
Proyecto Usuarios con Arquitectura
Descargar estos ejercicios

Ejercicio
Para crear nuestro primer proyecto siguiendo la arquitectura explicada en los apuntes, vamos
a realizar un ejercicio guiado que posteriormente ampliaremos. La app va a seguir siendo de
CONSOLA de Kotlin, y tratará de gestionar la entrada a una aplicación mediante las típicas
opciones para logearse. Para partir de la misma base y que sea más sencillo el seguimiento
de este ejercicio, lo primero que haremos será renombrar el paquete a arquitectura_usuario

1. Creando el paquete data

Vamos a comenzar creando los elementos necesarios para la manipulación de los datos,
paquete data . Como ya hemos visto en el tema, el paquete data lo crearemos directamente
dentro del paquete base arquitectura_usuario.

Como todavía no tenemos conocimiento de acceso a BD con Android, vamos a usar la
simulación de esta mediante colecciones, y como ya se ha explicado en el tema, la simulación
se creará dentro del paquete mocks de data , por lo que el siguiente paso será crear el
paquete mocks dentro del paquete data:

1. En un archivo nuevo llamado UsuarioMock.kt se creará la data class UsuarioMock, con
las propiedades inmutables login y password de tipo String .

2. En un archivo nuevo llamado UsuarioDaoMock.kt se creará laClase UsuarioDaoMock,
clase en la que crearemos una lista mutable con los usuarios para pruebas y a la que
además le añadiremos los métodos que nos permitan manipular estos datos:

get(): MutableList<UsuarioMock>

get(login: String): UsuarioMock?

insert(usuarioRemoto: UsuarioMock)

update(usuarioRemoto: UsuarioMock)

delete(login: String)

💡 Tips: En la siguiente imagen puedes ver la estructura de carpetas afectada hasta el
momento.

1/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B2_Arquitectura_de_una_Aplicacion/ejercicios/5_Arquitectura_usuarios.pdf

Project
[.gradle]
[.idea]
[app]

[build]
[src]

[src]
[kotlin]

[arquitectura_usuarios]
[data]

[mock]
[usuario]
UsuarioMock.kt
UsuarioDaoMock.kt

[views]
MainApp.kt

[build]
[gradle]

...

2. Creamos el paquete models

Como hemos visto en el tema, para cumplir con la arquitectura de capas propuesta,
deberemos tener las clases Modelo necesarias que independicen las fuentes de datos de la
lógica de la aplicación, por lo que deberemos crear el paquete models (que situaremos a nivel
de data cumpliendo la arquitectura propuesta), dentro de este paquete se creará la data
class Usuario correspondiente a UsuarioMock y que en un principio tendrá las mismas
propiedades que esta última.

2/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

3. Creando el repositorio en el paquete data

Volvemos a data y deberemos crear las clases Repositorio que nos hagan de puente entre
los Mocks y los Modelos, en nuestro caso solo tenemos UsuarioMock y el tipo modelo
correspondiente Usuario . Por lo que deberemos hacer lo siguiente:

1. Crearemos el archivo UsuarioRepository.kt dentro del paquete data, con la clase
UsuarioRepository que tendrá una propiedad inmutable de tipo UsuarioDaoMock a través
de la cual podremos acceder a los métodos de esta clase. Para ello crearemos los
métodos paralelos a los de la clase DAO, pero esta vez los datos de entrada y salida
serán de tipo Usuario. Por ejemplo, tendremos el siguiente método en UsuarioRepository:

 fun get():List<Usuario> = proveedorUsuarios.get().toUsuarios()

2. También dentro de data crearemos el archivo RepositoryConverter.kt en el que
incluiremos todos los métodos que sirven para mapear ente Usuario y UsuarioMock,
como se ha explicado en el punto 3 de estructurando la capa de datos del tema 2.3 de
Arquitectura.

💡 Tips: Los anteriores elementos habrán quedado como en la siguiente imagen:

Project
...

[arquitectura_usuarios]
[data]

[mock]
[usuario]
UsuarioMock.kt
UsuarioDaoMock.kt

UsuarioRepository.kt
UsuarioRepositoryConverter.kt

[models]
Usuario.kt
[views]
MainApp.kt

...

4. Definiendo el paquete ui.features

Lógica de la aplicación
Una vez terminada la parte de los datos y modelo, vamos a generar el código necesario
de la UI. Como todavía no estamos trabajando la parte de vistas con Compose, no
tendremos que crearnos las carpetas de componentes, pero si crearemos el paquete
 ui.features dentro de arquitectura_usuarios , en el cual meteremos los diferentes
archivos de la vista de usuario, como puede que con posterioridad la aplicación crezca en
contenido, vamos a crear un paquete usuario dentro de features, donde tendremos lo

3/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

referente a la parte de la aplicación que estamos resolviendo, y que constará de lo
siguiente:

i. Fichero UsuarioUiState.kt con la data class UsuarioUiState, que será igual que la
data class Usuario del paquete models, pero con una propiedad más estaLogeado de
tipo Boolean, que servirá para controlar si el usuario, en determinado momento, ha
entrado correctamente al sistema.

ii. el archivo UsuarioEvent, que como hemos visto en temas anteriores, va a contener
una interface sellada con los eventos que pueden ocurrir en la aplicación:

 AñadeUsuario al que le llega un login y password para posteriormente crear el
usuario.
 EntraSistema al que le llega un login y password y si coinciden con alguno de
los usuarios del sistema, cambiará el estado de esta Logeado del
usuarioUiState.
 SaleSistena que cambia la anterior variable a false.
 MuestraUsuarios que se encargará de mostrar la lista de usuarios del sistema
(esto no tiene sentido en una app, pero lo usamos a modo de comprobación de
que todo está correcto).
 ModificaUsuario al que le llega un password y si el usuario está logeado, se
encargará de modificar el usuario con el nuevo password.

⚠️ Aviso: Aunque se ha explicado la funcionalidad de los eventos de la interfaz
sellada, deberemos tener en cuenta que su codificación la realizaremos en la parte
correspondiente a la vista, que se explica posteriormente.

iii. Dentro de features.usuario también crearemos el fichero UsuarioViewModel.kt con
la clase UsuarioViewModel encargada de toda la parte de la lógica de la aplicación,
tendrá dos variables una de tipo UsuarioRepository y otra de tipo UsuarioUiState .
Esta última será la que guarde el valor del usuario logeado (si se logea un usuario
satisfactoriamente, se guardará en esta variable. Si todavía no se ha logeado o se
realiza logout, esta variable pasará a ser null). Mientras que usuarioRepository la
utilizaremos para el tratamiento de los datos extraídos de la fuente de datos que
hemos preparado con anterioridad.
En esta clase tendremos la función onUsuarioEvent para gestionar los posibles
eventos de la interfaz sellada UsuarioEvent .

Interfaz de usuario
Ahora nos quedaría hacer la parte de la aplicación que se encarga de la interacción con
el usuario. Para ello crearemos un archivo UsuarioScreen.kt dentro de ui.feature ,
donde alojaremos las siguientes funciones:

i. usuarioScreen a la que le llegará una variable usuarioEvent de tipo
 (UsuarioEvent) -> Unit y que teniendo en cuenta el siguiente menú:

4/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

1. Sign in

2. Login

3. Change password

4. Logout

5. List

6. Exit

Se encargará de gestionar los eventos posibles pidiendo los datos necesarios al usuario,
por ejemplo, para el primer caso se podría codificar algo como los siguiente:

when (opcion) {

"1" -> {

 print("Introduce login ")

 val login = readln()

 print("Introduce la contraseña ")

 val password = readln()

 usuarioEvent(UsuarioEvent.AñadeUsuario(login, password))

 }

 ...

}

5/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

5. Definiendo el paquete views

En este paquete solo tendremos la función main que contendrá una variable inmutable de
tipo viewModel y realizará la llamada a la función usuarioScreen. De la siguiente manera:

Para hacer posible la lógica del programa sin usar las clases de Android
(recuerda que estamos en una aplicación de consola), vamos a utilizar una
serie de funciones y propiedades que en un caso real no serían necesarias.

Por tanto, dentro de UsuarioScreen.kt crearemos la función

i. mostrarInformacion a la que le llegará la lista de usuarios y mostrará la salida por
pantalla, esta función será llamada desde el evento correspondiente gestionado en
 UsuarioViewModel .
ii. actualizaEstado a la que le llega estadoUsuarioUiState: UsuarioUiState y se
encargará de actualizar una variable global de este archivo y que nos servirá para
controlar si se ha logeado el usuario correctamente, a esta función la llamaremos desde
la clase UsuarioViewModel en cada interacción con los eventos (de forma que
utilizaremos la propiedad usuarioUiState del ViewModel para actualizar esta variable).
Esto lo haremos porque la aplicación mostrará un mensaje antes de la salida del menú,
indicando que el usuario está logeado o no lo está. Solo podremos cambiar la
contraseña de un usuario logeado.

Usted no está logeado

1. Sign in

2. Login

...

1. Sign in

2. Login

3. Change password

4. Logout

5. List

6. Exit

2

Introduce login pepe

Introduce la contraseña pepe12

Usuario: pepe logeado

1. Sign in

2. Login



6/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

val usuarioViewModel = UsuarioViewModel()

usuarioScreen(usuarioViewModel::onUsuarioEvent)

💡 Tips: Al final la arquitectura te habrá quedado como la siguiente, resaltados los
últimos elementos añadidos:

Project
...

[arquitectura_usuarios]
[data]

[mock]
[usuario]
UsuarioMock.kt
UsuarioDaoMock.kt

UsuarioRepository.kt
UsuarioRepositoryConverter.kt
[models]
Usuario.kt
[ui.features]

[usuario]
[UsuarioUiState.kt]
[UsuariEvent.kt]
[UsuarioViewModel.kt]
[UsuariScreen.kt]

[views]
MainApp.kt

...

7/7 PMDM 2º DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

