Proyecto Usuarios con Arquitectura

Descargar estos ejercicios

17

Ejercicio

Para crear nuestro primer proyecto siguiendo la arquitectura explicada en los apuntes, vamos
a realizar un ejercicio guiado que posteriormente ampliaremos. La app va a seguir siendo de
CONSOLA de Kotlin, y tratara de gestionar la entrada a una aplicacién mediante las tipicas

opciones para logearse. Para partir de la misma base y que sea mas sencillo el seguimiento
de este ejercicio, lo primero que haremos sera renombrar el paquete a arquitectura_usuario

1. Creando el paquete data

Vamos a comenzar creando los elementos necesarios para la manipulacion de los datos,
paquete data . Como ya hemos visto en el tema, el paquete data lo crearemos directamente

dentro del paquete base arquitectura_usuario.

Como todavia no tenemos conocimiento de acceso a BD con Android, vamos a usar la
simulacion de esta mediante colecciones, y como ya se ha explicado en el tema, la simulacion
se creara dentro del paquete mocks de data , por lo que el siguiente paso sera crear el
paquete mocks dentro del paquete data:

1. En un archivo nuevo llamado UsuarioMock.kt se creara la data class UsuarioMock, con
las propiedades inmutables login y password de tipo String .

2. En un archivo nuevo llamado UsuarioDaoMock.kt se creara laClase UsuarioDaoMock,
clase en la que crearemos una lista mutable con los usuarios para pruebas y a la que
ademas le anadiremos los métodos que nos permitan manipular estos datos:

get(): MutablelList<UsuarioMock>
get(login: String): UsuarioMock?
insert(usuarioRemoto: UsuarioMock)
update(usuarioRemoto: UsuarioMock)

delete(login: String)

Tips: En la siguiente imagen puedes ver la estructura de carpetas afectada hasta el

momento.

PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B2_Arquitectura_de_una_Aplicacion/ejercicios/5_Arquitectura_usuarios.pdf

217

Project _|¥

m[.gradle]
m[.idea]
i W[app]
|: m[build]
+ M[src]
|—= H[src]
|—= m[kotlin]
+ M[arquitectura_usuarios]
T_i[data]
= mM[mock]
7 M[usuario]
|: UsuarioMock.kt
UsuarioDaoMock.kt
-+ m[views]
MainApp.kt
m[build]
I:[gfldle]

2. Creamos el paquete models

Como hemos visto en el tema, para cumplir con la arquitectura de capas propuesta,
deberemos tener las clases Modelo necesarias que independicen las fuentes de datos de la
l6gica de la aplicacion, por lo que deberemos crear el paquete models (que situaremos a nivel
de data cumpliendo la arquitectura propuesta), dentro de este paquete se creara la data
class Usuario correspondiente a UsuarioMock Yy que en un principio tendra las mismas
propiedades que esta ultima.

PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

317

3. Creando el repositorio en el paquete data

Volvemos a data y deberemos crear las clases Repositorio que nos hagan de puente entre
los Mocks y los Modelos, en nuestro caso solo tenemos UsuarioMock Yy el tipo modelo
correspondiente Usuario . Por lo que deberemos hacer lo siguiente:

1. Crearemos el archivo UsuarioRepository.kt dentro del paquete data, con la clase
UsuarioRepository que tendra una propiedad inmutable de tipo UsuarioDaoMock a través
de la cual podremos acceder a los métodos de esta clase. Para ello crearemos los
métodos paralelos a los de la clase DAO, pero esta vez los datos de entrada y salida
seran de tipo Usuario. Por ejemplo, tendremos el siguiente método en UsuarioRepository:

fun get():List<Usuario> = proveedorUsuarios.get().toUsuarios()

2. También dentro de data crearemos el archivo RepositoryConverter.kt en el que
incluiremos todos los métodos que sirven para mapear ente Usuario y UsuarioMock,
como se ha explicado en el punto 3 de estructurando la capa de datos del tema 2.3 de
Arquitectura.

Tips: Los anteriores elementos habran quedado como en la siguiente imagen:

Project _|V|
- M[arquitectura_usuarios]
H’Li[data]
+ m[mock]
+ M[usuario]
|: UsuarioMock.kt
UsuarioDaoMock.kt
UsuarioRepository.kt
UsuarioRepositoryConverter.kt
*"Li[models]
Usuario.kt
*"Li[views]
MainApp.kt

4. Definiendo el paquete ui.features

o Légica de la aplicacion
Una vez terminada la parte de los datos y modelo, vamos a generar el cédigo necesario
de la Ul. Como todavia no estamos trabajando la parte de vistas con Compose, no
tendremos que crearnos las carpetas de componentes, pero si crearemos el paquete
ui.features dentro de arquitectura_usuarios , en el cual meteremos los diferentes
archivos de la vista de usuario, como puede que con posterioridad la aplicacion crezca en
contenido, vamos a crear un paquete usuario dentro de features, donde tendremos lo

PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

referente a la parte de la aplicacion que estamos resolviendo, y que constara de lo
siguiente:

i. Fichero UsuarioUiState.kt con la data class UsuarioUiState, que sera igual que la
data class Usuario del paquete models, pero con una propiedad mas estalLogeado de
tipo Boolean, que servira para controlar si el usuario, en determinado momento, ha
entrado correctamente al sistema.

ii. el archivo UsuarioEvent, que como hemos visto en temas anteriores, va a contener
una interface sellada con los eventos que pueden ocurrir en la aplicacion:

o AnadeUsuario al que le llega un login y password para posteriormente crear el
usuario.

(¢]

Entrasistema al que le llega un login y password y si coinciden con alguno de
los usuarios del sistema, cambiara el estado de esta Logeado del
usuarioUiState.

[e]

SaleSistena que cambia la anterior variable a false.

o MuestraUsuarios que se encargara de mostrar la lista de usuarios del sistema
(esto no tiene sentido en una app, pero lo usamos a modo de comprobacion de
que todo esta correcto).

[e]

ModificaUsuario al que le llega un password y si el usuario esta logeado, se
encargara de modificar el usuario con el nuevo password.

i, Aviso: Aunque se ha explicado la funcionalidad de los eventos de la interfaz
sellada, deberemos tener en cuenta que su codificacién la realizaremos en la parte
correspondiente a la vista, que se explica posteriormente.

iii. Dentro de features.usuario también crearemos el fichero UsuarioViewModel.kt con
la clase UsuarioviewModel encargada de toda la parte de la légica de la aplicacion,
tendra dos variables una de tipo usuarioRepository Y otfra de tipo UsuarioUiState .
Esta ultima sera la que guarde el valor del usuario logeado (si se logea un usuario
satisfactoriamente, se guardara en esta variable. Si todavia no se ha logeado o se
realiza logout, esta variable pasara a ser null). Mientras que usuarioRepository la
utilizaremos para el tratamiento de los datos extraidos de la fuente de datos que
hemos preparado con anterioridad.

En esta clase tendremos la funcidon onUsuarioEvent para gestionar los posibles
eventos de la interfaz sellada usuarioEvent .
e Interfaz de usuario
Ahora nos quedaria hacer la parte de la aplicacion que se encarga de la interaccion con
el usuario. Para ello crearemos un archivo UsuarioScreen.kt dentro de ui.feature ,
donde alojaremos las siguientes funciones:
i. usuarioScreen a la que le llegara una variable usuarioEvent de tipo

(UsuarioEvent) -> Unit y que teniendo en cuenta el siguiente menu:

417 PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

Sign in

Login

. Change password
Logout

List

Exit

a U A W N R

Se encargara de gestionar los eventos posibles pidiendo los datos necesarios al usuario,
por ejemplo, para el primer caso se podria codificar algo como los siguiente:

when (opcion) {

"1t o> {
print("Introduce login ")
val login = readln()
print("Introduce la contrasena ")
val password = readln()

usuarioEvent(UsuarioEvent.AnadeUsuario(login, password))

}

517 PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

6/7

(J)

Para hacer posible la l6gica del programa sin usar las clases de Android
(recuerda que estamos en una aplicacion de consola), vamos a utilizar una
serie de funciones y propiedades que en un caso real no serian necesarias.

Por tanto, dentro de UsuarioScreen.kt crearemos la funcién

i. mostrarInformacion a la que le llegara la lista de usuarios y mostrara la salida por

pantalla, esta funcion sera llamada desde el evento correspondiente gestionado en

UsuarioViewModel .

actualizaEstado a la que le llega estadoUsuarioUiState: UsuarioUiState Yy se

encargara de actualizar una variable global de este archivo y que nos servira para

controlar si se ha logeado el usuario correctamente, a esta funcion la llamaremos desde

la clase usuarioviewModel en cada interaccién con los eventos (de forma que

utilizaremos la propiedad usuariouistate del ViewModel para actualizar esta variable).

Esto lo haremos porque la aplicacién mostrara un mensaje antes de la salida del menu,

indicando que el usuario esta logeado o no lo esta. Solo podremos cambiar la

contrasena de un usuario logeado.

Usted no esta logeado

1.
2.

N OO TR WN R

Sign in

Login

. Sign in

Login

. Change password

Logout
List
Exit

Introduce login pepe

Introduce la contrasena pepel2

Usuario: pepe logeado

1.
2.

Sign in

Login

5. Definiendo el paquete views

En este paquete solo tendremos la funcidon main que contendra una variable inmutable de

tipo viewModel y realizara la llamada a la funcion usuarioScreen. De la siguiente manera:

PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

val usuarioViewModel = UsuarioViewModel()

usuarioScreen(usuarioViewModel: :onUsuarioEvent)

. Tips: Al final la arquitectura te habra quedado como la siguiente, resaltados los

ultimos elementos anadidos:

Project _|¥

+ M[arquitectura_usuarios]
—7 m[data]

UsuarioMock.kt
UsuarioDaoMock.kt
UsuarioRepository.kt
UsuarioRepositoryConverter.kt
—T_i[models]
Usuario.kt
— mi[ui.features]

I—- M[usuario]
m[UsuarioUiState.kt]
M[UsuariEvent.kt]
m[UsuarioViewModel.kt]
M[UsuariScreen.kt]

—5 mi[views]
MainApp.kt

-|':i[usuario]

717

PMDM 2° DAM Tema 2 Rev. 23/09/2024 IES Doctor Balmis

