
Tema 2.3 - Arquitectura de una aplicación
Descargar estos apuntes pdf o html

Índice
Introducción
Esquema básico de una aplicación Android propuesto por Google

Capa UI
Capa de Datos
Capa de Dominio

Modelo vista vista modelo MVVM
Visión general de la arquitectura en un proyecto de Android

Estructurando el Modelo
Estructurando la capa de datos
Estructurando la capa de UI

Apéndice I - Codificando imágenes en Base64
Funciones de utilidad para codificar y decodificar imágenes

1/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_3_arquitectura_de_una_aplicacion.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_3_arquitectura_de_una_aplicacion.html

Introducción
Básicamente una aquitectura software es la estructura de un sistema de software, los componentes del software, las propiedades
externamente visibles de esos componentes y las relaciones entre ellos.

La idea tras las arquitecturas es tener capas que separen las responsabilidades de cada una de ellas. De esta forma se consigue que el
código sea más mantenible, escalable y testeable. Además, podremos cambiar una capa sin que afecte a las demás.

Actualmente existen arquitecturas complejas de sistemas cómo por ejemplo Arquitectura Hexagonal, Microservicios, Event-driven
Architecture, etc. Sin embargo, en el mundo del diseño diseño de aplicaciones para dispositivos móviles tenemos patrones arquitectónicos
más sencillas cómo MVC, MVP, MVVM, MVI, etc.

📌 Nota: Puedes ver más información sobre la arquitectura propuesta por Google para Android en Guía de arquitectura de apps

Esquema básico de una aplicación Android propuesto por Google

Capa UI
Capa de Dominio

o
Modelo

Capa Datos

Capa UI
La función de la capa de la IU (o capa de presentación) consiste en mostrar los datos de la aplicación en la pantalla. Cuando los datos
cambian, ya sea debido a la interacción del usuario (como cuando presiona un botón) o una entrada externa (como una respuesta de red), la
IU debe actualizarse para reflejar los cambios.

La capa de la IU consta de los siguientes dos elementos:

Elementos de la IU que renderizan los datos en la pantalla (puedes compilar estos elementos mediante las vistas XML o las funciones de
Jetpack Compose)
Contenedores de estados (como las clases ViewModel) que contienen datos, los exponen a la IU y controlan la lógica

✋ Importante: Documentación oficial de Android sobre la Capa de UI en la que más adelante profundizaremos

Capa UI

Componentes UI Contenedor de
Estados

Capa de Dominio
o

Modelo
Capa Datos

2/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://en.wikipedia.org/wiki/Hexagonal_architecture_(software)
https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Event-driven_architecture
https://en.wikipedia.org/wiki/Event-driven_architecture
https://developer.android.com/jetpack/guide?hl=es-419
https://developer.android.com/jetpack/guide/ui-layer?hl=es-419

Capa de Datos
La capa de datos está formada por repositorios que pueden contener de cero a muchas fuentes de datos. A este tipo de diseño se le
denomina Repository Pattern y es un patrón de diseño que se utiliza para separar la lógica empresarial de la lógica de acceso a los datos. El
repositorio se encarga de obtener los datos de una fuente de datos y convertirlos en un formato con el que el resto de la aplicación pueda
trabajar.

📌 Nota: Este patrón fué introducido Martin Fowler en su libro Patterns of Enterprise Application Architecture en el año 2002 y
posteriormente desarrollado por Eric Evans en su libro Domain-Driven Design en el año 2003. Hoy en día es un patrón muy utilizado en
el desarrollo de software y ámpliamente utilizado en el desarrollo de aplicaciones móviles.

✋ Importante: Documentación oficial de Android sobre la Capa de datos en la que más adelante profundizaremos

Capa Datos

Repositorio/s Fuente/s DatosCapa UI
Capa de Dominio

o
Modelo

Capa de Dominio
La capa de dominio es una capa opcional que se ubica entre la capa de la IU y la de datos.

La capa de dominio es responsable de encapsular la lógica empresarial compleja o la lógica empresarial simple que varios ViewModels
reutilizan. Esta capa es opcional porque no todas las apps tendrán estos requisitos. Solo debes usarla cuando sea necesario; por ejemplo,
para administrar la complejidad o favorecer la reutilización.

Esta terminología viene del DDD (Domain Driven Design) que es una metodología de diseño de software que se centra en la lógica
empresarial y en la comunicación entre los expertos en el dominio y los desarrolladores.

Sin embargo, nosotros vamos a obviar esta capa y vamos a implementar una arquitectura más sencilla basada en el patrón MVVM en el cual
esta capa se denomina Modelo ya que representará el modelo de datos.

3/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://martinfowler.com/eaaCatalog/repository.html
https://www.amazon.es/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
https://www.amazon.es/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://developer.android.com/jetpack/guide/data-layer?hl=es-419

Modelo vista vista modelo MVVM
Vídeo Tutorial DevExperto (Castellano): Patrones de presentación MVC, MVP, MVVM
Podcast con Ángeles Vázquez DevExperto (Castellano): MVC, MVP, MVVM y MVI para UIs Dinámicas

MVVM es un patrón de diseño de software que facilita la separación de la lógica de presentación de la lógica de negocio.

MVVM es una variante del patrón MVC (Modelo-Vista-Controlador) que se utiliza para la construcción de interfaces de usuario. En MVVM, el
ViewModel asume la funcionalidad del "intermediario". En MVVM, toda la lógica de presentación se coloca en el ViewModel.

El ViewModel es responsable de recuperar los datos de los modelos y exponerlos a la vista. El ViewModel también se utiliza para manejar
todas las interacciones del usuario. El ViewModel recupera los datos de los modelos, los formatea y los expone a la vista. El ViewModel
también acepta las entradas del usuario y las valida antes de actualizar los modelos.

Implementaciones o aproximaciones a esta arquitectura hay muy diversas, pero básicamente la que nosotros vamos a implementar un
esquema similar al siguiente para aproximarnos a MVVM siguiendo las recomendaciones de Google.

Capa UI

View ViewModel

Evento UI

Evento de cambio
de estado

Datos UI

Data Layer
with the Model

Evento de cambio
en el modelo

Operación CRUD

Donde ...

View son los Componentes UI en nuestro caso los componentes de Jetpack Compose que renderizan los datos en la pantalla.
ViewModel es el Contenedor de estados que contiene datos, los exponen a la IU y controlan la lógica.
Model es una abstracción de los datos de la aplicación. En nuestro caso serán los Repositorios que se encargan de obtener los datos
de una fuente de datos y convertirlos en un formato con el que el resto de la aplicación pueda trabajar.

Nota

Aunque nosotros durante el curso vamos a hablar de MVVM, al final nosotros vamos a aplicar el denominado MVI (Model-View-Intent)
que es una variante de MVVM que se utiliza en aplicaciones Android y que se basa en la programación reactiva y que puedes ver un
vídeo explicativo aquí. Aunque posiblemente no lo entiendas hasta más adelante. Por lo que te recomiendo que veas este vídeo más
adelante en el curso.



4/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://www.youtube.com/watch?v=S3h-u4M1q3w
https://es.linkedin.com/in/angeles-vazquez-parra
https://www.youtube.com/watch?v=sel5UFPKh_U
https://www.youtube.com/watch?v=b2z1jvD4VMQ

Visión general de la arquitectura en un proyecto de Android
A la hora de concretar la arquitectura de una aplicación de Android, aunque hay una serie de recomendaciones por parte de Google, no hay
una forma única de hacerlo. Por tanto, el equipo de desarrollo de una aplicación debe decidir algún tipo de convenio organizativo de
paquetes, nombres de clases, etc. que se adapte a sus necesidades. De tal manera que cualquier miembro del equipo sepa encontrar
fácilmente donde se encuentra la implementación de una determinada funcionalidad. Además de modificar fácilmente con el menor número de
fallos y conflictos de trabajo en paralelo.

Esto último, se consigue creando diferentes módulos de la aplicación que se puedan desarrollar de forma independiente y que se puedan
integrar fácilmente en el proyecto final. Sin embargo, la parte de modularización en diferentes paquetes no la vamos a abordar en este curso
por falta de tiempo.

Descarga del siguiente enlace tienes un 'Cheat Sheet' de la Arquitectura propuesta en el curso que debes descargar y tener accesible
durante el presente curso.

📌 Nota: Vamos a empezar con una estructuración inicial del proyecto siguiendo el esquema propuesto en el cheatsheet anterior
para ir aproximándonos a la arquitectura propuesta por Google y a medida que vayamos avanzando en el curso iremos concretando más
sobre su implementación, las diferentes sub-capas de la arquitectura, los convenios de nombres que hemos usado en el curso, etc.

5/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/cheatsheet_carpetas_arquitectura.pdf

Estructurando el Modelo
Aquí vamos a crear los modelos de datos que vamos a utilizar en nuestra aplicación. En nuestro caso, vamos a
crear un modelo de datos para representar un Contacto de una Agenda.

Para ello, siguiendo es esquema de carpetas propuesto en el cheatsheet anterior, vamos a crear un paquete
 models dentro del paquete principal de nuestro proyecto.

Android
[com.pmdm.agenda]

[models]
Contacto.kt

Este modelos serán clases 'generales' o 'genéricas' que representarán los datos de mi problema. Podremos definir roles entre ellas, así como
relaciones de herencia, composición, etc. En algunos casos complejos incluso podremos definir casos de uso, etc.

Nosotros simplemente vamos a definir una clase Contacto que representará un contacto de una agenda. Para ello, vamos a crear un fichero
 Contacto.kt dentro del paquete models con el siguiente contenido.

data class Contacto(
 val id: Int,
 val nombre: String,
 val apellidos: String,
 val foto: String?,
 val correo: String,
 val telefono: String,
 val categorias: EnumSet<Categorias>
) {
 enum class Categorias {
 Amigos, Trabajo, Familia, Emergencias
 }
}

✋ Importante: El modelo no debería tener ninguna referencia o dependencia de la capa de UI ni a la capa de datos.

Para evitar que el modelo tenga dependencias por ejemplo de las bibliotecas del propio android. Fíjate que la propiedad foto es de tipo
 String? y no de tipo Bitmap? que nos obligaría a incluir el paquete android.graphics en el modelo. De esta manera la imagen puede ser
una url, un path, un base64, etc. y la conversión a Bitmap la haremos en la capa de UI.

En nuestro caso hemos decidido que sea una cadena en base64. Si quieres saber más sobre que es base64 puedes consultar el Apéndice I
al final de este documento o bien a este enlace a la Wikipedia.

6/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://es.wikipedia.org/wiki/Base64

Estructurando la capa de datos
Ahondado un poco más el diagrama general de la capa de datos podríamos tener un esquema similar al siguiente:

Capa Datos

Data
ContactoRepository

Services
Api REST

Room
Local DB

Mocks
Datos Contactos

de prueba

Modelo
Contacto

Vamos a concretar una propuesta de organización en paquetes y nomenclatura para el mismo que vamos a seguir durante el curso...

1. Crearemos paquete data dentro del paquete principal de nuestro proyecto. En él, vamos a
crear los repositorios que se encargarán de obtener los datos de una fuente de datos y
convertirlos en un formato con el que el resto de la aplicación pueda trabajar. Además,
contendrá los paquetes que van a gestionar las diferentes fuentes de datos de nuestra
aplicación y esto será lo primero que vamos hacer porque sin fuente no puede haber
repositorio que la encapsule.

Android
[com.pmdm.agenda]

[data]
ContactoRepository.kt
RepositoryConverters.kt

[mocks]
[contacto]
ContactoDaoMock.kt
ContactoMock.kt

2. Crearemos paquete mocks que definirá colecciones de objetos de prueba que simulan una fuente de datos. Como puede haber
diferentes clases, vamos a crear un paquete mocks.contacto el cual definirá las clases que contienen los contactos de prueba.

ContactoMock.kt es una clase que define un objeto de prueba de tipo Contacto . En este caso es idéntica a la clase Contacto que
hemos definido en el modelo. Sin embargo, en un caso real, podría ser diferente ya que el modelo es independiente de la fuente de
datos.

data class ContactoMock(
 val id: Int,
 val nombre: String,
 val apellidos: String,
 val foto: String?,
 val correo: String,
 val telefono: String,
 val categorias: EnumSet<Categorias>
) {
 enum class Categorias {
 Amigos, Trabajo, Familia, Emergencias
 }
}

7/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ContactoMock.kt

ContactoDaoMock.kt es una clase que define una colección de objetos de prueba de tipo ContactoMock . En este caso, es una clase
que implementa las operaciones CRUD (Create, Read, Update, Delete) sobre la colección de objetos de prueba como los
siguientes...

class ContactoDaoMock {
 // Colección de datos de prueba
 private var contactos = mutableListOf(...)

 // Obtiene una lista de contactos
 fun get(): MutableList<ContactoMock> = contactos
 // Obtiene un contacto por Id
 fun get(id: Int): ContactoMock? = contactos.find { u -> u.id == id }
 // Inserta un contacto en la colección de contactos
 fun insert(contacto: ContactoMock) = contactos.add(contacto)
}

3. Dentro del paquete data , crearemos el fichero RepositoryConverters.kt que contendrá las funciones de extensión para transformar el
modelo y la fuente de datos y viceversa. Al usar funciones de extensión, podemos agregar métodos a una clase sin tener que modificar
la definición de la clase manteniendo el principio OCP (Open-Closed Principle) de SOLID. Además, evitamos que el modelo tenga
dependencias de la fuente de datos.

// Convierte un un objeto Contacto del modelo en un ContactoMock
fun Contacto.toContactoMock() = ContactoMock(...)

// Convierte un un objeto ContactoMock de la fuente de datos en un Contacto
fun ContactoMock.toContacto() = Contacto(...)

4. entro del paquete data , crearemos el fichero ContactoRepository.kt que contendrá la clase ContactoRepository que implementa las
operaciones CRUD (Create, Read, Update, Delete) sobre objetos del modelo Contacto y se encargará de replicarlos en la fuente de
datos en nuestro caso el 'mock' de forma transparente.

class ContactoRepository {
 private var dao = ContactoDaoMock()

 fun get(): MutableList<Contacto> = dao.get().map { it.toContacto() }.toMutableList()
 fun get(id: Int): Contacto? = dao.get(id)?.toContacto()
 fun insert(contacto: Contacto) = dao.get().add(contacto.toContactoMock())
}

📣 Resumen: Podemos decir que es una envoltorio o 'Wapper' que encapsula la fuente de datos y sus datos de forma que el
resto de la aplicación pueda trabajar con ellos como un modelo genérico sin saber cual es la fuente de los mismos.

Aquí tienes un vídeo que te pueden ayudar a tener una idea de su funcionamiento del patrón repository en en otros lenguajes
de programación. No hace falta entender 100% el código, pero si la idea general del patrón.

8/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ContactoDaoMock.kt
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/RepositoryConverters.kt
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ContactoRepository.kt
https://www.youtube.com/watch?v=QqsH0OgqafA

Estructurando la capa de UI

Esta va a ser la capa más compleja organizativamente. Pues vamos atener diferentes paquetes para
diferenciar claramente las diferentes partes de la capa de UI.

En el diagrama de la derecha, tienes nuestra propuesta de plantilla organizativa para esta capa que hay
en el 'cheatsheet'. Aunque en los futuros temas vamos a abordar con detalle los ficheros que vamos a
crear en cada uno de los paquetes, vamos a hacer una primera aproximación a la estructura de la capa
de UI para tener una visión global de la misma.

Esta estructura respondería a la propuesta de Google donde existe un contenedor de estados que
contiene los datos, los expone a la IU y controla la lógica. En nuestro caso, este contenedor de estados
será el ViewModel.

Capa UI

Capa de datos ViewModelDatos de
la Aplicación UI

State

Componenres
en la UI

Eventos

Android
[com.pmdm.myapp]

[ui]
[themes]
DarkTheme.kt
[views]
MainActivity.kt
Fragments.kt
[navigation]
MainNavGraph.kt
Feature1ScreenRoute.kt
Feature2ScreenRoute.kt
[composables]
Composable1.kt
ComposableUiState1.kt (Optional)
Composable2.kt
ComposableUiState2.kt (Optional)
[features]

[feature1]
Feature1Screen.kt
Feature1ViewModel.kt
Feature1UiState.kt
Feature1Events.kt

[component1]
component1.kt
component1UiState.kt
component1Events.kt
[component2]
component2.kt
component2UiState.kt
component2Events.kt

Vamos a explicar brevemente los tres elementos de la Capa de UI y cada uno de los sub-paquetes que hemos creado en dentro del paquete
 UI que la representa.

📌 Nota: Iremos profundizando en su implementación en los siguientes temas.

Elementos que la forman:

1. ViewModel Como hemos comentado es el Contenedor de estados que contiene datos, los expone a la IU y controla la lógica. Podemos
tener un ViewModel por cada pantalla de nuestra aplicación o compartirlo entre varias. Además, en nuestra propuesta de arquitectura se
encargará gestionar:

La gestión de los datos de los elementos visuales a través de objetos UiState que representan el estado de visualización de los
componentes en la UI.
La lógica de la pantalla entre los que vamos a incluir la gestión de casos de uso de los objetos del modelo.
Derivada de gestión de la lógica tendremos la gestión de los eventos de los componentes en la UI.
Gestión de la visualización de estados de error.
Transformación de los objetos del UiState a los objetos de Modelo y viceversa.
Comunicación con la capa de datos a través de las 'clases repositorio'.

2. UiState estará representado por una o varias clases que representarán el estado de visualización de los elementos visuales de la
pantalla. Podríamos tener:

Un UiState por cada elemento visual de la pantalla. Por ejemplo, un UiState de tipo booleano para representar el estado de un
icono o si se visualiza o no un circulo de progreso, etc.
Un UiState por cada grupo de elementos visuales relacionados entre si en la pantalla. Por ejemplo, una
 data class NombreCompletoUiState con nombre , apellido1 y apellido2 a modo de UiState para representar el estado de tres
campos de texto que representen el nombre completo de una persona.
Un UiState por cada pantalla de nuestra aplicación que a su vez este formado por UiStates de grupo de elementos visuales que se
repitan entre pantallas.

3. Componentes en la UI son los elementos visuales que renderizan los datos en la pantalla. En nuestro caso, serán los componentes de
Jetpack Compose que renderizan los datos en la pantalla. Sin embargo, podría sustituir de forma sencilla por componentes tradicionales
de XML o 'Vistas'.

Sub-paquetes de la capa de UI:

1. ui.themes es un paquete que contendrá los diferentes temas de la aplicación. Que contendrán los colores, tipografías, etc. que vamos a
usar en nuestra aplicación.

9/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/guide/ui-layer?hl=es-419#state-holders

2. ui.views es un paquete que contendrá las diferentes vistas de la aplicación. En nuestro caso, tendremos una única vista que será la
 MainActivity que será la actividad principal de nuestra aplicación. Solo si tuviéramos, puntos de entrada secundarios en nuestra
aplicación definiríamos más 'activities'.

3. ui.navigation es un paquete que contendrá el grafo de navegación de nuestra aplicación. Con las diferentes rutas de navegación entre
las pantallas.

4. ui.composables aquí definiremos aquellos componentes personalizados de la aplicación que sean reutilizables entre diferentes pantallas
y las clases que representen su UiState si fuera necesario.

5. ui.features es un paquete que contendrá las diferentes pantallas de nuestra aplicación. En nuestro ejemplo de plantilla, tendremos la
pantalla Feature1Screen con un ViewModel para gestionarla definido en la clase Feature1ViewModel y su correspondiente UiState
definido en la clase Feature1UiState . Además, si esta pantalla esta compuesta por diferentes grupos lógicos de elementos visuales,
podríamos crear un paquete component1 y component2 con sus correspondientes ViewModel y UiState para gestionarlos. De esta
manera si tuviéramos que reutilizarlos en otra pantalla, podríamos hacerlo fácilmente conservando toda la lógica.

10/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

Apéndice I - Codificando imágenes en Base64
En ocasiones, necesitamos codificar una imagen en Base64 para poder enviarla a un servidor o almacenarla en una base de datos. Para ello,
podemos usar la siguiente función que nos permite codificar una imagen en Base64.

La codificación base64 consiste en realizar agrupaciones de 6 bits y asignarle un carácter:

Letras mayúsculas (0-25): ABCDEFGHIJKLMNOPQRSTUVWXYZ
Letras minúsculas (26-51): abcdefghijklmnopqrstuvwxyz
Dígitos decimales (52-61): 0123456789
Símbolos especiales (62-63): +/

Si la cadena de bytes no contiene exactamente un múltiplo de 6 bits, se completará con ceros.

Ejemplo: Supongamos la cadena ...

Cadena Binario Hexadecimal

aØ
0110 0001 1100 0011 1001
1000

61 C3 98

Si queremos codificar esta cadena de bits en Base64 tendremos que realizar
grupos de 6 bits:

Binario Grupos de 6 bits Base 64

0110 0001 1100 0011 1001 1000 011000 011100 001110 01100 YcOY

Aquí tienes diferentes URL's de utilidad que te permiten codificar y decodificar textos e imágenes en Base64:

https://codebeautify.org/text-to-base64-converter
https://codebeautify.org/base64-to-text-converter
https://codebeautify.org/image-to-base64-converter
https://codebeautify.org/base64-to-image-converter

11/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://codebeautify.org/text-to-base64-converter
https://codebeautify.org/base64-to-text-converter
https://codebeautify.org/image-to-base64-converter
https://codebeautify.org/base64-to-image-converter

Funciones de utilidad para codificar y decodificar imágenes
En el proyectoBase se ha incluido una librería de utilidades hecha por los profesores del módulo para gestión de imágenes de forma
'sencilla'. Purdes encontrar su implementación en el siguiente repositorio de GitHub público https://github.com/pmdmiesbalmis/utilities.

Para usarla en los proyectos de Android, debes incluir entrada en la sección [libraries] del libs.versions.toml del proyecto de la siguiente
forma:

pmdm-ies-balmis-utilities = {
 group = "com.github.pmdmiesbalmis",
 name = "utilities",
 version.ref = "pmdmIesBalmisVersion"
}

Posteriormente debes incluir la dependencia en el build.gradle.kts del módulo de la siguiente forma:

dependencies {
 implementation(libs.pmdm.ies.balmis.utilities)
}

Para usar librería en un funte de código, debes importar todas la funciones de extensión de la siguiente forma:

import com.github.pmdmiesbalmis.utilities.imagetools.*

A partir de ese momento dispondrás de las siguientes funciones de extensión...

1. ImageBitmap.resize(ladoLargo: Int): ImageBitmap : Redimensiona una ImageBitmap manteniendo la relación de aspecto.
2. ImageBitmap.toBase64(formato: FormatosCompresion = FormatosCompresion.PNG_90): String : Convierte una ImageBitmap a un String

codificado en Base64.
3. ImageBitmap.toBlob(formato: FormatosCompresion = FormatosCompresion.PNG_90): ByteArray : Convierte una ImageBitmap a un ByteArray .
4. String.base64ToImageBitmap(): ImageBitmap : Convierte un String codificado en Base64 a una ImageBitmap .
5. ByteArray.toImageBitmap(): ImageBitmap : Convierte un ByteArray a una ImageBitmap .
6. Context.imageBitmapFromRerouceId(recurso: Int): ImageBitmap : Carga una ImageBitmap desde un recurso de la aplicación Android sin

compresión.
7. Context.imageBitmapFromUri(uri: Uri, formato: FormatosCompresion = FormatosCompresion.JPG_75, tamanoMaxKB: Int = 512): ImageBitmap?

: Carga una ImageBitmap desde una Uri, con control de tamaño y formato.

12/12 PMDM 2º DAM Tema 2.3 - Arquitectura de una aplicación Rev. 22/09/2024 IES Doctor Balmis

https://github.com/pmdmiesbalmis/utilities

