Tema 3.1 - Conceptos de Jetpack Compose

Descargar estos apuntes pdf o html

indice

= [ntroduccién
¥ Conceptos basicos de Compose
= Composable functions
= Arquitectura de Compose
V¥ El estado y Jetpack Compose state
= Recomposicion
= Elobjeto state<T>
» Stateful vs Stateless
= Elevacion de estado (state-hoisting)
= Restableciendo el estado en Compose
= Depurando nuestra composicion
» Gestion e estados Avanzada
= Previsualizar disefio de mis 'Composables'

1/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/Tema_3_1_conceptos_de_jetpack_compose.pdf
file:///C:/unidadB/git/pmdm/B3_Capa_UI/Tema_3_1_conceptos_de_jetpack_compose.html

Introduccion

Antes de la introduccion de Compose, las aplicaciones de Android se construian completamente utilizando
Android Studio junto con una coleccion de frameworks asociados que conforman el Android Development
Kit.

Para ayudar en el diseno de las interfaces de usuario, Android Studio incluye una herramienta llamada
Layout Editor, que permite crear archivos XML que contienen los componentes individuales que

conforman una pantalla de la aplicacién.

La disposicion de la pantalla se disefa arrastrando componentes desde una paleta de widgets a la
ubicacién deseada en el lienzo de disefio. Esto es, usando una herramienta de disefio visual RAD (Rapid
Application Development) que genera el codigo XML.

Finalmente, los componentes que necesitan responder a eventos del usuario, se conectan a métodos en el
cédigo fuente de la aplicacién donde se maneja el evento.

¢) Importante

Alo largo del proceso de desarrollo, es necesario compilar y ejecutar la aplicacion en un simulador o
dispositivo para probar que todo funciona como se espera.

En contraposicion, Compose introduce una sintaxis declarativa que simplifica la creacién de disefios de
interfaz de usuario en Android. En lugar de disefiar manualmente los detalles de disefio, Compose permite
describir como debe verse la interfaz sin preocuparse por la complejidad de su construccién. Se
declaran componentes, se especifica el tipo de disefio y se aplican atributos mediante modificadores.

Ejemplo: Puedes declarar "Quiero una lista con estos elementos en ella" en lugar de "Quiero un
RecyclerView con un adaptador y un ViewHolder que se vea asi y que se comporte asi".

Compose se encarga automaticamente de la disposicién y renderizacion. Ademas, Android Studio ofrece
vista previa en tiempo real y un modo interactivo para probar la aplicacion sin necesidad de compilar y
ejecutar en un dispositivo o simulador.

Compose es data-driven (orientado a datos), esto no significa que ya no debamos manejar eventos
generados por el usuario en la interfaz. La caracteristica data-driven se refiere, mas bien, a como Compose
gestiona la relacion entre los datos de la aplicacién y su interfaz y légica.

2/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Antes de Compose, las aplicaciones de Android requerian cddigo para verificar constantemente los cambios
en los datos y actualizar la interfaz de usuario en consecuencia. Esto complicaba el desarrollo cuando
varios componentes de la aplicacién dependian de los mismos datos. Compose simplifica esto al basarse
en el state (estado), lo que significa que los cambios en el estado de los datos se reflejan
automaticamente en la interfaz. Los componentes de la interfaz que utilizan este estado se actualizan
automaticamente cuando cambian los datos, en un proceso llamado recomposition (recomposicion).

Otras ventajas principales de Jetpack Compose:

+ Menos cddigo para construir interfaces.

e Codigo mucho mas intuitivo.

¢ Facilidad a la hora de reutilizar componentes.
e Programacion de vistas en Kotlin.

= Resumen

Jetpack Compose es una nueva herramienta de Android para crear interfaces de usuario. Con
Jetpack Compose (a.k.a. Compose), puedes definir tu interfaz de usuario (Ul) de forma
declarativa, es decir, describiendo como deberia ser la interfaz de usuario en lugar de escribir el
cédigo que la crea.

Ademas, Compose es orientado a datos porque actualiza automaticamente la interfaz de usuario
cuando cambian los datos.

¢ Recursos adicionales:

o Documentacién oficial: ElI paradigma de programacion declarativa.

3/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419
https://developer.android.com/jetpack/compose/mental-model?hl=es-419#recomposition
https://developer.android.com/jetpack/compose/mental-model?hl=es-419#paradigm

Conceptos basicos de Compose

Composable functions

En Compose, las interfaces de usuario se crean con funciones anotadas con @Composable. Estas
funciones son funciones especiales de Kotlin que se utilizan para crear interfaces de usuario al trabajar con

Compose.

Podemos decir que las funciones componibles transforman los datos en elementos de la interfaz de usuario.

Sintaxis de una funcién composable:

@Composable
fun Greeting(name: String) {
Text(text = "Hello $name!")

¢) Importante

Fijate que el identificador va en PascalCasing. En Jetpack Compose, los nombres de las funciones
marcadas con @composable que emiten Ul deben usar PascalCasing (No retornan nada). Sin
embargo, aquellas funciones marcadas con @composable que no emiten Ul deben usar camelCase

(Retornan algun tipo).

Ademas tienen otra serie de caracteristicas que las diferencian de las funciones 'normales' de Kolin:

* No retornan valores en el sentido tradicional de la funcién de Kotlin, sino que emiten elementos de la
interfaz de usuario al sistema de tiempo de ejecucion de Compose para su representacion.

* No pueden ser llamadas desde funciones normales. Anunque las funciones 'composables' pueden
llamar a otras funciones 'composables' para crear una jerarquia de componentes el proceso inverso
no es posible.

+ Idempotencia

o Se comporta de la misma manera cuando se la llama varias veces con el mismo argumento y no
usa otros valores como variables globales o llamadas a random() .

o No pueden tener efectos secundarios. Esto significa que no pueden modificar variables fuera
de su alcance. Por ejemplo, no pueden modificar variables globales, ni modificar el estado de un
ViewModel, ni modificar el estado de un Fragment o Activity.

+ Pueden aceptar parametros, lo que permite que la logica de |la app describa la U

¢ Pueden ejecutar en cualquier orden.

4/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://es.wikipedia.org/wiki/Idempotencia_(inform%C3%A1tica)

524

@Composable
fun ButtonRow() {
MyFancyNavigation {
StartScreen()
MiddleScreen()
EndScreen()

Las llamadas a startScreen , MiddleScreen y EndScreen pueden ocurrir en cualquier orden. Eso
significa que no puedes, por ejemplo, hacer que StartScreen() establezca alguna variable global (un
efecto secundario) y que MiddleScreen() aproveche ese cambio. Esto es porque Compose tiene la
opcion de reconocer que algunos elementos de la IU tienen mayor prioridad que otros, y los dibuja
primero.

Se pueden ejecutar en paralelo y eso es una de las razones de no producir efectos secundarios que
hemos mencionado.

No pueden lanzar excepciones.

No pueden ser recursivas.

No pueden ser privadas.

PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Arquitectura de Compose
Extraido de Documentacién oficial: Arquitectura de Compose.

Jetpack Compose no es un proyecto monolitico unico, sino que se crea a partir de varios modulos que se
ensamblan para formar un 'stack’. Si comprendes los diferentes médulos que componen Jetpack Compose
podras:

e Usar el nivel adecuado de abstraccion para compilar tu app o biblioteca.
+ Comprender cuando puedes "bajar" a un nivel inferior para tener mas control o personalizacion.
e Minimizar tus dependencias.

Cada capa se compila sobre los niveles inferiores y se combinan las funcionalidades para crear
componentes de nivel superior. Cada una de ellas toma como fundamento las API publicas de las capas
inferiores para verificar los limites del modulo y permitirte reemplazar cualquiera de ellas si es necesario.
Examinemos estas capas desde abajo hacia arriba.

1. RunTime: En este mdédulo se presentan los aspectos basicos del

entorno de ejecucion de Compose, por ejemplo, remember , (_)
mutableStateOf , la anotacion @Composable y SideEffect . L Material)
2. Ul: La capa de la IU consta de varios modulos (ui-text, ui-graphics, ¢
ui-tooling, etc.). Estos médulos implementan los aspectos basicos 7 \
del kit de herramientas de la IU, como LayoutNode, Modifier , Foundation
controladores de entrada, disefios personalizados y dibujos. \ o
3. Foundation: En este mddulo se proporcionan bloques de ¢
compilacion agnostica del sistema de disefio para la IU de : Ul |
Compose, como Row Yy Column, LazyColumn , el reconocimiento de '\ y
gestos determinados, etc. ¢
4. Material: En este mddulo se proporciona una implementacion del [))
sistema Material Design para la IU de Compose y un sistemade | Runtime)

temas, componentes de disefno, indicadores de ondas e iconos.

6/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/layering?hl=es-419

El estado y Jetpack Compose state
Recursos adicionales:

¢ Documentacion oficial: El estado en Jetpack Compose.

¢ Android Developers: Video Jetpack Compose: State.

o DevExperto: Video El estado en Jetpack Compose.

¢ Martin Kiperszmid: Video ¢ Cémo funciona el Estado en Jetpack Compose?.
e AristiDevs: Video Estados en Jetpack Compose.

o Stvedza-San: Video States - Jetpack Compose.

El estado es un concepto fundamental en Jetpack Compose. En lenguajes declarativos como Compose, el
estado se refiere generalmente como "un valor que puede cambiar con el tiempo".

Es por eso que el estado es la fuente Gnica de verdad (single source of truth) de la interfaz de usuario.
Cuando el estado cambia, la interfaz de usuario se actualiza automaticamente para reflejar el nuevo estado.

El estado difiere de una variable estandar en dos formas significativas.

1. El valor asignado a una variable de estado en una funcion composable debe ser recordado a la hora
de redibujar. Esto es diferente de una variable estandar que se volveria a inicializar cada vez que se
hace una llamada a la funcién en la que se declara por lo que tomaria siempre el valor inicial asignado
al redibujar

2. La segunda diferencia clave es que un cambio en cualquier variable de estado tiene implicaciones de
gran alcance para todo el arbol jerarquico de funciones composables que conforman una interfaz de
usuario. Para entender por qué esto es asi, ahora necesitamos hablar sobre |la recomposicion.

Recomposicién

¢ Documentacién oficial: Recomposiciéon en Jetpack Compose.
¢ Stvedza-San: Video Recomposition - Jetpack Compose.

Al desarrollar con Compose, construimos aplicaciones creando jerarquias de funciones ‘composables’.
En la mayoria de los casos, los datos pasados de una funcién composable a otra se habran declarado como
una variable de estado en una funcion principal. Esto significa que cualquier cambio en el valor de estado
en una funciéon componible principal debera reflejarse en cualquier funcién componible secundaria a la que

se haya pasado el estado.

Compose aborda esto realizando una operacién denominada recomposicién y por tanto esta ocurre cada
vez que cambia un valor de estado dentro de una jerarquia de funciones componibles.

La recomposicidon simplemente significa que la funcion composable que recibe el estado se llama de nuevo
y se le pasa su nuevo valor que sera recordado en futuras recomposiciones.

7124 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419
https://www.youtube.com/watch?v=mymWGMy9pYI
https://www.youtube.com/watch?v=x9bQW8V1WPA
https://www.youtube.com/watch?v=yekzpEbvu5g
https://www.youtube.com/watch?v=CwR1VUeRjvs
https://www.youtube.com/watch?v=gQWrP8YGzWE&list=PLSrm9z4zp4mEWwyiuYgVMWcDFdsebhM-r&index=3
https://developer.android.com/jetpack/compose/mental-model?hl=es-419#recomposition
https://www.youtube.com/watch?v=O6zNcV3PaJE&list=PLSrm9z4zp4mEWwyiuYgVMWcDFdsebhM-r&index=2

Volver a componer todo el arbol componible para una interfaz de usuario cada vez que cambia un valor de
estado seria un enfoque altamente ineficiente para representar y actualizar una interfaz de usuario.
Compose evita esta sobrecarga utilizando una técnica llamada recomposicion inteligente que implica
recomponer solo aquellas funciones directamente afectadas por el cambio de estado. En otras palabras,
solo las funciones que leen el valor de estado se recompondran cuando cambie el valor.

= Resumen

La recomposicion es el proceso de volver a ejecutar una funcién composable para actualizar la
interfaz de usuario. Esta se produce cuando el estado cambia. Si esto sucede, el sistema de tiempo
de ejecucion de Compose vuelve a ejecutar la funcion composable que usa el estado. La funcion
composable vuelve a calcular la interfaz de usuario y el sistema de tiempo de ejecucion de Compose
actualiza la interfaz de usuario para reflejar el nuevo estado.

El objeto state<T>

El objeto estado state<T> es un objeto observable que se puede observar desde el sistema de tiempo
de ejecucion de Compose. Como hemos comentado al explicar la recomposicién, cuando el estado cambia,
el sistema de tiempo de ejecucion de Compose vuelve a ejecutar la funciéon ‘composable’ que lo usa. Si
queremos que el valor del estado pueda cambiar usaremos MutableState<T>

¢) Importante

Las funciones ‘composables’ pueden usar la APl de remember para almacenar un objeto en la
memoria. Un valor calculado por remember se almacena en la composicion durante la composicién
inicial, y el valor almacenado se muestra durante la recomposicion.

Existen varias formas de declarar un objeto MutableState<T> en un elemento que admite composicidon pero

nosotros basicamente usaremos dos:

val mutableState = remember { mutableStateOf(default) }

Ejemplo:

El siguiente codigo muestra un botén que cuenta el numero de veces que se ha pulsado.

8/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/State

@Composable

fun Contador() {
// cuenta es un MutableState<Int> con valor inicial @
val cuenta : MutableState<Int> = remember { mutableStateOf(©9) }
// Para acceder al valor de cuenta usamos la propiedad value
Button(onClick = { cuenta.value++ }) {

Text("Llevas $cuenta.value Clicks")

La forma que vamos a usar en la mayoria de los casos es usando la sintaxis de delegacion by :

var value by remember { mutableStateOf(default) }
Si reescribimos el ejemplo anterior quedaria asi:

@Composable
fun Contador() {
// cuenta ahora es un Int con valor inicial ©
var cuentaState by remember { mutableStateOf(Q) }
// Ya no necesitamos acceder a value
Button(onClick = { cuentaState++ }) {
Text("Llevas $cuentaState Clicks")

Aunque usemos un Int en el fondo es un estado que cuando estamos cambiando su valor se llama al
delegado setvalue() es por eso que hemos puesto el sufijo state para tener claro que es un estado
aunque sea de tipo Int.

Cuidado el uso del by me obligara a tener los siguiente imports.

import androidx.compose.runtime.getValue

import androidx.compose.runtime.setValue

9/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Stateful vs Stateless

¢ Documentacion oficial: stateful vs. stateless composables.

Podemos resumir que un composable stateful es aquel que almacena un estado y un composable
stateless es aquel que no almacena un estado. En el ejemplo del punto anterior el composable contador

es stateful porque almacena el estado de la cuenta.

¢) Importante

Podemos resumir que salvo ciertos casos en los que necesitemos almacenar un estado, la mayoria
de los ‘composables’ seran stateless. Los componibles stateless son mas faciles de entender,
probar y reutilizar. Los componibles stateful deben usarse con moderacion y solo cuando sea
necesario almacenar un estado.

Para conseguir que nuestras funciones composables sean stateless debemos usar el concepto de
elevacion de estado.

Elevacion de estado (state-hoisting)

¢ Recursos adicionales:
o Documentacion oficial: Introduccion.
o Documentacién oficial: Elevacion de estado en Jetpack Compose.

La elevacion de estado o state-hoisting es un patron de disefo que consiste en mover el estado de un
composable a su padre. Esto se hace para que el estado pueda ser compartido por varios '‘composables'.

Ademas de compartir el estado, el padre también se encarga de actualizar
el estado y para ello debe pasar también una funcién de actualizacion al hijo o ‘event handler'. Esta
funcioén de actualizacidn se ejecutara cuando el hijo necesite actualizar el estado y debera declararse o

definirse en el mismo nivel que el estado.
El estado elevado de esta manera tiene algunas propiedades importantes:

+ Fuente unica de informacién: Mover el estado en lugar de duplicarlo garantizara que exista solo una
fuente de informacion. Eso ayuda a evitar errores.

e Capacidad de compartir: El estado elevado puede compartirse con varios elementos que admiten
composicion.

e Capacidad de interceptar: Los llamadores a los elementos componibles sin estado pueden decidir
ignorar o modificar eventos antes de cambiar el estado.

+ Reutilizacién: Los elementos componibles sin estado pueden reutilizarse en diferentes contextos sin
tener que preocuparse por el estado. Estamos aplicando el principio de bajo acoplamiento donde un

10/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419#stateful-vs-stateless
https://developer.android.com/jetpack/compose/state?hl=es-419#state-hoisting
https://developer.android.com/jetpack/compose/state-hoisting?hl=es-419g

elemento componible no necesita saber nada sobre donde es usado o0 en que jerarquia se esta
componiendo.
* Pruebas: Los elementos componibles sin estado son mas faciles de testear porque no tienen estado.

11/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Ejemplo 1 de elevacion de estado

Veamos un ejemplo sencillo de elevacion de estado y el concepto de Stateful -u
Android

vs Stateless con nuestra aplicacion que cuenta ‘clicks’ de un boton. —
'L-[com.holamundo]

,] 7 =m[ui]
Para ello en nuestro proyecto HolaMundo hemos creado la jerarquia de - w[features]
paquetes propuesta en nuestra arquitectura y dento un fuente denominado i m[contador]

ContadorScreen.kt
ContadorScreen.kt.

EL codigo propuesto es el siguiente:

@Composable

fun ContadorStateful() {
// Definimos el estado y el manejador del evento click
var cuentaState by remember { mutableStateOf(@) }
val onAumentarCuenta: () -> Unit = { cuentaState++ }

// Pasamos el estado y el manejador al composable ContadorStateless
ContadorStateless(

cuentaState = cuentaState,

onAumentarCuenta = onAumentarCuenta

}
@Composable
fun ContadorStateless(
cuentaState: Int,
onAumentarCuenta: () -> Unit) =
Column {
// E1 botén llama al manejar del evento click
// enviado por el padre
Button(onClick = onAumentarCuenta) {
Text("Cuenta Clicks")
}
// El texto muestra el estado enviado por el padre

Text(text = "Llevas $cuentaState Clicks")

}
Donde podemos ver que el Contadorstateful es el padrey el ContadorStateful
ContadorStateless es el hijo. El padre es stateful porque almacena el Svenio
estado de la cuenta y el hijo es stateless porque no almacena el estado. ?
Ademas, el hijo no puede modificar el estado, solo puede enviar un —— |
evento al padre para que este lo modifique. ContadorStateless

12/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/ContadorScreen.kt

Ejemplo 2 de elevacion de estado
En este ejemplo vamos a crear una aplicacion que nos permita

introducir un nombre y nos salude. Ademas, vamos a afiadir un
boton para borrar el nombre introducido asignandole la cadena Nombre: Cramen| o
i S
' N

vacia. Esto es, mientras escribimos el nombre en el campo de
texto, el texto del saludo se actualiza automaticamente, ya que

ambos 'composables' comparten el estado.

Para ello vamos a disefar la una jerarquia de '‘composables' donde el estado lo
Android _|V]

tiene saludascreen Yy se va pasando a través de la jerarquia de composicion.
m[com.holamundo]

Vamos a afiadir a nuestro proyecto HolaMundo como en el ejemplo anterior un L, =[ui]
nuevo feature en el paquete saludo con el nombre SaludaScreen.kt. 7 Elfeatures]
¢+ m[contador]
L ContadorScreen.kt
7 m[saludo]
L SaludaScreen.kt

Puedes ver la jerarquia de composicion en el siguiente diagrama. De ella,
deducimos que en cada recomposicidon se van a volver a redibujar la gran

mayoria de los 'composables' que la componen.

SaludaScreen]

(Stateful)
.
l‘ ~~~~‘~
nombreState ,/' nombreState s
+ ',' + Sl
onCambioNombre / onClickBorrar M
I"I, ‘\\\\
/' EVENTO . EVENTO
CambioNombre [Saluda) \ ClickBorrar
\“
\“

onClickBorrar

(Button)

(IntroduceNombre)

—-—

nombreState
+

onCambioNombre

1
1
1
I
I
1
1
1
1
I
I
1
H nombreState
1
1
1
I
1
1
1
1

[e)

(TextField)

)

Rev. 26/09/2024 IES Doctor Balmis

13/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose

file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/SaludaScreen.kt

Nota

Con el fin de que el ejemplo sea algo mas realista. En el codigo propuesto a continuacion hemos
usado layouts, modificadores y algunos componentes de Material Design que veremos en el siguiente
tema. Nosotros nos vamos a centrar en el concepto de elevacion de estado. Esto es, la jerarquia
de componentes usada y como se va propagando el estado y los manejadores de eventos.

@Composable
fun SaludaScreen() {

var nombreState by remember { mutableStateOf("") }
val onCambioNombre = { nombre: String -> nombreState = nombre }

val onClickBorrar = { nombreState = "" }
Column(horizontalAlignment = Alignment.CenterHorizontally) {
IntroduceNombre(

nombreState = nombreState,

onCambioNombre = onCambioNombre

)
Saluda(
nombreState = nombreState,
onClickBorrar = onClickBorrar
)

¥
@0ptIn(ExperimentallayoutApi::class)
@Composable
fun Saluda(

nombreState: String,

onClickBorrar: () -> Unit

) 1
FlowRow(
Modifier.fillMaxWidth().padding(12.dp),
horizontalArrangement = Arrangement.SpaceBetween
) A
Text (
modifier = Modifier.padding(12.dp),
text = "Hola ${nombreState}"
)
Button(onClick = onClickBorrar) { Text(text = "Borrar") }
}
}

14/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

@Composable
fun IntroduceNombre(
nombreState: String,

onCambioNombre: (String) -> Unit

) A
Row(verticalAlignment = Alignment.CenterVertically) {
Text(
modifier = Modifier.padding(12.dp),
text = "Nombre:"
)
TextField(
value = nombreState,
onValueChange = onCambioNombre
)
¥
¥

15/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Restableciendo el estado en Compose

¢ Documentacion oficial: Como restablecer el estado en Compose.

Aunque "remember" se puede utilizar para guardar valores de estado a través de recomposiciones. Sin
embargo, esta técnica no retiene el estado entre cambios de configuracion.

Cambiaremos la configuracion cuando algun aspecto del dispositivo cambia de manera que altera la
apariencia de una actividad (como rotar la orientacion del dispositivo entre vertical y horizontal o cambiar la
configuracién de fuente en todo el sistema).

Estos cambios haran que toda la actividad se destruya y se vuelva a crear. El resultado es una actividad
recién inicializada que ha perdido los valores de estado de la anterior configuracion y estos volveran a tomar
sus valores iniciales.

Por ejemplo, si ejecutemos en un dispositivo virtual nuestro programa del contador tendriamos una vista
similar a la siguiente:

93e & 0 @ Rl | -
" ebemos pulsar aqui para que se

produzca el cambio de configuracién.

‘Cuenta Clicks

PRI By

Llevamos
9 clicks

2

Se resetea al valor
inicial O tras girar.

Si nos fijamos, al girar el dispositivo virtual, tras ‘confirmar el giro', el contador se ha reiniciado a cero. Esto
es porque se ha destruido la actividad y se ha vuelto a crear el arbol de composicion.

Para evitar esto, podemos usar la APl rememberSaveable que nos permite guardar el estado de un objeto en
el sistema de tiempo de ejecucion de Compose y restaurarlo cuando sea necesario.

16/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419#restore-ui-state

Por tanto, reescribiremos nuestro ejemplo del contador usando rememberSaveable .

@Composable

fun ContadorStateful() {
var cuentaState by rememberSaveable { mutableStateOf(9) }
val onAumentarCuenta: () -> Unit = { cuentaState++ }

ContadorStateless(
cuentaState = cuentaState,

onAumentarCuenta = onAumentarCuenta

Sin embargo, esto solo funciona para los tipos simples. ¢ Qué sucederia si el estado un objeto compuesto?.
En ese caso, debemos usar la APl rememberSaveable con un Saver personalizado tal y como se indica en

la documentacion oficial.

¢) Importante

De todas formas, esto no nos tiene que preocupar salvo en los casos en que tengamos un
‘composable stateful usado por otro composable. Esto se va a dar en muy pocos casos puesto que el
estado, como ya veremos mas adelante, se almacena en los viewModels . En caso que esto suceda,
se tratara de un tipo simple o uno ya definido por las librerias de Compose que ya es compatible con
este API de persistencia.

Depurando nuestra composicion

En ocasiones nos va a interesar depurar nuestra composicion. Para ello podemos usar la herramienta
Layout Inspector de Android Studio.

Como seria un poco largo incluir aqui la explicacion de como usarla, os dejo un enlace a la
documentacion oficial donde se explica como usarla.

17/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419#restore-ui-state
https://developer.android.com/studio/debug/layout-inspector?hl=es-419
https://developer.android.com/studio/debug/layout-inspector?hl=es-419

Gestion e estados Avanzada
Funcion remember profundizacion

+ Documentacién oficial: remember con claves.
« Diferencia entre remember con claves y derevedStateOf: Video Stevdza-San
 Articulo relacionado en Medium: DerivedStateOf vs Remember with keys: The difference.

Como ya hemos visto, la funcion remember{} se utiliza para, como su nombre indica, recordar el estado en
la composicion. Esto ayuda a la funcién componible a recordar el valor anterior cuando se recomponga. Sin
embargo, la funcion remember también puede tomar un numero de argumentos conocidos como Claves
(Keys).

Una ‘clave’ puede ser cualquier valor que pueda cambiar con el tiempo. La funcion puede tomar mas de
una clave como argumento. En Compose, usamos estados para representar valores que pueden cambiar
con el tiempo. Cuando cualquiera de las claves pasadas al bloque remember cambia de valor, el lambda
final del bloque remember se vuelve a ejecutar. Esto es muy util si se necesita recordar un estado y luego
recalcularlo solo cuando cambia otro estado.

Ejemplo:

Vamos rehacer el ejemplo del contador para controlar los multiplos de 3. En una primera aproximacién
podriamos usar dos estados 'normales' para el contador y el booleano que me indica si es multiplo de
tres o no.

Esta vez por simplificar no hemos utilizado ‘state hoisting'.

@Composable
fun ContadorMultiploTres() {
var cuentaState by remember { mutableStateOf(@) }
var esMultiploDeTresState by remember { mutableStateOf(false) }
val onAumentarCuenta: () -> Unit = {
cuentaState++
esMultiploDeTresState = cuentaState % 3 == 0
}
Column {
Button(onClick = onAumentarCuenta) {
Text("Cuenta Clicks")
}
Text(text = "Llevas $cuentaState Clicks")
Text(text = (if (esMultiploDeTresState) "Es" else "No es") + " multiplo de 3")

Aunque el cédigo anterior es funcional y correcto. Ademas, el segundo Text Nno se recompone a no ser
que cambie el valor de esMultiploDeTresState . EN manejador de onAumentarcuenta hace algo mas de

18/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/package-summary#remember(kotlin.Array,kotlin.Function0)
https://www.youtube.com/watch?v=RnrS-oGlzKo
https://medium.com/@theAndroidDeveloper/derivedstateof-vs-remember-with-keys-the-difference-6d047da41bee

la ‘responsabilidad’ que realmente tiene. Por lo que seria mas correcto hacer...

@Composable
fun ContadorMultiploTres() {
var cuentaState by remember { mutableStateOf(©) }
var esMultiploDeTresState by remember(keyl = cuentaState) {
mutableStateOf(cuentaState % 3 == 0)
}

val onAumentarCuenta: () -> Unit = { cuentaState++ }

Sin embargo, el ejemplo anterior aunque es mas correcto aun sigue teniendo un problema. Al estar
cambiado constantemente el valor de cuentastate se va a estar recalculando el valor de
esMultiploDeTresState aunque no cambie. Por jemplo, para los valores de la cunea 0, 1y 2 el valor de
esMultiploDeTresState siempre va a ser false . Sin embrago, el composable que muestra si es multiplo de
tres 0 no se va a recomponer porque el estado se ha recalculado al cambiar la clave. Para evitar esto,
podemos usar la funcién derivedStateOf .

¢) Importante

La funcidén derivedstateof reduce el numero de recomposiciones innecesarias respecto a
remember with Keys ya que, esta ultima, se recompondra aunque la clave que cambi6 tenga el mismo
valor que tenia anteriormente y derivedStateof no.

Estado derivado de otros estados derivedstateof

o Documentacion oficial: dereivedStateOf.

La funcién derivedStateof nos permite crear un estado derivado de otros estados. Esto es, un estado
calculado que depende del valor de otros estados.

As mentioned before, it is used to perform another important fuctionality — reducing unnecessary
recompositions. In the case of remember the lambda gets recomputed even if the key that changed was set
to the same value it was set previously

Continuacién ejemplo ...

Vamos rehacer el ejemplo del contador para controlar los multiplos de 3. Si usamos derivedstateof
podemos reescribir el cdédigo anterior de la siguiente forma...

19/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/package-summary#derivedStateOf(kotlin.Function0)

@Composable
fun ContadorMultiploTres() {
var cuentaState by remember { mutableStateOf(0) }
val esMultiploDeTresState by remember {
derivedStateOf { cuentaState % 3 == 0 }

}

val onAumentarCuenta: () -> Unit = { cuentaState++ }

de esta forma hasta que deriveStateOf no cambie su valor, no se va a recomponer el composable que

usa el estado esMultiploDeTresState .

20/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Previsualizar diseno de mis 'Composables’

En Android Studio Disponemos de diferentes herramientas para asistirnos en el disefio de nuestros
componentes de Compose. Una de ellas es la posibilidad de previsualizar el disefio de nuestros
‘composables' en diferentes dispositivos y orientaciones.

Es facil de configurar a través de un dialogo de configuracion y tienes la guia oficial de uso actualizada
aqui.

Pero vamos hacer una pequefias guias de uso a continuacion...
Vamos a partir del ejemplo SaludaScreen.kt que hemos usado en el ejemplo de elevacion de estado.

1. La primera idea es que esta previsualizacién nos puede servir de 'test' previo de nuestras vistas con
diferentes dispositivos y configuraciones de pantalla.
Anadiremos la anotacién @preview sobre el componente composable que queramos visualizar. Si es
una pantalla completa, lo haremos sobre el componente que la contiene. En nuestro caso, sobre

SaludaScreen .

@Preview
@Composable
fun SaludaScreenPreview() {
// Ahnadimos el Tema de la aplicaciodn
ProyectoBaseTheme {
Surface {
SaludaScreen()

2. Al anadir la anotacion nos aparecera el simbolo © en la parte
izquierda y al pulsarlo nos aparecera un dialogo de
configuracién. Como el de la imagen a la derecha. En el que
podemos seleccionar el dispositivo, su orientacion, su densidad
de pantalla, si queremos que se muestre el marco del mismo, se
active el modo nocturno o incluso si queremos seleccionar un
idioma para ver las traducciones.

Podemos también en la opcién Device , en lugar de

Custom (Personalizado) , podemos elegir un dispositivo en
concreto y nos configurara opciones de resolucion y densidad de
pantalla segun sus caracteristicas concretas.

Por ejemplo, la configuracion del dialogo me afiadiria los
siguientes parametros a la anotaciéon @Preview .

21/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/tooling
https://developer.android.com/develop/ui/compose/tooling/previews
https://developer.android.com/jetpack/compose/tooling/previews
file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/SaludaScreen.kt

X PREVIEW MNFIGURATION
@Preview(

name = "PORTRAIT", name PORTRAIT]|
device = "spec:width=360@dp,height=800dp,dpi=480", group

showBackground = true
Hardware

Dimensions
Density xxhdpi (480 dpi)
Orientation portrait

|sRound false

Display

api |

locale Default (en

uiMode Undefined

wallpaper None

22/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

3. Para futuros test del interfaz y su integraciéon en MVVM es conveniente hace un state hoisting de
todos mis estados hasta saludascreenPreview que deberia ser el 'inico' componente stateful.

@Composable

fun SaludaScreen(
nombreState: String,
onCambioNombre: (String) -> Unit,
onClickBorrar: () -> Unit) {

@Preview(
name = "PORTRAIT",
device = "spec:width=360dp,height=800dp,dpi=480",
showBackground = true
)
@Composable
fun SaludaScreenPreview() {
var nombreState by remember { mutableStateOf("") }
val onCambioNombre = { nombre: String -> nombreState = nombre }

val onClickBorrar = { nombreState = "" }

ProyectoBaseTheme {
Surface {
SaludaScreen(
nombreState = nombreState,
onCambioNombre = onCambioNombre,

onClickBorrar = onClickBorrar

4. Podemos anadir tantos 'previews' como queramos. Por ejemplo, podemos afadir un preview para la
orientacion horizontal o LANDSCAPE, modo nocturno e idioma inglés. De esta manera de una sola
vez podremos ver todos los comportamientos de nuestra vista de una sola vez durante el diseno.

@Preview(
name = "PORTRAIT",
device = "spec:width=360dp,height=800dp,dpi=480",

showBackground = true

)
@Preview(
name = "LANDSCAPE",
locale = "en",
device = "spec:width=360dp,height=800dp,dpi=480,orientation=1andscape”,
uiMode = Configuration.UI_MODE_NIGHT_YES,
showBackground = true, fontScale = 1.0f
)
@Composable
fun SaludaScreenPreview() { ... }

23/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

5. Para evitar tener que afiadir muchas anotaciones @preview existen diferentes plantillas preview como
@PreviewScreenSizes , @PreviewFontScales , @PreviewLightDark ,y @PreviewDynamicColors dependiendo
de la version de la libreria androidx.compose.ui:ui-tooling-preview que estemos usando.

@PreviewScreenSizes
@PreviewFontScale

@Composable

fun SaludaScreenPreview() { ... }

Decarga del cédigo de ejemplo SaludaScreenPreview.kt.

24/24 PMDM 2° DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/SaludaScreenPreview.kt

