Tema 3.2 - Maquetando nuestra Ul

Descargar estos apuntes pdf o html

indice

» [ntroduccién
= Conceptos iniciales
¥ Modificadores de Compose
= Unidades de medida
= El orden de los modificadores es importante
= Combinando modificadores
¥ Profundizando en el trabajo con Textos
= Creando un estilo de texto
= Establecer varios estilos sobre un mismo texto
= Brushes (Pinceles)
¥ Layouts basicos
» Surface
= Box
¥ Column y Row
= Pesos en Column y Row
= FlowColumn y FlowRow
¥ Imagenes
= Formas de manejar un recurso imagen
= Parametros mas comunes
= Cargando Imagenes de forma asincrona (Coil)

1/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024

IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_2_maquetando_nuestra_UI.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/Tema_3_2_maquetando_nuestra_UI.html

Introduccion

En el primer tema ya hemos hablado de algunos componentes basicos de la capa de Runtime

COMO Son State , remember , @Composable etc.

En este tema vamos a ver como maquetar nuestro Ul utilizando diferentes componentes de
compose definidos en las capas de la libreria que hablamos en el anterior tema, como son la
capa de Ul, Fundation y Material.

2" Nota

Muchos de los elementos de disefio no se pueden ver aislados unos de otros. Por lo que en
muchos ejemplos vamos a usar elementos que seran explicados mas adelante en
profundidad.

Conceptos iniciales

Ya hemos visto que las funciones 'Composables' pueden tener diferentes elementos, como por

ejemplo dos textos.

@Preview (showBackground = true, name = "CabeceraPreview")
@Composable
fun Cabecera() {
// Sin contenedor los componentes se superponen
Text("IES Doctor Balmis")
Text("Médulo PMDM 22 DAM")

S dido teBdNhES DAM

Necesitaremos, en primer lugar, de algun tipo de layout que nos permita poner los elementos uno
al lado de otro. Como por ejemplo el '‘composable' column que los ird poniendo uno debajo de otro

en vertical.

2/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/package-summary
https://developer.android.com/jetpack/compose/layering?hl=es-419

@Preview (showBackground = true, name = "CabeceraPreview")
@Composable
fun Cabecera() {
Column {
Text("IES Doctor Balmis")
Text("Médulo PMDM 22 DAM")

IES Doctor Balmis
Modulo PMDM 2° DAM

Ademas, muchos de los elementos de disefio tienen parametros que nos permiten modificar su
comportamiento. Por ejemplo, en el componente Text podemos ver que son bastantes.

@Composable

fun Text(
text: String,
modifier: Modifier = Modifier,
color: Color = Color.Unspecified,
fontSize: TextUnit = TextUnit.Unspecified,
fontStyle: FontStyle? = null,
fontWeight: FontWeight? = null,
fontFamily: FontFamily? = null,

style: TextStyle = LocalTextStyle.current,

Sin embargo, la gran mayoria de ellos no son obligatorios y tienen un valor por defecto asignado
en la propia declaracion. Ademas, en varios de estos componentes, para modificarlos deberiamos
hacerlo a través del tema de la aplicaciéon y sus estilos.

Por ejemplo, si queremos cambiar el color y tamano del texto, deberiamos hacerlo a través del
tema base.

3/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

@Preview(showBackground = true, name = "CabeceraPreview")
@Composable
fun Cabecera() {
ProyectoBaseTheme {
Column {
Text(
text = "IES Doctor Balmis",
style = MaterialTheme.typography.titlelLarge,
color = MaterialTheme.colorScheme.primary

)
Text(

text = "Mdédulo PMDM 22 DAM",
style = MaterialTheme.typography.titleSmall,
color = MaterialTheme.colorScheme.secondary

IES Doctor Balmis
Maodulo PMDM 2° DAM

Al poner ProyectoBaseTheme cCOmo composable raiz de la aplicacion, todos los elementos que
estén dentro de él, heredaran sus estilos. Por tanto, esto no deberemos hacerlo en cada
componente, sino siempre en la raiz de nuestro arbol de composables.

Los estilos y colores los hemos puesto a través de las definiciones de MaterialTheme , a través de
ella estaremos accediendo a las definiciones del tema de Material Design que es el que viene por
defecto en Compose y define ProyectoBaseTheme .

De esta manera, toda nuestra aplicacion tendra un aspecto coherente y consistente y podremos
cambiarlo facilmente sin tener que ir componente a componente.

Por ultimo, tendremos una serie de modificadores que nos permitiran modificar el espacio que
ocupan los componentes, como el padding 0 la alineacion, incluso comportamientos como el de
clickable . No obstante, como veremos mas adelante, estos modificadores dependeran del tipo
de layout que estemos usando o las caracteristicas de propio componente.

4/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

@Preview(showBackground = true, name = "CabeceraPreview")
@Composable
fun Cabecera() {
ProyectoBaseTheme {
Column(

modifier = Modifier

.fillMaxWidth()
.border(
width = 2.dp,

color = MaterialTheme.colorScheme.primary,

shape = MaterialTheme.shapes.medium

)
.padding(12.dp)
) {
Text(
text = "IES Doctor Balmis",
style = MaterialTheme.typography.titlelLarge,
color = MaterialTheme.colorScheme.primary
)
Text(
modifier = Modifier.align(Alignment.End),
text = "Médulo PMDM 22 DAM",
style = MaterialTheme.typography.titleSmall,
color = MaterialTheme.colorScheme.secondary
)
}

|IES Doctor Balmis
Modulo PMDM 2° DAM

En los siguiente puntos vamos a hablar un poco mas en profundidad de cada uno de estos
conceptos: 'layouts’, 'modifiers’ y ‘Material Design', este ultimo ya en el tema siguiente.

5/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

¢) Importante

VVamos a suponer que previsualizamos los ejemplos siguientes con el proyecto
ProyectoBase que hemos creado anteriormente y usamos por tanto el tema

ProyectoBaseTheme . Para no repetir el codigo de previsualizacién en cada ejemplo, vamos a
usar la siguiente plantilla:

@Preview(showBackground = true, name = "Test")
@Composable
fun TestPreview() {

ProyectoBaseTheme {

// Aqui ird el componente a probar

6/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Modificadores de Compose

Documentacion oficial: Modificadores de Compose
Video Espaiol (DevExperto): Modificadores de Compose

Estos estan definidos en la capa de Ul y nos permiten modificar el comportamiento de otros

componentes de capas superiores.

Los modificadores te permiten decorar o aumentar un elemento composable. Por ejemplo,

puedes hacer todo esto:

Cambiar el tamaio, el disefo y el aspecto del elemento composable e incluso como se
debe comportar dentro de su contenedor o layout padre.

Agregar interacciones de nivel superior, (p. €j., hacer que un elemento sea apto para hacer
clic, desplazable, arrastrable o ampliable).

Agregar informacién (p. €j., etiquetas de accesibilidad)

Procesar entradas del usuario.

Existen muchos y ademas dependeran, como hemos comentado, de nuestro contenedor o el

scope en que nos encontremos. Por ese motivo los iremos viendo poco a poco a lo largo del curso.

Sin embargo, podemos destacar los mas comunes:

7/45

background - Dibuja una forma de color sdlido detras del composable.

clickable - Especifica un controlador que se llamara cuando se haga clic en el composable.
También causa un efecto de ondulacion cuando se realiza el clic.

clip - Recorta el contenido composable a una forma especificada.

fillMaxHeight - El composable se dimensionara para ajustarse a la altura maxima permitida
por su padre.

fillmaxSize - El composable se dimensionara para ajustarse a la altura y ancho maximos
permitidos por su padre.

fillmaxWwidth - El composable se dimensionara para ajustarse al ancho maximo permitido por
su padre.

offset - Posiciona el composable a la distancia especificada desde su posicion actual a lo
largo del eje x e y.

padding - Agrega espacio alrededor de un composable. Se pueden utilizar parametros para
aplicar espaciado a los cuatro lados o para especificar un relleno diferente para cada lado.
rotate - Rota el composable en su punto central por un niumero especificado de grados.
scale - Aumenta o reduce el tamafo del composable por el factor de escala especificado.

PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/modifiers?hl=es-419
https://www.youtube.com/watch?v=jej6DiUAlvk
https://developer.android.com/reference/kotlin/androidx/compose/ui/package-summary

e scrollable - Habilita el desplazamiento para un composable que se extiende mas alla del
area visible del disefio en el que esta contenido.

e size - Se utiliza para especificar la altura y el ancho de un composable. En ausencia de una
configuracion de tamafio, el composable se dimensionara para acomodar su contenido
(denominado envoltura).

Unidades de medida

o dp: Este es un valor de dimension que representa pixeles independientes de la densidad
de pixeles (dpi) del dispositivo. Por ejemplo:
o 1 pixel en un dispositivo de densidad de pantalla de 160 dpi es igual a 1 dp.
o 1 pixel en un dispositivo de densidad de pantalla de 240 dpi es igual a 1.5 dp.
e sp: Acronimo de (Scaled Pixeles). Son como dp pero para fuentes. Ademas de tener en
cuenta la densidad en dpi, también son escalados en funcién de las preferencias de texto del

usuario.

El orden de los modificadores es importante

El orden de las funciones de los modificadores es importante. Como cada funcién realiza
cambios en el Modifier que muestra la funcién anterior, la secuencia afecta al resultado final.

Supongamos el codigo anterior de la cabecera donde aplicabamos los modificadores en el

siguiente orden:

1. fillmaxwWidth - Ajustarse al ancho maximo permitido por su padre.
2. border - Dibuja un borde alrededor del composable de un color y ancho especificados.
3. padding - Agrega espacio alrededor de un composable de 12 dp .

8/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/ui/unit/Dp
https://developer.android.com/training/multiscreen/screendensities?hl=es-419
https://developer.android.com/training/multiscreen/screendensities?hl=es-419
https://developer.android.com/jetpack/compose/modifiers?hl=es-419#order-modifier-matters

@Composable
fun Cabecera() {
Column(

modifier = Modifier

.fillMaxWidth()
.border(
width = 2.dp,

color = MaterialTheme.colorScheme.primary,

shape = MaterialTheme.shapes.medium

)
.padding(12.dp)

) A

. // Codigo omitido por abreviar

Pero, ¢ Qué sucede si aplicamos el padding antes de dibujar el borde?

Si te fijas en la imagen de resultado el borde se dibuja por encima del padding. Esto es porque el
borde se dibuja en el borde del composable que en ese momento es el que tiene el tamafo
original. Por lo que el padding se aplica después y por tanto el borde se dibuja por encima.

IES Doctor Balmis [ES Doctor Balmis

Médulo PMDM 2° DAM Mdédulo PMDM 2° DAJ

Este es un aspecto a tener en cuenta si en alguin momento no obtenemos el resultado esperado.

9/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Combinando modificadores

Los modificadores se pueden combinar para crear un unico modificador que se puede reutilizar en
varios lugares. Por ejemplo, queremos anadir el borde y padding en varios lugares y no queremos
repetir cédigo de tal manera que al cambiarlo en un sitio se cambie en todos.

Podemos definir una funcién de extensioén para el tipo Modifiers de la siguiente manera:

private fun Modifier.miBordeYPadding(
color: Color = Color.Transparent,
shape: Shape
) = border(width = 2.dp, color = color, shape = shape).padding(12.dp)

@Composable
fun Cabecera() {
Column(

modifier = Modifier

.fillMaxWidth()
.miBordeYPadding()
) A
. // Coédigo omitido por abreviar
}
}
¢) Importante

Si vamos a utilizar este modificador en varios sitios, lo mejor es definirlo en un archivo
separado en algun paquete de utilidades en la jerarquia de paquetes pero dentro el paquete
de ui . Ademas, todas las funciones de extension sobre Modifiers deben permanecer
coémo publicas para ser accesibles. Recuerda ademas, que cada vez que uses un
modificador compuesto definido por ti, estas creando una dependencia fuerte entre el
componente y el modificador fuera de las librerias de la capa de compose.ui . Por lo que
deberias pensar si es necesario 0 no.

Otra forma de hacerlo es con Modifier.then() que nos permite combinar modificadores de la

siguiente manera.

10/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Imaginemos nuestro ‘composable’ cabecera que va a ser usado en varios sitios, pero va a tener

un background diferente en cada uno de ellos.

Podemos hacer lo siguiente ...

// Le pasamos un modificador a nuestro componente
// un modificador que se aplicara antes que cualquier otro
// le pasaremos el valor por defecto Modifier si no queremos
// aplicar ningun modificador
@Composable
fun Cabecera(modifier: Modifier = Modifier) {
Column(
// Asignamos el modificador y luego el operador then
// para que se aplique después de los modificadores recibidos.

modifier = modifier.then(

Modifier
.fillMaxWidth()
.miBordeYPadding()
)
) A
. // Coédigo omitido por abreviar
}

Si modificamos nuestro ‘preview’ de la siguiente manera para probarlo...

11/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

@Preview(showBackground = true, name = "Test")
@Composable
private fun Test() {
ProyectoBaseTheme {
Column {
// Sin aplicar ninguin modificador
Cabecera()
// Cambiando el color de nuestra cabecera a Cyan
Cabecera(modifier = Modifier.background(Color.Cyan))
// Escalando la cabecera a 0.75 (75% del tamafho original)
// y después aplicando el background Amarillo.
Cabecera(
modifier = Modifier
.scale(0.75f)
.background(Color.Yellow)

Obtendremos el siguiente resultado

IES Doctor Balmis
Mddulo PMDM 2° DAM

[IES Doctor Balmis

Médulo PMDM 2° DAM]

12/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Profundizando en el trabajo con Textos

e Documentacion oficial: Textos en Compose
e Puedes bajar el cédigo de los ejemplo de EjTextosBanner.kt

Creando un estilo de texto

Aunque no es lo recomendado y no corresponde al trabajo de un desarrollador, puede darse
el caso que al estar creando uno de nuestros componentes, queramos crear un estilo de texto
fuera de los definidos por defecto en MaterialTheme . Incluso en las adaptaciones de los mismos

que podamos hacer en com.holamundo.ui.theme » Theme.kt

¢) Importante

En este caso ya no podremos hacer una funcién de extensién sobre Textstyle para
modificar una de sus propiedades porque son objetos inmutables. Ademas, deberemos de
llevar cuidado de aplicar sobre el objeto que modifique el estilo el calificativo
remember { objeto } para que no se cree en cada composicion.

13/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/text?hl=es-419
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/EjTextosBanner.kt

14/45

private fun
color =
offset =
blurRadi

@Composable
fun Cabecera
Column(

modi

sombra() = Shadow(
Color.Gray,
Offset(4f, 4f),
us = 4f

(modifier: Modifier = Modifier) {

fier = modifier.then(
Modifier.fillMaxWidth().miBordeYPadding()

(
text = "IES Doctor Balmis",

// Copiamos (por ser inmutable) del estilo que aplicdbamos de MaterialTheme
// y le asignamos un nuevo valor a la propiedad sombra.
style = MaterialTheme.typography.titlelLarge.copy/(
// 0JO!! Para no crear el objeto sombra en cada composicion le
// aplicaremos el modificador remember.
shadow = remember { sombra() }
)>

color = MaterialTheme.colorScheme.primary

. // Codigo omitido por abreviar

)

) {
Text
)

¥

IES Doctor Balmis
Modulo PMDM 2° DAM

PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Establecer varios estilos sobre un mismo texto

En ocasiones querremos que partes de un mismo texto tengan diferentes estilos sin tener que
crear varios textos dentro de un layout Rrow . Para ello podemos usar la funcién AnnotatedString
que nos permite establecer diferentes estilos a diferentes partes de un mismo texto.

AnnotatedString es una clase de datos que contiene lo siguiente:

e Unvalor Text

o Una List de spanstyleRange , equivalente al estilo intercalado con el rango de posicion dentro
del valor de texto

o Una List de ParagraphStyleRange que especifica |la alineacion del texto, la direccion del texto,
la altura de la linea y el estilo de sangria del texto.

TextStyle ya lo hemos usado y es para uso en el elemento componible Text, mientras que
SpanStyle y ParagraphStyle se usan en AnnotatedString.

Ademas, siempre vamos a poder convertir un TextStyle €n un SpanStyle Y UN ParagraphStyle
con la funciones toSpanStyle() y toParagraphStyle() respectivamente.

La diferencia entre SpanStyle y ParagraphStyle es que ParagraphStyle se puede aplicar a un
parrafo completo, mientras que SpanStyle puede aplicarse a nivel de caracter. Una vez que una
parte del texto se marca con un ParagraphStyle, esa parte queda separada del resto como si
tuviera feeds de lineas al principio y al final. Por poner un simil, es como si aplicaramos a ese texto

las etiquetas <p>...</p> de HTML.

2" Nota

No vamos a ver todas las combinaciones y usos por su complejidad. Pero puedes visitar
este enlace a la documentacion oficial.

15/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/ui/text/AnnotatedString
https://developer.android.com/reference/kotlin/androidx/compose/ui/text/SpanStyle
https://developer.android.com/reference/kotlin/androidx/compose/ui/text/ParagraphStyle
https://developer.android.com/jetpack/compose/text?hl=es-419#multiple-styles

16/45

@Composable
fun Cabecera(modifier: Modifier = Modifier) {
Column(
modifier = modifier.then(
Modifier
.fillMaxWidth()
.miBordeYPadding(
color = MaterialTheme.colorScheme.primary,

shape = MaterialTheme.shapes.medium

) A

. // Coédigo omitido por abreviar
Text(

modifier = Modifier.align(Alignment.End),

style = MaterialTheme.typography.titleSmall,

color

MaterialTheme.colorScheme.secondary,
text = buildAnnotatedString {
append("Médulo ")
withStyle(
style = SpanStyle(
fontSize = MaterialTheme.typography.titleMedium.fontSize,

color = MaterialTheme.colorScheme.inversePrimary

) {
append("PMDM") // Aplicamos el estilo solo a PMDM

}
append(" 22 DAM")

1)

IES Doctor Balmis
Modulo 2°DAM

PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Brushes (Pinceles)

e Documentacion oficial: Pinceles en Compose

Aunque este también es un tema mas avanzado y especifico de disefiadores graficos. Vamos a
verlo por encima para que sepas que existe y puedas usarlo en caso de que tengas algun pincel
definido en el tema que quieras usar.

En Compose, los pinceles se utilizan para pintar formas y trazos en un lienzo o canvas. Pero
también los podemos usar para pintar el fondo de un composable como un layout a través
del modificador background .

Por ejemplo, si afiadimos un pincel a nuestra cabecera.

@Composable
fun Cabecera(modifier: Modifier = Modifier) {
// Creamos el objeto pincel con remember para que no se cree en cada composicion.
val colorI = MaterialTheme.colorScheme.primaryContainer
val colorF = MaterialTheme.colorScheme.tertiaryContainer
val pincel = remember { Brush.horizontalGradient(listOf(colorI, colorF)) }
Column(
modifier = modifier.then(
Modifier
// Aplicamos el pincel al background al principio del modificador.
// Recuerda que el orden importa.
.background(pincel)
.fillMaxWidth()
.miBordeYPadding(
color = MaterialTheme.colorScheme.primary,

shape = MaterialTheme.shapes.medium

Obtendremos el siguiente resultado ...

|IES Doctor Balmis
Modulo 2° DAM

17/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/develop/ui/compose/graphics/draw/brush

18/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Supongamos que queremos pintar un fondo de un texto o un layout con una imagen a modo de
pincel. Podemos hacerlo de la siguiente manera...

Descarga la imagen balmis.png y ponla en la carpeta res/drawable de tu proyecto.

@Composable
fun Cabecera(modifier: Modifier = Modifier) {
// En este caso no podemos usar remember porque imageResource
// es una funcidn composable y no puede ser llamada desde una funcidn remember.
val pincel = ShaderBrush(ImageShader (ImageBitmap.imageResource(id = R.drawable.balmis)))
Column(
modifier = modifier.then(
Modifier
.background(pincel)
.fillMaxWidth()
.miBordeYPadding(
color = MaterialTheme.colorScheme.primary,

shape = MaterialTheme.shapes.medium

) A

. // Coédigo omitido por abreviar

Obtendremos el siguiente resultado ...

IES Doctor Balmis

Méddulo 2° DAM

¢) Importante

El usar una imagen como pincel es mas util para pintar textos que para pintar layouts. Ya
que en el caso de los layouts, la imagen se repite en el eje x e y. Por lo que si el layout es
mas grande que la imagen, se vera la imagen repetida. En el caso de querer que el layout
tenga un fondo con una imagen, lo mejor es usar un layout Box y asignarle un componente
Image de fondo, sobre el que tendremos un mejor control de visualizacion como veremos en
el siguiente tema.

19/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/balmis.png

Layouts basicos

Documentacion oficial: Conceptos basicos de diseno

Video en Inglés (Android Developers): Lista de reproduccion

Video en Inglés (Android Developers): Workshop about basic layouts in Compose

Video en Espariol (DevExperto): Box, Column y Row en Jetpack Compose

Los layouts son los encargados de distribuir los elementos de nuestra Ul. En Compose, los
layouts son también composables y por tanto, podemos anidarlos unos dentro de otros.

Los basicos estan definidos en la capa de Fundation y son los siguientes:

Surface

Surface es un layout que nos permite afiadir una forma, color de fondo y elevacion a un
composable que no los tenga. Es decir, que podemos aplicarle un sombreado y una elevacion
como si fuera un cardview de XML.

Pero lo mas interesante, es que nos permite establecer un tema diferente al que tengamos en el
resto de la aplicacion. Ya que este se aplica automaticamente a todos su contenido. Por eso
veremos que si le asignamos un color, el color de los textos cambia en funcién del tema.

Por esta razén, vamos a usarlo para definir un componente TextoConForma que de ahora en
adelante usaremos para probar los diferentes layouts de los ejemplos.

20/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/layouts/basics?hl=es-419
https://www.youtube.com/watch?v=LjeHsvPIdpY&list=PLWz5rJ2EKKc94tpHND8pW8Qt8ZfT1a4cq
https://www.youtube.com/watch?v=kyH01Lg4G1E
https://www.youtube.com/watch?v=xyBkLS5OPtk
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary
https://developer.android.com/reference/kotlin/android/view/Surface

@Composable
fun TextoConForma(
modifier: Modifier = Modifier,
texto : String = "Hola Mundo",
color : Color = MaterialTheme.colorScheme.primary) {
Surface(
modifier = modifier.then(Modifier.padding(1l.dp)),
color = color,

shape = RoundedCornerShape(10.dp)

)
Text(
modifier = Modifier.padding(20.dp),
textAlign = TextAlign.Center,
text = texto)
}

Si usamos el siguiente preview para probarlo ...

@Preview(showBackground = true, name = "Test")
@Composable
fun Test() {
ProyectoBaseTheme {
Row {
TextoConForma(texto = "IES")
TextoConForma(texto = "Doctor™")
// Fijate en este caso como el color del texto se adapta al color de fondo.
// Esto no sucedera en otros layouts como Box o Column.
TextoConForma(
// Intentara ocupar el ancho que quede libre.
modifier = Modifier.fillMaxWidth(),
texto = "Balmis",

color = MaterialTheme.colorScheme.inversePrimary)

Obtendremos el siguiente resultado ...

I[ES Doctor Balmis

21/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Box

e Documentacion oficial (capa fundation): Box
e Video en Inglés (Stevdza-San): Box Layout
e Descarga el cédigo de los ejemplos: Box.kt

@Composable

inline fun Box(
modifier: Modifier = Modifier,
contentAlignment: Alignment = Alignment.TopStart,
propagateMinConstraints: Boolean = false,
content: @Composable BoxScope.() -> Unit

): Unit

Box se dimensionara para ajustarse al contenido, sujeto a las restricciones de su contenedor.

Cuando los hijos son mas pequefios que el padre, por defecto se posicionaran dentro del Box,
segun la alineacién de contenido. Para especificar individualmente las alineaciones de los disefios

secundarios, use el modificador BoxScope.align .

Por defecto, el contenido se medira sin las restricciones minimas entrantes de la Box, a menos que
propagateMinConstraints sea true . Si propagateMinConstraints se establece en true , el tamano
minimo establecido en la Box también se aplicara al contenido, mientras que de lo contrario el

tamafio minimo solo se aplicara al Box .

Ejemplo: Se puede establecer propagateMinConstraints a true cuando el Box tiene contenido en
el que no se pueden especificar modificadores directamente y se necesita establecer un tamaio

minimo en el contenido del Box .

Es importante tener en cuenta que, cuando el Box tiene mas de un hijo, estos se apilaran uno
encima del otro (posicionados como se explica arriba) en el orden de composicion.

En el siguiente ejemplo todos los composables TextoConForma se apilaran uno encima del otro en
el centro porque hemos indicado contentAlignment = Alignment.Center Y cOmo hemos comentado
el tamano del Box se ajustara al mas grande en la pila.

Cuidado

Si pusiéramos el TextoConForma de mayor dimension al final. este taparia a todos los
demas.

22/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#Box(androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,kotlin.Boolean,kotlin.Function1)
https://www.youtube.com/watch?v=8XVtGK2P2mE
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/Box.kt

@Composable
fun BoxApiladoAlCento() {
Box (contentAlignment = Alignment.Center) {
TextoConForma(
modifier = Modifier.size(150.dp, 150.dp),
texto = "Balmis",
color = MaterialTheme.colorScheme.inversePrimary)
TextoConForma(
texto = "Doctor",
color = MaterialTheme.colorScheme.tertiary)
TextoConForma(
texto = "IES")

Balmis

IES

En el siguiente ejemplo, hemos ajustado de forma independiente la alineacion de cada uno de los

composables TextoConForma .

23/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

@Composable
fun BoxConAlineacionesIndependientes() {
Box {
TextoConForma(
modifier = Modifier.align(Alignment.Center)
.size(150.dp, 150.dp),
texto = "Balmis",
color = MaterialTheme.colorScheme.inversePrimary)
TextoConForma(
modifier = Modifier.align(Alignment.CenterStart),
texto = "Doctor",
color = MaterialTheme.colorScheme.tertiary)
TextoConForma(
modifier = Modifier.align(Alignment.BottomEnd),
texto = "IES")

Balmis

Esto es posible, porque dentro del Composable Box tenemos acceso a un BoxScope (ambito o
alcance del Box) que nos permite aplicar modificadores a cada uno de los hijos de forma

independiente. Estos modificadores adicionales que aparecen son...

e align() : Alinea el hijo dentro del area de contenido de la Box utilizando el valor de alineacion

especificado.
e matchParentSize() : Dimensiona el hijo al que se aplica el modificador para que coincida con

el tamano de la Box principal.

¢) Importante

Piénsalo, ¢ Qué sentido tendria aplicar un modificador align() a nuestro TextoConForma Si
no estuviera dentro de algo que lo contuviera?. Ademas, tenemos que saber como dispone

24/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

nuestro contenedor a su continente para saber de que formas podemos alinear.
Esto nos va asuceder también con otros layouts como Column O Row que veremos a
continuacion.

25/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Column y Row

e Documentacion oficial (capa fundation): Column

Documentacioén oficial (capa fundation): Row

Video en Inglés (Stevdza-San): Rows and Columns

Video en Inglés (Philipp Lackner): Rows and Columns

Descarga el cédigo de los ejemplos: ColumnYRow.kt

Column Yy Row son layouts composables que colocan a sus hijos en una secuencia vertical y
horizontal respectivamente.

¢) Importante

Al igual que sucede con el Box los hijos dentro de un Column 0 un Row estaran dentro de
un ambito o alcance determinado por el ColumnScope O el RowScope respectivamente. Esto
permitira que sus hijos puedan aplicar modificadores adicionales como weight O align
relacionados con su contenedor respectivo.

Deberemos tener en cuenta que, por defecto, los elementos no se desplazan. Consulta los
modificadores Modifier.verticalScroll y Modifier.horizontalScroll para obtener este

comportamiento

Cuando el tamaiio de la columna o fila es mayor que la suma de los tamafios de sus
elementos hijos, se puede especificar un verticalArrangement O horizontalArrangement para
definir la posicion de los elementos hijos dentro.

Veamos un ejemplo de disposiciones en un Row .

Todo lo aplicado en este ejemplo se puede aplicar también a un column de forma analoga pues su

comportamiento es idéntico pero en el eje y .

26/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#Column(androidx.compose.ui.Modifier,androidx.compose.foundation.layout.Arrangement.Vertical,androidx.compose.ui.Alignment.Horizontal,kotlin.Function1)
https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#Row(androidx.compose.ui.Modifier,androidx.compose.foundation.layout.Arrangement.Horizontal,androidx.compose.ui.Alignment.Vertical,kotlin.Function1)
https://www.youtube.com/watch?v=kg7EWKOberk
https://www.youtube.com/watch?v=rHKeRWK3zL4
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/ColumnYRow.kt

// Definimos un componente Row con una propiedad horizontalArrangement
// y otra verticalAlignment para definir la disposicion de los elementos
@Composable
fun MyRow(
horizontalArrangement: Arrangement.Horizontal,
verticalAlignment : Alignment.Vertical
) {
Row(
// Aplicamos un modificador para que se ajuste al ancho maximo
// y le aplicamos un borde para que se vea el tamano que ocupa.
modifier = Modifier.fillMaxWidth().border(1.dp, Color.Gray),
horizontalArrangement = horizontalArrangement,
verticalAlignment = verticalAlignment
) A
// La primera caja en la fila me indicara la disposiciodn
// que se ha aplicado a todo el Row.
val disposicion = horizontalArrangement.toString()
TextoConForma(
texto = "Disposicidén\n" + disposicion.substring(
disposicion.indexOf('#') + 1
)s
color = Color.LightGray
)
// Ignorarda la alineaciodn vertical general del Row y se alineara
// en la parte baja del row siempre.
TextoConForma(
modifier = Modifier.align(Alignment.Bottom),
texto = "Balmis",

color

MaterialTheme.colorScheme.inversePrimary

)

// Si no indico nada la alineaciodn vertical sera la general del Row
TextoConForma(
texto = "Doctor",

color = MaterialTheme.colorScheme.tertiary

)

TextoConForma(texto = "IES")

27145 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Vamos a usar el composable MyRow para probar las diferentes disposiciones que podemos aplicar
a un Row . Para ell, definimos un composable RowsWithColumns que contendra un Column con
varios hijos MyRow .

@Composable
fun ColumnsWithRows() {
Column(
modifier = Modifier.fillMaxWidth()
) A

// Todos se disponen en horizontal al final del Row (Derecha)
// Todos se alinean en vertical arriba del Row salvo lo que
// tengan una alineacidn personalizada.
MyRow (
horizontalArrangement = Arrangement.End,
verticalAlignment = Alignment.Top
)
// Todos se disponen en horizontal espaciados de forma equitativa
// salvo el primero y el ultimo que se ajustaran a los extremos.
// Todos se alinean en vertical centrados del Row salvo lo que
// tengan una alineacion personalizada.
MyRow (
horizontalArrangement = Arrangement.SpaceBetween,
verticalAlignment = Alignment.CenterVertically
)
// Todos se disponen en horizontal espaciados de forma equitativa.
// Todos se alinean en vertical abajo del Row salvo lo que
// tengan una alineacidn personalizada.
MyRow (
horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.Bottom

Disposicion Doctor | IES
End Balmis

Disposicion
. Doctor IES
SpaceBetween Balmis
pceten M

SpaceEvenly Balmis
28/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Pesos en Column y Row

El disefio column es capaz de asignar alturas maximas respecto al alto total del Column a los
hijos, segun sus pesos proporcionados mediante el modificador ColumnScope.weight |0 mismo
sucedera con Row pero con RowScope.weight para asignar anchos maximos respecto al ancho

total del Row.

En el siguiente ejemplo vamos a definir composable RowConPesosIguales para probar los pesos
que podemos asignar a los hijos de un Row . A todos los hijos les asignaremos el mismo peso para
que se repartan el espacio disponible de forma equitativa y al ser 3 cada uno ocupara 1/3 del
espacio disponible. Ademas, fijate que todas las cajas tienen el modificador fillMaxwidth() para
intentar expandirse al maximo dentro del espacio que le corresponda segun el peso.

@Composable
fun RowConPesosIguales() {
Row(
modifier = Modifier.fillMaxWidth().border(1.dp, Color.Gray),
horizontalArrangement = Arrangement.SpaceEvenly,
verticalAlignment = Alignment.CenterVertically

) {

TextoConForma(
modifier = Modifier.fillMaxWidth().weight(1/3f),
texto = "Pesos\nlIguales",
color = Color.LightGray

)

TextoConForma(
modifier = Modifier.fillMaxWidth().weight(1/3f),
texto = "Balmis",
color = MaterialTheme.colorScheme.inversePrimary

)

TextoConForma(
modifier = Modifier.fillMaxWidth().weight(1/3f)

.align(Alignment.Top),

texto = "IES",
color = MaterialTheme.colorScheme.tertiary

)

}
}
Pesos .
lquales Balmis

29/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Realmente el valor que le pasa al modificador weight es un Float que representa el porcentaje o
tanto por uno del espacio disponible que ocupara el hijo.

En el siguiente ejemplo, las dos primeras cajas ocuparan el 0.4f o el 40% del espacio disponible y
la tercera el 0.2f o el 20%. Todos los valores deben sumar 1.0f o0 100% del espacio disponible.

@Composable
fun RowConPesosDistintos() {
Row(
modifier = Modifier.fillMaxWidth().border(1.dp, Color.Gray),

horizontalArrangement = Arrangement.SpaceEvenly

)
TextoConForma(
modifier = Modifier.fillMaxWidth().weight(@.40f),
texto = "Pesos Distintos\n40%",
color = Color.LightGray
)
TextoConForma(
modifier = Modifier.fillMaxWidth().weight(@.40f),
texto = "Balmis\n40%",
color = MaterialTheme.colorScheme.inversePrimary
)
TextoConForma(
modifier = Modifier.fillMaxWidth().weight(®@.20f),
texto = "IES\n20%",
color = MaterialTheme.colorScheme.tertiary
)
}
}
Pesos Distintos Balmis IES
40% 40% 20%

)

Si un hijo no tiene un peso asignado, se le pedira su altura o ancho preferido antes de que se
calculen los tamafios de los hijos con pesos proporcionalmente a su peso en funcion del espacio
disponible restante.

Ten en cuenta que, si el column 0 el Row tienen aplicado su modificador de scroll, se ignoraran
los pesos proporcionados, ya que el espacio disponible restante sera infinito.

30/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

FlowColumn y FlowRow

Aunque en esta seccion solo vamos a hablar de FlowRow por no extendernos. Todo lo que se diga
es aplicable a Flowcolumn de forma analoga. Ademas, este tipo de layout no son muy comunes en
aplicaciones de uso general y si posiblemente en los casos en que se necesite un disefio mas
complejo y adaptable a diferentes tamainos de pantalla.

e Documentacion oficial (capa fundation): FlowRow

@Composable

@ExperimentallLayoutApi

inline fun FlowRow(
modifier: Modifier = Modifier,
horizontalArrangement: Arrangement.Horizontal = Arrangement.Start,
verticalArrangement: Arrangement.Vertical = Arrangement.Top,
maxItemsInEachRow: Int = Int.MAX_VALUE,
content: @Composable FlowRowScope.() -> Unit

): Unit

FlowRow €s un diseno que rellena elementos de izquierda a derecha (Itr) en disefios LTR o de
derecha a izquierda (rtl) en disefios RTL y cuando se queda sin espacio, se mueve a la siguiente
"fila" o0 "linea" colocada en la parte inferior y, a continuacion, continua rellenando elementos hasta
que se agotan los elementos. Por hacer un simil con ¢ss podria equivaler a un

display: flex; flex-wrap: wrap; .

Si especificamos un maxItemsInEachRow al FlowRow , €ste se rellenara la fila hasta que se acaben
los elementos o se llegue al numero maximo de elementos por fila que hemos especificado y
saltara a la siguiente si queda alguno.

Si especificamos un RowScope.weight a sus elementos, este peso se aplicara en funcion de los

elementos que le acomparfien en la misma fila.
Por ejemplo, supongamos las siguientes condiciones:

e Anadimos 12 elementos a nuestro FlowRow .
e Todos tienen un peso de o.5f .
e E| méaximo de elementos por fila es de 5.

e @ Nuestro FlowrRow tiene el suficiente ancho para albergar 5 elementos.

31/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/foundation/layout/package-summary#FlowRow(androidx.compose.ui.Modifier,androidx.compose.foundation.layout.Arrangement.Horizontal,androidx.compose.foundation.layout.Arrangement.Vertical,kotlin.Int,kotlin.Function1)

entonces...

e En las dos primeras filas se colocaran 5 elementos cada una el peso total sera de
0.5 x 5 = 2.5 . Por tanto, el anché de cada elemento ocupara .5 / 2.5 = 8.2 esto es un
20% del ancho de la fila.

» En la altima fila se colocaran 2 elementos, que son los que quedan. Por tanto, el peso total
serade 0.5 x 2 = 1 porlo que el ancho de cada elemento ocupara e.5 / 1 = 0.5 esto es
un 50% del ancho de la fila.

Esta es solo una de los cientos de casuisticas que se pueden dar. Por lo que te recomiendo que
pruebes y experimentes con este layout.

Ejemplo: Vamos a ver algunas combinaciones que puedes descargar del siguiente fuente
FlowRow.kt.

En este caso mostraremos la pantalla de previsualizacién que nos ha devuelto el codigo de
ejemplo.

Pesos iguales evenly Pesos iguales evenly
Ancho = 500.0.dp 5 items x fila Ancho = 400.0.dp 5 items x fila

Balmis ﬂ Balmis ﬂ Balmis Balmis ﬂ Balmis ﬂ Balmis

Sin pesos spaced by 5dp Sin pesos spaced by 5dp
Ancho = 500.0.dp 7 items x fila Ancho = 400.0.dp 7 items x fila

Balmis Balmis Balmis Balmis Balmis Balmis
Balmis Balmis Balmis Balmis Balmis Balmis Balmis
Balmis

Para crear esta composicion hemos usado el siguiente codigo de Preview con un area de 900 dp
x 600 dp. Ademas, los FlowRow q la izquierda tienen un area de 500 dp x 300 dp y los a la
derecha de 400 dp X 300 dp.

32/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/FlowRow.kt

El codigo del preview seria ...

@Preview(
showBackground = true, name = "FlowColumnYRowPreview",
device = "spec:width=900dp,height=600dp,dpi=480"

)

@Composable

fun FlowColumnYRowPreview() {

ProyectoBaseTheme {

Column()
{
Row()
{

FlowRowConPesos(500.dp, 300.dp)
FlowRowConPesos(400.dp, 300.dp)

}
Row()
{
FlowRowSinPesos(500.dp, 300.dp)
FlowRowSinPesos(400.dp, 300.dp)
}

En los FlowRow con pesos de la parte superior tendremos:

1. maxItemsInEachRow = 5

2. horizontalArrangement = Arrangement.Start Sin efectos al intentar todos los elementos
expandirse al maximo ancho.

3. verticalArrangement = Arrangement.SpaceEvenly Rellena el espacio verticalmente entre las
filas de elementos de forma equitativa.

4. verticalAlignment = Alignment.CenterVertically De cada elemento de forma personalizada
al centro verticalmente en la fila que le corresponde.

5. Todos los elementos intentan expandirse al maximo en el eje X con fillMaxWidth() .

6. Todos los elementos tienen un pesode 1 / 16 = @.1f por lo que si hay 5 elementos en la fila
cada uno ocupara @.1 / 0.5 = 0.2 esto es un 20% del ancho de la fila.

33/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

El codigo que genera los FlowRow con pesos de la parte superior seria ...

@OptIn(ExperimentallLayoutApi::class)
@Composable
fun FlowRowConPesos(ancho: Dp, alto: Dp) {
val maxHijosPorFila = 5
val filas = 2
val hijos = maxHijosPorFila * filas
FlowRow(
modifier = Modifier.size(ancho, alto),
horizontalArrangement = Arrangement.Start,
verticalArrangement = Arrangement.SpaceEvenly,

maxItemsInEachRow = maxHijosPorFila

) {
TextoConForma(
modifier = Modifier.fillMaxWidth(),
texto = "Pesos iguales evenly\n"
+ "Ancho = ${ancho} ${maxHijosPorFila} items x fila",
color = Color.LightGray
)

for (i in 1..ceil(hijos / 2f).toInt()) {
TextoConForma(

modifier = Modifier
.fillMaxWidth()
.weight(1 / hijos.toFloat())
.align(Alignment.CenterVertically),

texto = "IES",

color = MaterialTheme.colorScheme.tertiary

)
TextoConForma(
modifier = Modifier
.fillMaxWidth()
.weight(1 / hijos.toFloat()),
texto = "Balmis",
color = MaterialTheme.colorScheme.inversePrimary
)

Enlos FlowRow sin pesos de la parte inferior tendremos:

1. maxItemsInEachRow = 7

34/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

2. horizontalArrangement = Arrangement.Start Ahora sitiene efectos.

3. verticalArrangement = Arrangement.spacedBy(5.dp) Rellena el espacio verticalmente entre las
filas de elementos con un espacio de 5 dp.

4. Al ser 7 elementos en el FlowRow inferior-izquierdo le caben los 7 y los alinea a Start. Pero en
el rlowrow inferior-derecho solo caben 6 elementos por lo que hay una fila mas donde coloca
los 2 que le quedan.

El codigo que genera los FlowRow con pesos de la parte superior seria ...

@OptIn(ExperimentallLayoutApi::class)
@Composable
fun FlowRowSinPesos(ancho: Dp, alto: Dp) {
val maxHijosPorFila = 7
val filas = 2
val hijos = maxHijosPorFila * filas
FlowRow(
modifier = Modifier.size(ancho, alto),
horizontalArrangement = Arrangement.Start,
verticalArrangement = Arrangement.spacedBy(5.dp),
maxItemsInEachRow = maxHijosPorFila
) {
TextoConForma(
modifier = Modifier.fillMaxWidth(),
texto = "Sin pesos spaced by 5dp\n"
+ "Ancho = ${ancho} ${maxHijosPorFila} items x fila",
color = Color.LightGray
)
for (i in 1..ceil(hijos / 2f).toInt()) {
TextoConForma(
texto = "IES",
color = MaterialTheme.colorScheme.tertiary
)
TextoConForma(
texto = "Balmis",

color = MaterialTheme.colorScheme.inversePrimary

35/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

36/45

Consideraciones importantes

FlowRow y FlowColumn no estan pensados para representar datos de una fuente de
datos. Para eso tenemos LazyColumn , LazyRow Yy LazyGrid que trataremos en temas
posteriores.

Su uso esta pensado para disefios dinamicos o responsive, esto es, que se ajusten a
las dimensiones de la pantalla de forma fluida. Por ejemplo: Queremos que ciertos
elementos se distribuyan al girar la pantalla sin hacer un disefio especifico o nuestro
diseno tiene que adaptarse a Movil, Android Tv o Desktop.

En ocasiones los calculos pueden ser complejos y no se obtiene el resultado
esperado. Por lo que es recomendable probar y experimentar con los diferentes
parametros que nos ofrece.

PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Imagenes

Documentacién oficial: Imagenes en Jetpack Compose
Documentacion oficial: Component Image Fundation Layer

Usaremos el elemento composable Image para mostrar un grafico en la pantalla.

Encontraremos diferentes sobrecargas del composable Image que nos permitiran cargar

diferentes formas de declarar las imagenes.

@Composable

fun Image(imageVector: ImageVector, ...)

@Composable

fun Image(bitmap: ImageBitmap, ...)

@Composable

fun Image(painter: Painter, ...)

Formas de manejar un recurso imagen

1.

37/45

Painter

Abstraccién para algo que se puede dibujar. Dibuja en un area delimitada especificada y
ofrece algunos mecanismos de alto nivel que los usuarios pueden utilizar para configurar
coémo se dibuja el contenido.

Para cargar una imagen (por ejemplo: PNG, JPEG, WEBP) o un recurso vectorial del disco,
usa la APl de painterResource con tuimagen de referencia.

// La opcidn mas adecuada para obtener un recurso dibujable en Compose

val painter = painterResource(id = R.drawable.balmis)

. ImageBitmap

Representa un mapa de bits de imagen. Para cargar una imagen (por ejemplo: PNG, JPEG,
WEBP) del disco, usa la APl de imageResource definida en ImageBitmap . Podemos usar el
constructor BitmapPainter para obtener un Painter a partir de un ImageBitmap Yy asi

asignarla a la abstraccion Painter .

PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/graphics/images
https://developer.android.com/reference/kotlin/androidx/compose/foundation/package-summary#Image(androidx.compose.ui.graphics.vector.ImageVector,kotlin.String,androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,androidx.compose.ui.layout.ContentScale,kotlin.Float,androidx.compose.ui.graphics.ColorFilter)
https://developer.android.com/reference/kotlin/androidx/compose/foundation/package-summary#Image(androidx.compose.ui.graphics.vector.ImageVector,kotlin.String,androidx.compose.ui.Modifier,androidx.compose.ui.Alignment,androidx.compose.ui.layout.ContentScale,kotlin.Float,androidx.compose.ui.graphics.ColorFilter)
https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/painter/Painter
https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/ImageBitmap

val imageBitmap : ImageBitmap = ImageBitmap.imageResource(id = R.drawable.balmis)

val painterBitmap = remember(imageBitmap) { BitmapPainter(imageBitmap) }

Para pasar de Bitmap de Android a ImageBitmap podemos usar el meétodo asociado
asImageBitmap() .

Pasar de ImageBitmap de Compose a Bitmap de Android podemos usar el método asociado
asAndroidBitmap() .

val bitmap : Bitmap = ...

val imageBitmap : ImageBitmap = bitmap.asImageBitmap()

3. ImageVector
Representa un vector de imagen. Para cargar un recurso vectorial del disco, usa la API de
vectorResource definida en Imagevector . Ademas, podemos usar la funcion
rememberVectorPainter para obtener un PainterVector a partir de un ImageVector Yy asi

asignarla a la abstraccion painter ademas de recordarla en la recomposicion.

val imageVector : ImageVector = ImageVector.vectorResource(id = R.drawable.balmis)

val painterVector : PainterVector = rememberVectorPainter(imageVector)

Podemos también cargar un icono de los proporcionados por Material como imagen vectorial.

var painterFavorite = rememberVectorPainter(image = Icons.Filled.Favorite)

38/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/ui/graphics/vector/ImageVector

Parametros mas comunes

Tendremos mas parametros segun la sobrecarga de la funcién composable Image entre los que

podemos destacar:

39/45

Un texto contentDescription que se mostrara si no se puede cargar la imagen. La

herramienta de accesibilidad TalkBack lee la descripcion del contenido, por lo que debes

asegurarte de que el texto sea significativo si se lee en voz alta y se traduce.

Modificadores con Modifier . (Veremos alguno de utilidad en los ejemplos)

Un
Un
Un
Un

Alignment que especifica como se alinea la imagen dentro de su espacio asignado.
alpha que especifica la transparencia de la imagen. Es un valor entre @.ef y 1.ef.
ColorFilter que especifica un filtro de color para aplicar a la imagen.

ContentScale que especifica cOmo se escala la imagen dentro de su espacio asignado.

Sus valores pueden ser...

o

crop : Escala la imagen para que llene el espacio asignado, recortando la imagen si es
necesario.

FillBounds : Escala la imagen para que llene el espacio asignado, sin recortar la imagen.
Fit : Escala la imagen para que quepa dentro del espacio asignado, sin recortar la
imagen.

FillHeight : Escala la imagen para que llene la altura del espacio asignado, sin recortar
la imagen.

Fillwidth : Escala la imagen para que llene el ancho del espacio asignado, sin recortar la
imagen.

Inside : Escala la imagen para que quepa dentro del espacio asignado, recortando la
imagen si es necesario.

None : NoO escala la imagen.

PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

Cargando Imagenes de forma asincrona (Coil)

2" Nota

Coil es la libreria recomendada por Google para cargar imagenes en Android con Jetpack
Compose.
Sin embargo, existen muchas otras como Glide, Landscapist, etc.

Para cargar imagenes de forma asincrona podemos usar la libreria Coil. Esta libreria nos permite
cargar imagenes desde una URL, un archivo o un recurso de Android. Ademas, nos permite
transformar la imagen antes de mostrarla, por ejemplo, para redimensionarla o aplicarle un filtro.
Ademas, también nos permite cachear las imagenes para que no tengamos que volver a

descargarlas.
Veamos un ejemplo de como cargar una imagen desde una URL:

1. Afadimos la dependencia de Coil con Gradle:

// En libs.version.toml
[versions]

coil = "2.7.0"

[libraries]

coil-compose = { group = "io.coil-kt", name = "coil-compose", version.ref = "coil" }

// En el build.gradle.kt (del médulo app)

dependencies {

implementation(libs.coil.compose)

2. Puesto que vamos a cargar una imagen desde una URL, debemos arnadir el permiso de

acceso a Internet en el AndroidManifest.xml :

40/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://coil-kt.github.io/coil/compose/
https://coil-kt.github.io/coil/compose/
https://bumptech.github.io/glide/
https://skydoves.github.io/landscapist/

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools">

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.ACCESS WIFI STATE"/>

<uses-permission android:name="android.permission.INTERNET"/>
<application>

</application>

3. Ahora ya simplemente deberemos usar el composable AsyncImage que pos proporciona Coil
con unas propiedades muy similares a las de Image por ejemplo:

import coil.compose.AsyncImage

@Preview
@Composable
fun Imagen() = AsyncImage(
model = "https://pmdmiesbalmis.github.io/B3_Capa_UI/assets/imagenes/logo.png",
contentDescription = null,
contentScale = ContentScale.Crop,
modifier = Modifier
.size(200.dp)

.border(2.dp, MaterialTheme.colorScheme.primary)

Fijate que donde pone model es donde especificamos la URL de la imagen. Pero también
podriamos hacer model = R.drawable.imagen O model = File("ruta de la imagen") , etc. (Ver

documentacion).

41/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

https://coil-kt.github.io/coil/getting_started/#supported-data-types
https://coil-kt.github.io/coil/getting_started/#supported-data-types

® Caso de estudio:

Vamos a redibujar nuestra cabecera, pero esta vez en lugar de dibujar la imagen de fondo con
un Brush , vamos a usar un componente Image que seria mas adecuado. Para seguir los
siguientes ejemplos necesitaremos descargar el siguientes recursos y arrastrarlos a

res/drawable : balmis.png que ya hemos usado y logo.png que usaremos en los ejemplos.
También, pudes descargarte el codigo de los ejemplos en EjimagenBanner.kt.

La imagen de nuestro ejemplo sera la siguiente ...

|IES Doctor Balmis

Definimos una funcién sombra que ya hemos usado en este tema.

private fun sombra() = Shadow(
color = Color.Gray,
offset = Offset(4f, 4f),
blurRadius = 4f

Voy modularizar el Ul en varios composables y de paso vamos a pasar el lambda de un

composable como parametro.

42/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/balmis.png
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/imagenes/logo.png
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B3_Capa_UI/assets/codigo/tema_3_2/EjImagenBanner.kt

@Composable
// Pasamos un lambda como parametro con el composable que
// renderizara el contenido de la cabecera
fun Cabecera5(contenido: @Composable () -> Unit = {}) {
// Definimos una caja donde superponderemos 1la
// imagen de fondo y el contenido alineados al centro.
Box(
modifier = Modifier.fillMaxWidth(),

contentAlignment = Alignment.Center

)
// Ponemos la imagen de fondo de la fachada del Balmis
Image(
modifier = Modifier
.fillMaxWidth()
.border(
width = 2.dp,
color = MaterialTheme.colorScheme.primary,

shape = MaterialTheme.shapes.medium

)
// Recortamos la iamagen con el shape definido en Tema (Material).
.clip(MaterialTheme.shapes.medium),
// Obtenemos Painter del recurso de imagen de la fachada.
painter = painterResource(id = R.drawable.balmis),
contentDescription = "Fachada del IES Balmis",
// La imagen se escala para que ocupe todo el espacio recortandose
contentScale = ContentScale.Crop
)
// Superponemos el contenido de la cabecera a la imagen.

contenido()

A continuacion definimos un composable Contenido que sera el contenido de la cabecera que
pasaremos por parametro. En este caso, sera una fila con el logo y el texto del IES Balmis de
ejemplos anteriores.

43/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

@Composable
private fun Contenido() {
// El contenido ira en una fila con el logo 20% y el texto 80%.
// Ademas, lo alinearemos verticalmente al centro.
Row (
// Debemos intentar ocupar todo el espacio en ancho.
modifier = Modifier.fillMaxWidth(),
horizontalArrangement = Arrangement.Start,
verticalAlignment = Alignment.CenterVertically
) A
Image(
modifier = Modifier.weight(©.2f), // Ocupa en ancho el 20% de la fila
painter = painterResource(id = R.drawable.logo),
contentDescription = "Logo IES Balmis",
// Cambiamos el color de la imagen para usar el color primario
// de nuestro tema de Material.
colorFilter = ColorFilter.tint(
MaterialTheme.colorScheme.primary
)>
// La imagen se escala para que ocupe todo el espacio recortandose.
// Esto es, E1l alto de la imagen de fondo y el ancho del 20% de la fila.
contentScale = ContentScale.Crop
)
Text(
text = "IES Doctor Balmis",
modifier = Modifier
.scale(1.5f) // Escalamos el texto al 150%
.weight(0.8f), // Ocupa en ancho el 80% de la fila
style = MaterialTheme.typography.titlelLarge.copy/(
shadow = remember { sombra() }
)>
color = MaterialTheme.colorScheme.primary,
// Alienamos el texto al centro del 80% que ocupa en la fila.

textAlign = TextAlign.Center

Por ultimo, en nuestro @Preview definimos el contenido de la cabecera con el composable

Contenido .

44/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

@Preview(showBackground = true, name = "ImagenesPreview")
@Composable
fun ImagenesPreview() {
ProyectoBaseTheme {
Cabecera5 { Contenido() }

45/45 PMDM 2° DAM Tema 3.2 - Maquetando nuestra Ul Rev. 01/10/2024 IES Doctor Balmis

