Tema 2.3 - Arquitectura de una aplicacion

Descargar estos apuntes pdf o html
Indice

= |ntroduccion
¥ Esquema basico de una aplicacion Android propuesto por Google
= Capa Ul
= Capa de Datos
= Capa de Dominio
= Modelo vista vista modelo MVVM
¥ Vision general de la arquitectura en un proyecto de Android
= Estructurando el Modelo
= Estructurando la capa de datos
= Estructurando la capa de Ul
¥ Apéndice | - Codificando imagenes en Base64
= Funciones de utilidad para codificar y decodificar imagenes

112 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion

Rev. 22/09/2024

IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_3_arquitectura_de_una_aplicacion.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_3_arquitectura_de_una_aplicacion.html

Introduccion

Basicamente una aquitectura software es la estructura de un sistema de software, los componentes del software, las propiedades

externamente visibles de esos componentes y las relaciones entre ellos.

La idea tras las arquitecturas es tener capas que separen las responsabilidades de cada una de ellas. De esta forma se consigue que el
cédigo sea mas mantenible, escalable y testeable. Ademas, podremos cambiar una capa sin que afecte a las demas.

Actualmente existen arquitecturas complejas de sistemas como por ejemplo Arquitectura Hexagonal, Microservicios, Event-driven
Architecture, etc. Sin embargo, en el mundo del disefio disefio de aplicaciones para dispositivos méviles tenemos patrones arquitectonicos
mas sencillas como MVC, MVP, MVVM, MVI, etc.

< Nota: Puedes ver mas informacion sobre la arquitectura propuesta por Google para Android en Guia de arquitectura de apps

Esquema basico de una aplicacion Android propuesto por Google

Capa de Dominio
o] Capa Datos

Modelo

Capa Ul

La funcion de la capa de la IU (o capa de presentacion) consiste en mostrar los datos de la aplicacion en la pantalla. Cuando los datos
cambian, ya sea debido a la interaccion del usuario (como cuando presiona un botén) o una entrada externa (como una respuesta de red), la

IU debe actualizarse para reflejar los cambios.
La capa de la IU consta de los siguientes dos elementos:

« Elementos de la IU que renderizan los datos en la pantalla (puedes compilar estos elementos mediante las vistas XML o las funciones de

Jetpack Compose)
+ Contenedores de estados (como las clases ViewModel) que contienen datos, los exponen a la IU y controlan la légica

% Importante: Documentacion oficial de Android sobre la Capa de Ul en la que mas adelante profundizaremos

Capa de Dominio

Componentes Ul SR CO (o} Capa Datos
Estados
Modelo

2/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Event-driven_architecture
https://developer.android.com/jetpack/guide?hl=es-419
https://developer.android.com/jetpack/guide/ui-layer?hl=es-419

Capa de Datos

La capa de datos esta formada por repositorios que pueden contener de cero a muchas fuentes de datos. A este tipo de disefio se le
denomina Repository Pattern y es un patrén de disefio que se utiliza para separar la légica empresarial de la légica de acceso a los datos. El
repositorio se encarga de obtener los datos de una fuente de datos y convertirlos en un formato con el que el resto de la aplicaciéon pueda
trabajar.

< Nota: Este patron fué introducido Martin Fowler en su libro Patterns of Enterprise Application Architecture en el afio 2002 y
posteriormente desarrollado por Eric Evans en su libro Domain-Driven Design en el afio 2003. Hoy en dia es un patrén muy utilizado en
el desarrollo de software y ampliamente utilizado en el desarrollo de aplicaciones moviles.

% Importante: Documentacion oficial de Android sobre la Capa de datos en la que mas adelante profundizaremos

Capa Datos

Capa de Dominio

(o} Repositorio/s Fuente/s Datos
Modelo

Capa de Dominio
La capa de dominio es una capa opcional que se ubica entre la capa de la IU y la de datos.

La capa de dominio es responsable de encapsular la l6gica empresarial compleja o la l6gica empresarial simple que varios ViewModels
reutilizan. Esta capa es opcional porque no todas las apps tendran estos requisitos. Solo debes usarla cuando sea necesario; por ejemplo,
para administrar la complejidad o favorecer la reutilizacion.

Esta terminologia viene del DDD (Domain Driven Design) que es una metodologia de disefio de software que se centra en la logica
empresarial y en la comunicacion entre los expertos en el dominio y los desarrolladores.

Sin embargo, nosotros vamos a obviar esta capa y vamos a implementar una arquitectura mas sencilla basada en el patron MVVM en el cual
esta capa se denomina Modelo ya que representara el modelo de datos.

3112 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://martinfowler.com/eaaCatalog/repository.html
https://www.amazon.es/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
https://www.amazon.es/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://developer.android.com/jetpack/guide/data-layer?hl=es-419

Modelo vista vista modelo MVVM

« Video Tutorial DevExperto (Castellano): Patrones de presentacion MVC, MVP, MVVM
» Podcast con Angeles Vazquez DevExperto (Castellano): MVC, MVP, MVVM y MVI para Uls Dinamicas

MVVM es un patron de disefio de software que facilita la separacion de la légica de presentacion de la logica de negocio.

MVVM es una variante del patrén MVC (Modelo-Vista-Controlador) que se utiliza para la construccion de interfaces de usuario. En MVVM, el
ViewModel asume la funcionalidad del "intermediario". En MVVM, toda la légica de presentacion se coloca en el ViewModel.

El ViewModel es responsable de recuperar los datos de los modelos y exponerlos a la vista. El ViewModel también se utiliza para manejar
todas las interacciones del usuario. El ViewModel recupera los datos de los modelos, los formatea y los expone a la vista. El ViewModel

también acepta las entradas del usuario y las valida antes de actualizar los modelos.

Implementaciones o aproximaciones a esta arquitectura hay muy diversas, pero basicamente la que nosotros vamos a implementar un
esquema similar al siguiente para aproximarnos a MVVM siguiendo las recomendaciones de Google.

%
Capa Ul
Evento Ul Evento de cambio
__.en el modelo
< | 7 ~
Evento de cambio Data L
. de estado . ata Layer
View B ViewModel .
with the Model

W \ Operacion CRUD

Donde ...

« View son los Componentes Ul en nuestro caso los componentes de Jetpack Compose que renderizan los datos en la pantalla.

+ ViewModel es el Contenedor de estados que contiene datos, los exponen a la IU y controlan la l6gica.

* Model es una abstraccion de los datos de la aplicacion. En nuestro caso seran los Repositorios que se encargan de obtener los datos
de una fuente de datos y convertirlos en un formato con el que el resto de la aplicacion pueda trabajar.

2" Nota

Aunque nosotros durante el curso vamos a hablar de MVVM, al final nosotros vamos a aplicar el denominado MVI (Model-View-Intent)
que es una variante de MVVM que se utiliza en aplicaciones Android y que se basa en la programacion reactiva y que puedes ver un
video explicativo aqui. Aunque posiblemente no lo entiendas hasta mas adelante. Por lo que te recomiendo que veas este video mas

adelante en el curso.

4/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://www.youtube.com/watch?v=S3h-u4M1q3w
https://es.linkedin.com/in/angeles-vazquez-parra
https://www.youtube.com/watch?v=sel5UFPKh_U
https://www.youtube.com/watch?v=b2z1jvD4VMQ

Visién general de la arquitectura en un proyecto de Android

Ala hora de concretar la arquitectura de una aplicacion de Android, aunque hay una serie de recomendaciones por parte de Google, no hay
una forma Unica de hacerlo. Por tanto, el equipo de desarrollo de una aplicacién debe decidir algin tipo de convenio organizativo de
paquetes, nombres de clases, etc. que se adapte a sus necesidades. De tal manera que cualquier miembro del equipo sepa encontrar

facilmente donde se encuentra la implementacion de una determinada funcionalidad. Ademas de modificar facilmente con el menor nimero de
fallos y conflictos de trabajo en paralelo.

Esto ultimo, se consigue creando diferentes médulos de la aplicacion que se puedan desarrollar de forma independiente y que se puedan

integrar facilmente en el proyecto final. Sin embargo, la parte de modularizacion en diferentes paquetes no la vamos a abordar en este curso
por falta de tiempo.

Descarga del siguiente enlace tienes un '‘Cheat Sheet' de la Arquitectura propuesta en el curso que debes descargar y tener accesible
durante el presente curso.

< Nota: Vamos a empezar con una estructuracion inicial del proyecto siguiendo el esquema propuesto en el cheatsheet anterior
para ir aproximandonos a la arquitectura propuesta por Google y a medida que vayamos avanzando en el curso iremos concretando mas
sobre su implementacion, las diferentes sub-capas de la arquitectura, los convenios de nombres que hemos usado en el curso, etc.

5/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/cheatsheet_carpetas_arquitectura.pdf

Estructurando el Modelo

Aqui vamos a crear los modelos de datos que vamos a utilizar en nuestra aplicacion. En nuestro caso, vamos a

crear un modelo de datos para representar un Contacto de una Agenda. [Android_[v]

E[com.pmdm.agenda]
LF[modew]

Para ello, siguiendo es esquema de carpetas propuesto en el cheatsheet anterior, vamos a crear un paquete Contacto.kt

models dentro del paquete principal de nuestro proyecto.

Este modelos seran clases 'generales' o 'genéricas' que representaran los datos de mi problema. Podremos definir roles entre ellas, asi como
relaciones de herencia, composicion, etc. En algunos casos complejos incluso podremos definir casos de uso, etc.

Nosotros simplemente vamos a definir una clase contacto que representara un contacto de una agenda. Para ello, vamos a crear un fichero
Contacto.kt dentro del paquete models con el siguiente contenido.

data class Contacto(
val id: Int,
val nombre: String,
val apellidos: String,
val foto: String?,
val correo: String,
val telefono: String,
val categorias: EnumSet<Categorias>

) 1
enum class Categorias {
Amigos, Trabajo, Familia, Emergencias

2 Importante: El modelo no deberia tener ninguna referencia o dependencia de la capa de Ul ni a la capa de datos.

Para evitar que el modelo tenga dependencias por ejemplo de las bibliotecas del propio android. Fijate que la propiedad foto es de tipo
String? y no de tipo Bitmap? que nos obligaria a incluir el paquete android.graphics en el modelo. De esta manera la imagen puede ser
una url, un path, un base64, etc. y la conversién a Bitmap la haremos en la capa de Ul.

En nuestro caso hemos decidido que sea una cadena en base64. Si quieres saber mas sobre que es base64 puedes consultar el Apéndice |
al final de este documento o bien a este enlace a la Wikipedia.

6/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://es.wikipedia.org/wiki/Base64

Estructurando la capa de datos

Ahondado un poco mas el diagrama general de la capa de datos podriamos tener un esquema similar al siguiente:

Capa Datos

Mocks
Datos Contactos
de prueba

Data Room
ContactoRepository Local DB

Modelo

Contacto

Services
Api REST

Vamos a concretar una propuesta de organizacion en paquetes y nomenclatura para el mismo que vamos a seguir durante el curso...

1.

712

Crearemos paquete data dentro del paquete principal de nuestro proyecto. En él, vamos a [Android _[v]
crear los repositorios que se encargaran de obtener los datos de una fuente de datos y Ecgﬁggfm'age"da]
convertirlos en un formato con el que el resto de la aplicaciéon pueda trabajar. Ademas, ContactoRepository.kt
,) . RepositoryConverters.kt
contendra los paquetes que van a gestionar las diferentes fuentes de datos de nuestra Lilmmks]
. 7 m[contacto]
aplicacion y esto sera lo primero que vamos hacer porque sin fuente no puede haber t ContactoDaoMock kt

repositorio que la encapsule. ContactoMock.kt

. Crearemos paquete mocks que definird colecciones de objetos de prueba que simulan una fuente de datos. Como puede haber

diferentes clases, vamos a crear un paquete mocks.contacto €l cual definira las clases que contienen los contactos de prueba.
o ContactoMock.kt es una clase que define un objeto de prueba de tipo contacto . En este caso es idéntica a la clase Contacto que
hemos definido en el modelo. Sin embargo, en un caso real, podria ser diferente ya que el modelo es independiente de la fuente de
datos.

data class ContactoMock(

val id: Int,

val nombre: String,

val apellidos: String,

val foto: String?,

val correo: String,

val telefono: String,

val categorias: EnumSet<Categorias>
) A

enum class Categorias {

Amigos, Trabajo, Familia, Emergencias

PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ContactoMock.kt

o ContactoDaoMock.kt es una clase que define una coleccién de objetos de prueba de tipo contactoMock . En este caso, es una clase
que implementa las operaciones CRUD (Create, Read, Update, Delete) sobre la coleccion de objetos de prueba como los
siguientes...

class ContactoDaoMock {

// Coleccién de datos de prueba
private var contactos = mutableListOf(...)

// Obtiene una lista de contactos

fun get(): MutableList<ContactoMock> = contactos

// Obtiene un contacto por Id

fun get(id: Int): ContactoMock? = contactos.find { u -> u.id == id }
// Inserta un contacto en la coleccién de contactos

fun insert(contacto: ContactoMock) = contactos.add(contacto)

}

3. Dentro del paquete data , crearemos el fichero RepositoryConverters.kt que contendra las funciones de extension para transformar el
modelo y la fuente de datos y viceversa. Al usar funciones de extension, podemos agregar métodos a una clase sin tener que modificar
la definicion de la clase manteniendo el principio OCP (Open-Closed Principle) de SOLID. Ademas, evitamos que el modelo tenga
dependencias de la fuente de datos.

// Convierte un un objeto Contacto del modelo en un ContactoMock

fun Contacto.toContactoMock() = ContactoMock(...)

// Convierte un un objeto ContactoMock de la fuente de datos en un Contacto
fun ContactoMock.toContacto() = Contacto(...)

4. entro del paquete data , crearemos el fichero ContactoRepository.kt que contendra la clase ContactoRepository que implementa las
operaciones CRUD (Create, Read, Update, Delete) sobre objetos del modelo contacto y se encargara de replicarlos en la fuente de
datos en nuestro caso el 'mock’ de forma transparente.

class ContactoRepository {
private var dao = ContactoDaoMock()

fun get(): MutableList<Contacto> = dao.get().map { it.toContacto() }.toMutableList()

fun get(id: Int): Contacto? = dao.get(id)?.toContacto()
fun insert(contacto: Contacto) = dao.get().add(contacto.toContactoMock())

Resumen: Podemos decir que es una envoltorio o 'Wapper que encapsula la fuente de datos y sus datos de forma que el
resto de la aplicacion pueda trabajar con ellos como un modelo genérico sin saber cual es la fuente de los mismos.

Aqui tienes un video que te pueden ayudar a tener una idea de su funcionamiento del patron repository en en otros lenguajes
de programacion. No hace falta entender 100% el cédigo, pero si la idea general del patrén.

8/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ContactoDaoMock.kt
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/RepositoryConverters.kt
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ContactoRepository.kt
https://www.youtube.com/watch?v=QqsH0OgqafA

Estructurando la capa de Ul

Esta va a ser la capa mas compleja organizativamente. Pues vamos atener diferentes paquetes para [Android _[v]

diferenciar claramente las diferentes partes de la capa de UI. "L"'[_fﬁ:i']"Pmd'“-myappl
— m[themes]

En el diagrama de la derecha, tienes nuestra propuesta de plantilla organizativa para esta capa que hay DarkTheme kt

s m[views]

t MainActivity.kt
- . . r Fragments.kt
crear en cada uno de los paquetes, vamos a hacer una primera aproximacion a la estructura de la capa -+ &[navigation]
MainNavGraph.kt
Feature1ScreenRoute.kt
Feature2ScreenRoute.kt

Esta estructura responderia a la propuesta de Google donde existe un contenedor de estados que E[composables}

en el 'cheatsheet'. Aunque en los futuros temas vamos a abordar con detalle los ficheros que vamos a

de Ul para tener una visién global de la misma.

. .. Composable1.kt
contiene los datos, los expone a la IU y controla la l6gica. En nuestro caso, este contenedor de estados ComposableUiState1 .kt (Optional)
Composable2.kt
ComposableUiState2.kt (Optional)
*“L‘-‘[features]

1 m[feature1]

Feature1Screen .kt

Feature1ViewModel .kt

Feature1UiState.kt

Feature1Events.kt

'iE‘i[componenﬂ]

sera el ViewModel.

[Capa Ul

Eventos

component1.kt
component1UiState.kt
component1Events.kt
7 m[component2]
iE component2.kt

Capa de datos Datos de ViewModel
la Aplicacion

component2UiState.kt
component2Events.kt

Vamos a explicar brevemente los tres elementos de la Capa de Ul y cada uno de los sub-paquetes que hemos creado en dentro del paquete

UI que la representa.
< Nota: Iremos profundizando en su implementacion en los siguientes temas.
Elementos que la forman:

1. viewModel Como hemos comentado es el Contenedor de estados que contiene datos, los expone a la IU y controla la l6gica. Podemos
tener un ViewModel por cada pantalla de nuestra aplicacion o compartirlo entre varias. Ademas, en nuestra propuesta de arquitectura se
encargara gestionar:

o La gestion de los datos de los elementos visuales a través de objetos uistate que representan el estado de visualizacion de los
componentes en la Ul.

o La légica de la pantalla entre los que vamos a incluir la gestion de casos de uso de los objetos del modelo.

o Derivada de gestion de la légica tendremos la gestion de los eventos de los componentes en la Ul.

o Gestién de la visualizacién de estados de error.

o Transformacion de los objetos del UiState a los objetos de Modelo y viceversa.

o Comunicacion con la capa de datos a través de las 'clases repositorio'.

2. uistate estara representado por una o varias clases que representaran el estado de visualizacion de los elementos visuales de la
pantalla. Podriamos tener:

o Un uistate por cada elemento visual de la pantalla. Por ejemplo, un uistate de tipo booleano para representar el estado de un
icono o si se visualiza o no un circulo de progreso, etc.

o Un uistate por cada grupo de elementos visuales relacionados entre si en la pantalla. Por ejemplo, una
data class NombreCompletoUiState con nombre , apellidol y apellido2 a modo de UiState para representar el estado de tres
campos de texto que representen el nombre completo de una persona.

o Un vuistate por cada pantalla de nuestra aplicacion que a su vez este formado por UiStates de grupo de elementos visuales que se
repitan entre pantallas.

3. Componentes en la UI son los elementos visuales que renderizan los datos en la pantalla. En nuestro caso, seran los componentes de
Jetpack Compose que renderizan los datos en la pantalla. Sin embargo, podria sustituir de forma sencilla por componentes tradicionales
de XML o 'Vistas'.

Sub-paquetes de la capa de Ul:

1. ui.themes es un paquete que contendra los diferentes temas de la aplicacion. Que contendran los colores, tipografias, etc. que vamos a

usar en nuestra aplicacion.

9/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/guide/ui-layer?hl=es-419#state-holders

2. ui.views es un paquete que contendra las diferentes vistas de la aplicacion. En nuestro caso, tendremos una Unica vista que sera la
MainActivity que sera la actividad principal de nuestra aplicacion. Solo si tuviéramos, puntos de entrada secundarios en nuestra
aplicacion definiriamos mas 'activities'.

3. ui.navigation es un paquete que contendra el grafo de navegacion de nuestra aplicacion. Con las diferentes rutas de navegacion entre
las pantallas.

4. ui.composables aqui definiremos aquellos componentes personalizados de la aplicacion que sean reutilizables entre diferentes pantallas
y las clases que representen su UiState si fuera necesario.

5. ui.features es un paquete que contendra las diferentes pantallas de nuestra aplicacion. En nuestro ejemplo de plantilla, tendremos la
pantalla Featureiscreen con un ViewModel para gestionarla definido en la clase FeatureilviewModel y su correspondiente UiState
definido en la clase Featureiuistate . Ademas, si esta pantalla esta compuesta por diferentes grupos logicos de elementos visuales,
podriamos crear un paquete componentl y component2 con sus correspondientes ViewModel y UiState para gestionarlos. De esta
manera si tuviéramos que reutilizarlos en otra pantalla, podriamos hacerlo facilmente conservando toda la logica.

10/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

Apéndice | - Codificando imagenes en Base64

En ocasiones, necesitamos codificar una imagen en Base64 para poder enviarla a un servidor o almacenarla en una base de datos. Para ello,
podemos usar la siguiente funcién que nos permite codificar una imagen en Base64.

La codificacién base64 consiste en realizar agrupaciones de 6 bits y asignarle un caracter:

o Letras mayusculas (0-25): ABCDEFGHIJKLMNOPQRSTUVWXYZ
o Letras minusculas (26-51): abcdefghijkimnopgrstuvwxyz

¢ Digitos decimales (52-61): 0123456789

« Simbolos especiales (62-63): +/

Si la cadena de bytes no contiene exactamente un multiplo de 6 bits, se completara con ceros.

Ejemplo: Supongamos la cadena ...

Cadena Binario Hexadecimal

0110 0001 1100 0011 1001
ad 61 C3 98
1000

Si queremos codificar esta cadena de bits en Base64 tendremos que realizar
grupos de 6 bits:

Binario Grupos de 6 bits Base 64

0110 0001 1100 0011 1001 1000 011000 011100 001110 01100 YcOY

Aqui tienes diferentes URL's de utilidad que te permiten codificar y decodificar textos e imagenes en Base64:

« https://codebeautify.org/text-to-base64-converter
¢ https://codebeautify.org/base64-to-text-converter
o https://codebeautify.org/image-to-base64-converter

o https://codebeautify.org/base64-to-image-converter

11/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://codebeautify.org/text-to-base64-converter
https://codebeautify.org/base64-to-text-converter
https://codebeautify.org/image-to-base64-converter
https://codebeautify.org/base64-to-image-converter

Funciones de utilidad para codificar y decodificar imagenes

En el proyectoBase se ha incluido una libreria de utilidades hecha por los profesores del médulo para gestion de imagenes de forma
'sencilla’. Purdes encontrar su implementacion en el siguiente repositorio de GitHub publico https://github.com/pmdmiesbalmis/utilities.

Para usarla en los proyectos de Android, debes incluir entrada en la seccidon [libraries] del libs.versions.toml del proyecto de la siguiente

forma:

pmdm-ies-balmis-utilities = {

group = "com.github.pmdmiesbalmis",
name = "utilities",
version.ref = "pmdmIesBalmisVersion"

Posteriormente debes incluir la dependencia en el build.gradle.kts del modulo de la siguiente forma:

dependencies {
implementation(libs.pmdm.ies.balmis.utilities)

Para usar libreria en un funte de cédigo, debes importar todas la funciones de extension de la siguiente forma:
import com.github.pmdmiesbalmis.utilities.imagetools.*

A partir de ese momento dispondras de las siguientes funciones de extension...

1. ImageBitmap.resize(ladoLargo: Int): ImageBitmap : Redimensiona una iImageBitmap manteniendo la relaciéon de aspecto.

2. ImageBitmap.toBase64(formato: FormatosCompresion = FormatosCompresion.PNG_90): String : Convierte una ImageBitmap a un String
codificado en Base64.

3. ImageBitmap.toBlob(formato: FormatosCompresion = FormatosCompresion.PNG_90): ByteArray : Convierte una ImageBitmap @ un ByteArray .

4. string.base64ToImageBitmap(): ImageBitmap : Convierte un String codificado en Base64 a una ImageBitmap .

5. ByteArray.toImageBitmap(): ImageBitmap : Convierte un ByteArray auna ImageBitmap -

6. Context.imageBitmapFromRerouceId(recurso: Int): ImageBitmap : Carga una ImageBitmap desde un recurso de la aplicacion Android sin

compresion.
7. Context.imageBitmapFromUri(uri: Uri, formato: FormatosCompresion = FormatosCompresion.JPG_75, tamanoMaxKB: Int = 512): ImageBitmap?

: Carga una ImageBitmap desde una Uri, con control de tamafio y formato.

12/12 PMDM 2° DAM Tema 2.3 - Arquitectura de una aplicacion Rev. 22/09/2024 IES Doctor Balmis

https://github.com/pmdmiesbalmis/utilities

