
Tema 3.1 - Conceptos de Jetpack Compose
Descargar estos apuntes pdf o html

Índice
Introducción
Conceptos básicos de Compose

Composable functions
Arquitectura de Compose
El estado y Jetpack Compose State

Recomposición
El objeto State<T>
Stateful vs Stateless
Elevación de estado (state-hoisting)
Restableciendo el estado en Compose
Depurando nuestra composición
Gestion e estados Avanzada

Previsualizar diseño de mis 'Composables'

1/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/Tema_3_1_conceptos_de_jetpack_compose.pdf
file:///C:/unidadB/git/pmdm/B3_Capa_UI/Tema_3_1_conceptos_de_jetpack_compose.html

Introducción
Antes de la introducción de Compose, las aplicaciones de Android se construían completamente utilizando
Android Studio junto con una colección de frameworks asociados que conforman el Android Development
Kit.

Para ayudar en el diseño de las interfaces de usuario, Android Studio incluye una herramienta llamada
Layout Editor, que permite crear archivos XML que contienen los componentes individuales que
conforman una pantalla de la aplicación.

La disposición de la pantalla se diseña arrastrando componentes desde una paleta de widgets a la
ubicación deseada en el lienzo de diseño. Esto es, usando una herramienta de diseño visual RAD (Rapid
Application Development) que genera el código XML.

Finalmente, los componentes que necesitan responder a eventos del usuario, se conectan a métodos en el
código fuente de la aplicación donde se maneja el evento.

En contraposición, Compose introduce una sintaxis declarativa que simplifica la creación de diseños de
interfaz de usuario en Android. En lugar de diseñar manualmente los detalles de diseño, Compose permite
describir cómo debe verse la interfaz sin preocuparse por la complejidad de su construcción. Se
declaran componentes, se especifica el tipo de diseño y se aplican atributos mediante modificadores.

Ejemplo: Puedes declarar "Quiero una lista con estos elementos en ella" en lugar de "Quiero un
RecyclerView con un adaptador y un ViewHolder que se vea así y que se comporte así".

Compose se encarga automáticamente de la disposición y renderización. Además, Android Studio ofrece
vista previa en tiempo real y un modo interactivo para probar la aplicación sin necesidad de compilar y
ejecutar en un dispositivo o simulador.

Compose es data-driven (orientado a datos), esto no significa que ya no debamos manejar eventos
generados por el usuario en la interfaz. La característica data-driven se refiere, más bien, a cómo Compose
gestiona la relación entre los datos de la aplicación y su interfaz y lógica.

Importante

A lo largo del proceso de desarrollo, es necesario compilar y ejecutar la aplicación en un simulador o
dispositivo para probar que todo funciona como se espera.



2/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Antes de Compose, las aplicaciones de Android requerían código para verificar constantemente los cambios
en los datos y actualizar la interfaz de usuario en consecuencia. Esto complicaba el desarrollo cuando
varios componentes de la aplicación dependían de los mismos datos. Compose simplifica esto al basarse
en el state (estado), lo que significa que los cambios en el estado de los datos se reflejan
automáticamente en la interfaz. Los componentes de la interfaz que utilizan este estado se actualizan
automáticamente cuando cambian los datos, en un proceso llamado recomposition (recomposición).

Otras ventajas principales de Jetpack Compose:

Menos código para construir interfaces.
Código mucho más intuitivo.
Facilidad a la hora de reutilizar componentes.
Programación de vistas en Kotlin.

Recursos adicionales:
Documentación oficial: El paradigma de programación declarativa.

Resumen

Jetpack Compose es una nueva herramienta de Android para crear interfaces de usuario. Con
Jetpack Compose (a.k.a. Compose), puedes definir tu interfaz de usuario (UI) de forma
declarativa, es decir, describiendo cómo debería ser la interfaz de usuario en lugar de escribir el
código que la crea.
Además, Compose es orientado a datos porque actualiza automáticamente la interfaz de usuario
cuando cambian los datos.



3/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419
https://developer.android.com/jetpack/compose/mental-model?hl=es-419#recomposition
https://developer.android.com/jetpack/compose/mental-model?hl=es-419#paradigm

Conceptos básicos de Compose

Composable functions
En Compose, las interfaces de usuario se crean con funciones anotadas con @Composable. Estas
funciones son funciones especiales de Kotlin que se utilizan para crear interfaces de usuario al trabajar con
Compose.

Podemos decir que las funciones componibles transforman los datos en elementos de la interfaz de usuario.

Sintaxis de una función composable:

@Composable

fun Greeting(name: String) {

 Text(text = "Hello $name!")

}

Además tienen otra serie de características que las diferencian de las funciones 'normales' de Kolin:

No retornan valores en el sentido tradicional de la función de Kotlin, sino que emiten elementos de la
interfaz de usuario al sistema de tiempo de ejecución de Compose para su representación.
No pueden ser llamadas desde funciones normales. Anunque las funciones 'composables' pueden
llamar a otras funciones 'composables' para crear una jerarquía de componentes el proceso inverso
no es posible.
Idempotencia

Se comporta de la misma manera cuando se la llama varias veces con el mismo argumento y no
usa otros valores como variables globales o llamadas a random() .
No pueden tener efectos secundarios. Esto significa que no pueden modificar variables fuera
de su alcance. Por ejemplo, no pueden modificar variables globales, ni modificar el estado de un
ViewModel, ni modificar el estado de un Fragment o Activity.

Pueden aceptar parámetros, lo que permite que la lógica de la app describa la IU
Pueden ejecutar en cualquier orden.

Importante

Fíjate que el identificador va en PascalCasing. En Jetpack Compose, los nombres de las funciones
marcadas con @Composable que emiten UI deben usar PascalCasing (No retornan nada). Sin
embargo, aquellas funciones marcadas con @Composable que no emiten UI deben usar camelCase
(Retornan algún tipo).



4/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://es.wikipedia.org/wiki/Idempotencia_(inform%C3%A1tica)

@Composable

fun ButtonRow() {

 MyFancyNavigation {

 StartScreen()

 MiddleScreen()

 EndScreen()

 }

}

Las llamadas a StartScreen , MiddleScreen y EndScreen pueden ocurrir en cualquier orden. Eso
significa que no puedes, por ejemplo, hacer que StartScreen() establezca alguna variable global (un
efecto secundario) y que MiddleScreen() aproveche ese cambio. Esto es porque Compose tiene la
opción de reconocer que algunos elementos de la IU tienen mayor prioridad que otros, y los dibuja
primero.
Se pueden ejecutar en paralelo y eso es una de las razones de no producir efectos secundarios que
hemos mencionado.
No pueden lanzar excepciones.
No pueden ser recursivas.
No pueden ser privadas.

5/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Arquitectura de Compose
Extraído de Documentación oficial: Arquitectura de Compose.

Jetpack Compose no es un proyecto monolítico único, sino que se crea a partir de varios módulos que se
ensamblan para formar un 'stack'. Si comprendes los diferentes módulos que componen Jetpack Compose
podrás:

Usar el nivel adecuado de abstracción para compilar tu app o biblioteca.
Comprender cuándo puedes "bajar" a un nivel inferior para tener más control o personalización.
Minimizar tus dependencias.

Cada capa se compila sobre los niveles inferiores y se combinan las funcionalidades para crear
componentes de nivel superior. Cada una de ellas toma como fundamento las API públicas de las capas
inferiores para verificar los límites del módulo y permitirte reemplazar cualquiera de ellas si es necesario.
Examinemos estas capas desde abajo hacia arriba.

1. RunTime: En este módulo se presentan los aspectos básicos del
entorno de ejecución de Compose, por ejemplo, remember ,
 mutableStateOf , la anotación @Composable y SideEffect .

2. UI: La capa de la IU consta de varios módulos (ui-text, ui-graphics,
ui-tooling, etc.). Estos módulos implementan los aspectos básicos
del kit de herramientas de la IU, como LayoutNode, Modifier ,
controladores de entrada, diseños personalizados y dibujos.

3. Foundation: En este módulo se proporcionan bloques de
compilación agnóstica del sistema de diseño para la IU de
Compose, como Row y Column , LazyColumn , el reconocimiento de
gestos determinados, etc.

4. Material: En este módulo se proporciona una implementación del
sistema Material Design para la IU de Compose y un sistema de
temas, componentes de diseño, indicadores de ondas e íconos.

Material

Foundation

UI

Runtime

6/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/layering?hl=es-419

El estado y Jetpack Compose State
Recursos adicionales:

Documentación oficial: El estado en Jetpack Compose.
Android Developers: Vídeo Jetpack Compose: State.
DevExperto: Vídeo El estado en Jetpack Compose.
Martin Kiperszmid: Vídeo ¿Cómo funciona el Estado en Jetpack Compose?.
AristiDevs: Vídeo Estados en Jetpack Compose.
Stvedza-San: Vídeo States - Jetpack Compose.

El estado es un concepto fundamental en Jetpack Compose. En lenguajes declarativos como Compose, el
estado se refiere generalmente como "un valor que puede cambiar con el tiempo".
Es por eso que el estado es la fuente única de verdad (single source of truth) de la interfaz de usuario.
Cuando el estado cambia, la interfaz de usuario se actualiza automáticamente para reflejar el nuevo estado.

El estado difiere de una variable estándar en dos formas significativas.

1. El valor asignado a una variable de estado en una función composable debe ser recordado a la hora
de redibujar. Esto es diferente de una variable estándar que se volvería a inicializar cada vez que se
hace una llamada a la función en la que se declara por lo que tomaría siempre el valor inicial asignado
al redibujar

2. La segunda diferencia clave es que un cambio en cualquier variable de estado tiene implicaciones de
gran alcance para todo el árbol jerárquico de funciones composables que conforman una interfaz de
usuario. Para entender por qué esto es así, ahora necesitamos hablar sobre la recomposición.

Recomposición

Documentación oficial: Recomposición en Jetpack Compose.
Stvedza-San: Vídeo Recomposition - Jetpack Compose.

Al desarrollar con Compose, construimos aplicaciones creando jerarquías de funciones 'composables'.
En la mayoría de los casos, los datos pasados de una función composable a otra se habrán declarado como
una variable de estado en una función principal. Esto significa que cualquier cambio en el valor de estado
en una función componible principal deberá reflejarse en cualquier función componible secundaria a la que
se haya pasado el estado.

Compose aborda esto realizando una operación denominada recomposición y por tanto esta ocurre cada
vez que cambia un valor de estado dentro de una jerarquía de funciones componibles.

La recomposición simplemente significa que la función composable que recibe el estado se llama de nuevo
y se le pasa su nuevo valor que será recordado en futuras recomposiciones.

7/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419
https://www.youtube.com/watch?v=mymWGMy9pYI
https://www.youtube.com/watch?v=x9bQW8V1WPA
https://www.youtube.com/watch?v=yekzpEbvu5g
https://www.youtube.com/watch?v=CwR1VUeRjvs
https://www.youtube.com/watch?v=gQWrP8YGzWE&list=PLSrm9z4zp4mEWwyiuYgVMWcDFdsebhM-r&index=3
https://developer.android.com/jetpack/compose/mental-model?hl=es-419#recomposition
https://www.youtube.com/watch?v=O6zNcV3PaJE&list=PLSrm9z4zp4mEWwyiuYgVMWcDFdsebhM-r&index=2

Volver a componer todo el árbol componible para una interfaz de usuario cada vez que cambia un valor de
estado sería un enfoque altamente ineficiente para representar y actualizar una interfaz de usuario.
Compose evita esta sobrecarga utilizando una técnica llamada recomposición inteligente que implica
recomponer solo aquellas funciones directamente afectadas por el cambio de estado. En otras palabras,
solo las funciones que leen el valor de estado se recompondrán cuando cambie el valor.

El objeto State<T>

El objeto estado State<T> es un objeto observable que se puede observar desde el sistema de tiempo
de ejecución de Compose. Como hemos comentado al explicar la recomposición, cuando el estado cambia,
el sistema de tiempo de ejecución de Compose vuelve a ejecutar la función 'composable' que lo usa. Si
queremos que el valor del estado pueda cambiar usaremos MutableState<T>

Existen varias formas de declarar un objeto MutableState<T> en un elemento que admite composición pero
nosotros básicamente usaremos dos:

val mutableState = remember { mutableStateOf(default) }

Ejemplo:

El siguiente código muestra un botón que cuenta el número de veces que se ha pulsado.

Resumen

La recomposición es el proceso de volver a ejecutar una función composable para actualizar la
interfaz de usuario. Esta se produce cuando el estado cambia. Si esto sucede, el sistema de tiempo
de ejecución de Compose vuelve a ejecutar la función composable que usa el estado. La función
composable vuelve a calcular la interfaz de usuario y el sistema de tiempo de ejecución de Compose
actualiza la interfaz de usuario para reflejar el nuevo estado.



Importante

Las funciones 'composables' pueden usar la API de remember para almacenar un objeto en la
memoria. Un valor calculado por remember se almacena en la composición durante la composición
inicial, y el valor almacenado se muestra durante la recomposición.



8/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/State

@Composable

fun Contador() {

 // cuenta es un MutableState<Int> con valor inicial 0

 val cuenta : MutableState<Int> = remember { mutableStateOf(0) }

 // Para acceder al valor de cuenta usamos la propiedad value

 Button(onClick = { cuenta.value++ }) {

 Text("Llevas $cuenta.value Clicks")

 }

}

La forma que vamos a usar en la mayoría de los casos es usando la sintaxis de delegación by :

var value by remember { mutableStateOf(default) }

Si reescribimos el ejemplo anterior quedaría así:

@Composable

fun Contador() {

 // cuenta ahora es un Int con valor inicial 0

 var cuentaState by remember { mutableStateOf(0) }

 // Ya no necesitamos acceder a value

 Button(onClick = { cuentaState++ }) {

 Text("Llevas $cuentaState Clicks")

 }

}

Aunque usemos un Int en el fondo es un estado que cuando estamos cambiando su valor se llama al
delegado setValue() es por eso que hemos puesto el sufijo State para tener claro que es un estado
aunque sea de tipo Int.

Cuidado el uso del by me obligará a tener los siguiente imports.

import androidx.compose.runtime.getValue

import androidx.compose.runtime.setValue

9/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Stateful vs Stateless

Documentación oficial: stateful vs. stateless composables.

Podemos resumir que un composable stateful es aquel que almacena un estado y un composable
stateless es aquel que no almacena un estado. En el ejemplo del punto anterior el composable Contador
es stateful porque almacena el estado de la cuenta.

Para conseguir que nuestras funciones composables sean stateless debemos usar el concepto de
elevación de estado.

Elevación de estado (state-hoisting)

Recursos adicionales:
Documentación oficial: Introducción.
Documentación oficial: Elevación de estado en Jetpack Compose.

La elevación de estado o state-hoisting es un patrón de diseño que consiste en mover el estado de un
composable a su padre. Esto se hace para que el estado pueda ser compartido por varios 'composables'.

Además de compartir el estado, el padre también se encarga de actualizar
el estado y para ello debe pasar también una función de actualización al hijo o 'event handler'. Esta
función de actualización se ejecutará cuando el hijo necesite actualizar el estado y deberá declararse o
definirse en el mismo nivel que el estado.

El estado elevado de esta manera tiene algunas propiedades importantes:

Fuente única de información: Mover el estado en lugar de duplicarlo garantizará que exista solo una
fuente de información. Eso ayuda a evitar errores.
Capacidad de compartir: El estado elevado puede compartirse con varios elementos que admiten
composición.
Capacidad de interceptar: Los llamadores a los elementos componibles sin estado pueden decidir
ignorar o modificar eventos antes de cambiar el estado.
Reutilización: Los elementos componibles sin estado pueden reutilizarse en diferentes contextos sin
tener que preocuparse por el estado. Estamos aplicando el principio de bajo acoplamiento donde un

Importante

Podemos resumir que salvo ciertos casos en los que necesitemos almacenar un estado, la mayoría
de los 'composables' serán stateless. Los componibles stateless son más fáciles de entender,
probar y reutilizar. Los componibles stateful deben usarse con moderación y solo cuando sea
necesario almacenar un estado.



10/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419#stateful-vs-stateless
https://developer.android.com/jetpack/compose/state?hl=es-419#state-hoisting
https://developer.android.com/jetpack/compose/state-hoisting?hl=es-419g

elemento componible no necesita saber nada sobre donde es usado o en que jerarquía se está
componiendo.
Pruebas: Los elementos componibles sin estado son más fáciles de testear porque no tienen estado.

11/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Ejemplo 1 de elevación de estado

Veamos un ejemplo sencillo de elevación de estado y el concepto de Stateful
vs Stateless con nuestra aplicación que cuenta 'clicks' de un botón.

Para ello en nuestro proyecto HolaMundo hemos creado la jerarquía de
paquetes propuesta en nuestra arquitectura y dento un fuente denominado
ContadorScreen.kt.

Android
[com.holamundo]

[ui]
[features]

[contador]
ContadorScreen.kt

EL código propuesto es el siguiente:

@Composable

fun ContadorStateful() {

 // Definimos el estado y el manejador del evento click

 var cuentaState by remember { mutableStateOf(0) }

 val onAumentarCuenta: () -> Unit = { cuentaState++ }

 // Pasamos el estado y el manejador al composable ContadorStateless

 ContadorStateless(

 cuentaState = cuentaState,

 onAumentarCuenta = onAumentarCuenta

)

}

@Composable

fun ContadorStateless(

 cuentaState: Int,

 onAumentarCuenta: () -> Unit) =

 Column {

 // El botón llama al manejar del evento click

 // enviado por el padre

 Button(onClick = onAumentarCuenta) {

 Text("Cuenta Clicks")

 }

 // El texto muestra el estado enviado por el padre

 Text(text = "Llevas $cuentaState Clicks")

 }

Donde podemos ver que el ContadorStateful es el padre y el
 ContadorStateless es el hijo. El padre es stateful porque almacena el
estado de la cuenta y el hijo es stateless porque no almacena el estado.
Además, el hijo no puede modificar el estado, solo puede enviar un
evento al padre para que este lo modifique.

ContadorStateful

ContadorStateless
estado

evento

12/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/ContadorScreen.kt

Ejemplo 2 de elevación de estado

En este ejemplo vamos a crear una aplicación que nos permita
introducir un nombre y nos salude. Además, vamos a añadir un
botón para borrar el nombre introducido asignándole la cadena
vacía. Esto es, mientras escribimos el nombre en el campo de
texto, el texto del saludo se actualiza automáticamente, ya que
ambos 'composables' comparten el estado.

Para ello vamos a diseñar la una jerarquía de 'composables' donde el estado lo
tiene SaludaScreen y se va pasando a través de la jerarquía de composición.

Vamos a añadir a nuestro proyecto HolaMundo como en el ejemplo anterior un
nuevo feature en el paquete saludo con el nombre SaludaScreen.kt.

Puedes ver la jerarquía de composición en el siguiente diagrama. De ella,
deducimos que en cada recomposición se van a volver a redibujar la gran
mayoría de los 'composables' que la componen.

Android
[com.holamundo]

[ui]
[features]

[contador]
ContadorScreen.kt
[saludo]
SaludaScreen.kt

SaludaScreen
(Stateful)

IntroduceNombre

nombreState
+

onCambioNombre

Saluda

nombreState
+

onClickBorrar

TextField

EVENTO
CambioNombre

Button

EVENTO
ClickBorrar

Text

nombreState
+

onCambioNombre

Text

nombreState onClickBorrar

13/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/SaludaScreen.kt

@Composable

fun SaludaScreen() {

 // Definimos el estado y los manejadores

 var nombreState by remember { mutableStateOf("") }

 val onCambioNombre = { nombre: String -> nombreState = nombre }

 val onClickBorrar = { nombreState = "" }

 Column(horizontalAlignment = Alignment.CenterHorizontally) {

 // Pasamos el estado y manejadores necesarios a los componentes

 IntroduceNombre(

 nombreState = nombreState,

 onCambioNombre = onCambioNombre

)

 Saluda(

 nombreState = nombreState,

 onClickBorrar = onClickBorrar

)

 }

}

@OptIn(ExperimentalLayoutApi::class)

@Composable

fun Saluda(

 nombreState: String,

 onClickBorrar: () -> Unit

) {

 FlowRow(

 Modifier.fillMaxWidth().padding(12.dp),

 horizontalArrangement = Arrangement.SpaceBetween

) {

 Text(

 modifier = Modifier.padding(12.dp),

 text = "Hola ${nombreState}"

)

 // Elevamos el evento borrar

 Button(onClick = onClickBorrar) { Text(text = "Borrar") }

 }

}

Nota

Con el fin de que el ejemplo sea algo más realista. En el código propuesto a continuación hemos
usado layouts, modificadores y algunos componentes de Material Design que veremos en el siguiente
tema. Nosotros nos vamos a centrar en el concepto de elevación de estado. Esto es, la jerarquía
de componentes usada y como se va propagando el estado y los manejadores de eventos.



14/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

@Composable

fun IntroduceNombre(

 nombreState: String,

 onCambioNombre: (String) -> Unit

) {

 Row(verticalAlignment = Alignment.CenterVertically) {

 Text(

 modifier = Modifier.padding(12.dp),

 text = "Nombre:"

)

 TextField(

 value = nombreState,

 // Elevamos el evento cambio en Nombre

 onValueChange = onCambioNombre

)

 }

}

15/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Restableciendo el estado en Compose

Documentación oficial: Cómo restablecer el estado en Compose.

Aunque "remember" se puede utilizar para guardar valores de estado a través de recomposiciones. Sin
embargo, esta técnica no retiene el estado entre cambios de configuración.

Cambiaremos la configuración cuando algún aspecto del dispositivo cambia de manera que altera la
apariencia de una actividad (como rotar la orientación del dispositivo entre vertical y horizontal o cambiar la
configuración de fuente en todo el sistema).

Estos cambios harán que toda la actividad se destruya y se vuelva a crear. El resultado es una actividad
recién inicializada que ha perdido los valores de estado de la anterior configuración y estos volverán a tomar
sus valores iniciales.

Por ejemplo, si ejecutemos en un dispositivo virtual nuestro programa del contador tendríamos una vista
similar a la siguiente:

Si nos fijamos, al girar el dispositivo virtual, tras 'confirmar el giro', el contador se ha reiniciado a cero. Esto
es porque se ha destruido la actividad y se ha vuelto a crear el árbol de composición.

Para evitar esto, podemos usar la API rememberSaveable que nos permite guardar el estado de un objeto en
el sistema de tiempo de ejecución de Compose y restaurarlo cuando sea necesario.

16/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419#restore-ui-state

Por tanto, reescribiremos nuestro ejemplo del contador usando rememberSaveable .

Sin embargo, esto solo funciona para los tipos simples. ¿Qué sucedería si el estado un objeto compuesto?.
En ese caso, debemos usar la API rememberSaveable con un Saver personalizado tal y como se indica en
la documentación oficial.

Depurando nuestra composición

En ocasiones nos va a interesar depurar nuestra composición. Para ello podemos usar la herramienta
Layout Inspector de Android Studio.

Como sería un poco largo incluir aquí la explicación de como usarla, os dejo un enlace a la
documentación oficial donde se explica como usarla.

@Composable

fun ContadorStateful() {

 var cuentaState by rememberSaveable { mutableStateOf(0) }

 val onAumentarCuenta: () -> Unit = { cuentaState++ }

 ContadorStateless(

 cuentaState = cuentaState,

 onAumentarCuenta = onAumentarCuenta

)

}

3

Importante

De todas formas, esto no nos tiene que preocupar salvo en los casos en que tengamos un
'composable stateful' usado por otro composable. Esto se va a dar en muy pocos casos puesto que el
estado, como ya veremos más adelante, se almacena en los ViewModels . En caso que esto suceda,
se tratará de un tipo simple o uno ya definido por las librerías de Compose que ya es compatible con
este API de persistencia.



17/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/state?hl=es-419#restore-ui-state
https://developer.android.com/studio/debug/layout-inspector?hl=es-419
https://developer.android.com/studio/debug/layout-inspector?hl=es-419

Gestion e estados Avanzada

Función remember profundización

Documentación oficial: remember con claves.
Diferencia entre remember con claves y derevedStateOf: Vídeo Stevdza-San
Articulo relacionado en Medium: DerivedStateOf vs Remember with keys: The difference.

Como ya hemos visto, la función remember{} se utiliza para, como su nombre indica, recordar el estado en
la composición. Esto ayuda a la función componible a recordar el valor anterior cuando se recomponga. Sin
embargo, la función remember también puede tomar un número de argumentos conocidos como Claves
(Keys).

Una 'clave' puede ser cualquier valor que pueda cambiar con el tiempo. La función puede tomar más de
una clave como argumento. En Compose, usamos estados para representar valores que pueden cambiar
con el tiempo. Cuando cualquiera de las claves pasadas al bloque remember cambia de valor, el lambda
final del bloque remember se vuelve a ejecutar. Esto es muy útil si se necesita recordar un estado y luego
recalcularlo solo cuando cambia otro estado.

Ejemplo:

Vamos rehacer el ejemplo del contador para controlar los múltiplos de 3. En una primera aproximación
podríamos usar dos estados 'normales' para el contador y el booleano que me indica si es múltiplo de
tres o no.

Esta vez por simplificar no hemos utilizado 'state hoisting'.

Aunque el código anterior es funcional y correcto. Además, el segundo Text no se recompone a no ser
que cambie el valor de esMultiploDeTresState . En manejador de onAumentarCuenta hace algo más de

@Composable

fun ContadorMultiploTres() {

 var cuentaState by remember { mutableStateOf(0) }

 var esMultiploDeTresState by remember { mutableStateOf(false) }

 val onAumentarCuenta: () -> Unit = {

 cuentaState++

 esMultiploDeTresState = cuentaState % 3 == 0

 }

 Column {

 Button(onClick = onAumentarCuenta) {

 Text("Cuenta Clicks")

 }

 Text(text = "Llevas $cuentaState Clicks")

 Text(text = (if (esMultiploDeTresState) "Es" else "No es") + " múltiplo de 3")

 }

}

3

7

14

18/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/package-summary#remember(kotlin.Array,kotlin.Function0)
https://www.youtube.com/watch?v=RnrS-oGlzKo
https://medium.com/@theAndroidDeveloper/derivedstateof-vs-remember-with-keys-the-difference-6d047da41bee

la 'responsabilidad' que realmente tiene. Por lo que sería más correcto hacer...

Sin embargo, el ejemplo anterior aunque es más correcto aún sigue teniendo un problema. Al estar
cambiado constantemente el valor de cuentaState se va a estar recalculando el valor de
 esMultiploDeTresState aunque no cambie. Por jemplo, para los valores de la cunea 0, 1 y 2 el valor de
 esMultiploDeTresState siempre va a ser false . Sin embrago, el composable que muestra si es múltiplo de
tres o no se va a recomponer porque el estado se ha recalculado al cambiar la clave. Para evitar esto,
podemos usar la función derivedStateOf .

Estado derivado de otros estados derivedStateOf

Documentación oficial: dereivedStateOf.

La función derivedStateOf nos permite crear un estado derivado de otros estados. Esto es, un estado
calculado que depende del valor de otros estados.

As mentioned before, it is used to perform another important fuctionality — reducing unnecessary
recompositions. In the case of remember the lambda gets recomputed even if the key that changed was set
to the same value it was set previously

Continuación ejemplo ...

Vamos rehacer el ejemplo del contador para controlar los múltiplos de 3. Si usamos derivedStateOf
podemos reescribir el código anterior de la siguiente forma...

@Composable

fun ContadorMultiploTres() {

 var cuentaState by remember { mutableStateOf(0) }

 var esMultiploDeTresState by remember(key1 = cuentaState) {

 mutableStateOf(cuentaState % 3 == 0)

 }

 val onAumentarCuenta: () -> Unit = { cuentaState++ }

 ...

}

4

Importante

La función derivedStateOf reduce el número de recomposiciones innecesarias respecto a
 remember with Keys ya que, esta última, se recompondrá aunque la clave que cambió tenga el mismo
valor que tenía anteriormente y derivedStateOf no.



19/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/reference/kotlin/androidx/compose/runtime/package-summary#derivedStateOf(kotlin.Function0)

de esta forma hasta que deriveStateOf no cambie su valor, no se va a recomponer el composable que
usa el estado esMultiploDeTresState .

@Composable

fun ContadorMultiploTres() {

 var cuentaState by remember { mutableStateOf(0) }

 val esMultiploDeTresState by remember {

 derivedStateOf { cuentaState % 3 == 0 }

 }

 val onAumentarCuenta: () -> Unit = { cuentaState++ }

 ...

}

5

20/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

Previsualizar diseño de mis 'Composables'
En Android Studio Disponemos de diferentes herramientas para asistirnos en el diseño de nuestros
componentes de Compose. Una de ellas es la posibilidad de previsualizar el diseño de nuestros
'composables' en diferentes dispositivos y orientaciones.

Es fácil de configurar a través de un dialogo de configuración y tienes la guía oficial de uso actualizada
aquí.

Pero vamos hacer una pequeñas guías de uso a continuación...

Vamos a partir del ejemplo SaludaScreen.kt que hemos usado en el ejemplo de elevación de estado.

1. La primera idea es que esta previsualización nos puede servir de 'test' previo de nuestras vistas con
diferentes dispositivos y configuraciones de pantalla.
Añadiremos la anotación @Preview sobre el componente composable que queramos visualizar. Si es
una pantalla completa, lo haremos sobre el componente que la contiene. En nuestro caso, sobre
 SaludaScreen .

2. Al añadir la anotación nos aparecerá el símbolo ⚙️ en la parte
izquierda y al pulsarlo nos aparecerá un dialogo de
configuración. Como el de la imagen a la derecha. En el que
podemos seleccionar el dispositivo, su orientación, su densidad
de pantalla, si queremos que se muestre el marco del mismo, se
active el modo nocturno o incluso si queremos seleccionar un
idioma para ver las traducciones.
Podemos también en la opción Device , en lugar de
 Custom (Personalizado) , podemos elegir un dispositivo en
concreto y nos configurará opciones de resolución y densidad de
pantalla según sus características concretas.
Por ejemplo, la configuración del diálogo me añadiría los
siguientes parámetros a la anotación @Preview .

@Preview

@Composable

fun SaludaScreenPreview() {

 // Añadimos el Tema de la aplicación

 ProyectoBaseTheme {

 Surface {

 SaludaScreen()

 }

 }

}

1

21/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/tooling
https://developer.android.com/develop/ui/compose/tooling/previews
https://developer.android.com/jetpack/compose/tooling/previews
file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/SaludaScreen.kt

@Preview(

 name = "PORTRAIT",

 device = "spec:width=360dp,height=800dp,dpi=480",

 showBackground = true

)

22/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

3. Para futuros test del interfaz y su integración en MVVM es conveniente hace un state hoisting de
todos mis estados hasta SaludaScreenPreview que debería ser el 'único' componente stateful.

@Composable

fun SaludaScreen(

 nombreState: String,

 onCambioNombre: (String) -> Unit,

 onClickBorrar: () -> Unit) {

 ... // código omitido por abreviar

}

@Preview(

 name = "PORTRAIT",

 device = "spec:width=360dp,height=800dp,dpi=480",

 showBackground = true

)

@Composable

fun SaludaScreenPreview() {

 var nombreState by remember { mutableStateOf("") }

 val onCambioNombre = { nombre: String -> nombreState = nombre }

 val onClickBorrar = { nombreState = "" }

 ProyectoBaseTheme {

 Surface {

 SaludaScreen(

 nombreState = nombreState,

 onCambioNombre = onCambioNombre,

 onClickBorrar = onClickBorrar

)

 }

 }

}

4. Podemos añadir tantos 'previews' como queramos. Por ejemplo, podemos añadir un preview para la
orientación horizontal o LANDSCAPE, modo nocturno e idioma inglés. De esta manera de una sola
vez podremos ver todos los comportamientos de nuestra vista de una sola vez durante el diseño.

@Preview(

 name = "PORTRAIT",

 device = "spec:width=360dp,height=800dp,dpi=480",

 showBackground = true

)

@Preview(

 name = "LANDSCAPE",

 locale = "en",

 device = "spec:width=360dp,height=800dp,dpi=480,orientation=landscape",

 uiMode = Configuration.UI_MODE_NIGHT_YES,

 showBackground = true, fontScale = 1.0f

)

@Composable

fun SaludaScreenPreview() { ... }

6

12

23/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

5. Para evitar tener que añadir muchas anotaciones @Preview existen diferentes plantillas preview como
 @PreviewScreenSizes , @PreviewFontScales , @PreviewLightDark , y @PreviewDynamicColors dependiendo
de la versión de la librería androidx.compose.ui:ui-tooling-preview que estemos usando.

@PreviewScreenSizes

@PreviewFontScale

@Composable

fun SaludaScreenPreview() { ... }

Decarga del código de ejemplo SaludaScreenPreview.kt.

24/24 PMDM 2º DAM Tema 3.1 - Conceptos de Jetpack Compose Rev. 26/09/2024 IES Doctor Balmis

file:///C:/unidadB/git/pmdm/B3_Capa_UI/assets/codigo/tema_3_1/SaludaScreenPreview.kt

