imageResource(id = R.drawable.balmis)

val painterBitmap = remember(imageBitmap) { BitmapPainter(imageBitmap) }

Para pasar de Bitmap de Android a ImageBitmap podemos usar el método asociado
 asImageBitmap() .
Pasar de ImageBitmap de Compose a Bitmap de Android podemos usar el método asociado
 asAndroidBitmap() .

val bitmap : Bitmap = ...

val imageBitmap : ImageBitmap = bitmap.asImageBitmap()

3. ImageVector
Representa un vector de imagen. Para cargar un recurso vectorial del disco, usa la API de
 vectorResource definida en ImageVector . Además, podemos usar la función
 rememberVectorPainter para obtener un PainterVector a partir de un ImageVector y así
asignarla a la abstracción Painter además de recordarla en la recomposición.

val imageVector : ImageVector = ImageVector.vectorResource(id = R.drawable.balmis)

val painterVector : PainterVector = rememberVectorPainter(imageVector)

Podemos también cargar un icono de los proporcionados por Material como imagen vectorial.

var painterFavorite = rememberVectorPainter(image = Icons.Filled.Favorite)

38/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/vector/ImageVector

Parámetros más comunes
Tendremos más parámetros según la sobrecarga de la función composable Image entre los que
podemos destacar:

Un texto contentDescription que se mostrará si no se puede cargar la imagen. La
herramienta de accesibilidad TalkBack lee la descripción del contenido, por lo que debes
asegurarte de que el texto sea significativo si se lee en voz alta y se traduce.
Modificadores con Modifier . (Veremos alguno de utilidad en los ejemplos)
Un Alignment que especifica cómo se alinea la imagen dentro de su espacio asignado.
Un alpha que especifica la transparencia de la imagen. Es un valor entre 0.0f y 1.0f .
Un ColorFilter que especifica un filtro de color para aplicar a la imagen.
Un ContentScale que especifica cómo se escala la imagen dentro de su espacio asignado.
Sus valores pueden ser...

 Crop : Escala la imagen para que llene el espacio asignado, recortando la imagen si es
necesario.
 FillBounds : Escala la imagen para que llene el espacio asignado, sin recortar la imagen.
 Fit : Escala la imagen para que quepa dentro del espacio asignado, sin recortar la
imagen.
 FillHeight : Escala la imagen para que llene la altura del espacio asignado, sin recortar
la imagen.
 FillWidth : Escala la imagen para que llene el ancho del espacio asignado, sin recortar la
imagen.
 Inside : Escala la imagen para que quepa dentro del espacio asignado, recortando la
imagen si es necesario.
 None : No escala la imagen.

39/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

Cargando Imágenes de forma asíncrona (Coil)

Para cargar imágenes de forma asíncrona podemos usar la librería Coil. Esta librería nos permite
cargar imágenes desde una URL, un archivo o un recurso de Android. Además, nos permite
transformar la imagen antes de mostrarla, por ejemplo, para redimensionarla o aplicarle un filtro.
Además, también nos permite cachear las imágenes para que no tengamos que volver a
descargarlas.

Veamos un ejemplo de como cargar una imagen desde una URL:

1. Añadimos la dependencia de Coil con Gradle:

// En libs.version.toml

[versions]

coil = "2.7.0"

[libraries]

coil-compose = { group = "io.coil-kt", name = "coil-compose", version.ref = "coil" }

// En el build.gradle.kt (del módulo app)

dependencies {

 ...

 implementation(libs.coil.compose)

}

2. Puesto que vamos a cargar una imagen desde una URL, debemos añadir el permiso de
acceso a Internet en el AndroidManifest.xml :

Nota

Coil es la librería recomendada por Google para cargar imágenes en Android con Jetpack
Compose.
Sin embargo, existen muchas otras como Glide, Landscapist, etc.



40/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://coil-kt.github.io/coil/compose/
https://coil-kt.github.io/coil/compose/
https://bumptech.github.io/glide/
https://skydoves.github.io/landscapist/

3. Ahora ya simplemente deberemos usar el composable AsyncImage que pos proporciona Coil
con unas propiedades muy similares a las de Image por ejemplo:

import coil.compose.AsyncImage

@Preview

@Composable

fun Imagen() = AsyncImage(

 model = "https://pmdmiesbalmis.github.io/B3_Capa_UI/assets/imagenes/logo.png",

 contentDescription = null,

 contentScale = ContentScale.Crop,

 modifier = Modifier

 .size(200.dp)

 .border(2.dp, MaterialTheme.colorScheme.primary)

)

Fíjate que donde pone model es donde especificamos la URL de la imagen. Pero también
podríamos hacer model = R.drawable.imagen o model = File("ruta de la imagen") , etc. (Ver
documentación).

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools">

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

 <uses-permission android:name="android.permission.INTERNET"/>

 <application>

 ...

 </application>

4

6

41/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

https://coil-kt.github.io/coil/getting_started/#supported-data-types
https://coil-kt.github.io/coil/getting_started/#supported-data-types

🎓 Caso de estudio:

Vamos a redibujar nuestra cabecera, pero esta vez en lugar de dibujar la imagen de fondo con
un Brush , vamos a usar un componente Image que sería más adecuado. Para seguir los
siguientes ejemplos necesitaremos descargar el siguientes recursos y arrastrarlos a
 res/drawable : balmis.png que ya hemos usado y logo.png que usaremos en los ejemplos.
También, pudes descargarte el código de los ejemplos en EjImagenBanner.kt.

La imagen de nuestro ejemplo será la siguiente ...

Definimos una función sombra que ya hemos usado en este tema.

Voy modularizar el UI en varios composables y de paso vamos a pasar el lambda de un
composable como parámetro.

private fun sombra() = Shadow(

 color = Color.Gray,

 offset = Offset(4f, 4f),

 blurRadius = 4f

)

42/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/balmis.png
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/logo.png
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/EjImagenBanner.kt

@Composable

// Pasamos un lambda como parámetro con el composable que

// renderizará el contenido de la cabecera

fun Cabecera5(contenido: @Composable () -> Unit = {}) {

 // Definimos una caja donde superponderemos la

 // imagen de fondo y el contenido alineados al centro.

 Box(

 modifier = Modifier.fillMaxWidth(),

 contentAlignment = Alignment.Center

) {

 // Ponemos la imagen de fondo de la fachada del Balmis

 Image(

 modifier = Modifier

 .fillMaxWidth()

 .border(

 width = 2.dp,

 color = MaterialTheme.colorScheme.primary,

 shape = MaterialTheme.shapes.medium

)

 // Recortamos la iamagen con el shape definido en Tema (Material).

 .clip(MaterialTheme.shapes.medium),

 // Obtenemos Painter del recurso de imagen de la fachada.

 painter = painterResource(id = R.drawable.balmis),

 contentDescription = "Fachada del IES Balmis",

 // La imagen se escala para que ocupe todo el espacio recortándose

 contentScale = ContentScale.Crop

)

 // Superponemos el contenido de la cabecera a la imagen.

 contenido()

 }

}

A continuación definimos un composable Contenido que será el contenido de la cabecera que
pasaremos por parámetro. En este caso, será una fila con el logo y el texto del IES Balmis de
ejemplos anteriores.

43/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

@Composable

private fun Contenido() {

 // El cóntenido irá en una fila con el logo 20% y el texto 80%.

 // Además, lo alinearemos verticalmente al centro.

 Row(

 // Debemos intentar ocupar todo el espacio en ancho.

 modifier = Modifier.fillMaxWidth(),

 horizontalArrangement = Arrangement.Start,

 verticalAlignment = Alignment.CenterVertically

) {

 Image(

 modifier = Modifier.weight(0.2f), // Ocupa en ancho el 20% de la fila

 painter = painterResource(id = R.drawable.logo),

 contentDescription = "Logo IES Balmis",

 // Cambiamos el color de la imagen para usar el color primario

 // de nuestro tema de Material.

 colorFilter = ColorFilter.tint(

 MaterialTheme.colorScheme.primary

),

 // La imagen se escala para que ocupe todo el espacio recortándose.

 // Esto es, El alto de la imagen de fondo y el ancho del 20% de la fila.

 contentScale = ContentScale.Crop

)

 Text(

 text = "IES Doctor Balmis",

 modifier = Modifier

 .scale(1.5f) // Escalamos el texto al 150%

 .weight(0.8f), // Ocupa en ancho el 80% de la fila

 style = MaterialTheme.typography.titleLarge.copy(

 shadow = remember { sombra() }

),

 color = MaterialTheme.colorScheme.primary,

 // Alienamos el texto al centro del 80% que ocupa en la fila.

 textAlign = TextAlign.Center

)

 }

}

Por último, en nuestro @Preview definimos el contenido de la cabecera con el composable
 Contenido .

44/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

@Preview(showBackground = true, name = "ImagenesPreview")

@Composable

fun ImagenesPreview() {

 ProyectoBaseTheme {

 Cabecera5 { Contenido() }

 }

}

45/45 PMDM 2º DAM Tema 3.2 - Maquetando nuestra UI Rev. 01/10/2024 IES Doctor Balmis

