
Tema 2.2 - Entendiendo la estructura
básica
Descargar estos apuntes pdf o html

Índice
Introducción
Recursos de la aplicación

Recursos alternativos
Drawables (drawable/)
Mipmaps (mipmap/)

Colores (colors.xml)
Textos (strings.xml)
Temas (themes.xml)

Acceder a los recursos de la aplicación
Accediendo desde Kotlin
Accediendo desde otro recurso XML

Activities (Actividad)
El concepto de actividades
Ciclo de vida de una Activity

El contexto en Android
La clase Application

Crear una subclase de Application
La clase Activity
Android Manifest

1/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_2_entendiendo_la_estructura_basica.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_2_entendiendo_la_estructura_basica.html

Introducción
En este tema vamos a ver cómo se estructura una aplicación Android y cómo se relacionan estos
componentes entre sí. Pero antes de empezar con la capa más laboriosa de UI, vamos a ver cómo
se estructura una aplicación Android a nivel de ficheros y a profundizar en algunos elementos que
ya hemos visto al renombrar un proyectos básico, además de otros componentes esenciales para el
funcionamiento de una aplicación Android.

Recursos de la aplicación
Los recursos son archivos o datos externos que soportan el comportamiento de
nuestra aplicación Android, por ejemplo imágenes, strings, colores, temas,
etc.

Formalmente en un proyecto, estos elementos se encuentran en la carpeta
 res . Allí se encuentran subdirectorios que agrupan los diferentes tipos de
recursos.

La idea del uso de recursos es dividir el código de tu app para mantener
independencia. Todo con el fin de agregar variaciones de los archivos para
adaptar la aplicación a diferentes tipos de pantallas, idiomas, versiones,
dimensiones, configuraciones de orientación, etc. Por ejemplo: no es lo mismo
el espacio de un teléfono móvil que el de una tableta, sin embargo se pueden
crear variaciones de los recursos para que la aplicación se adapte a la densidad
de pantalla de cada uno.

Andrioid
[app]

[manifests]
[java]
[res]

[drawable]
[mipmap]
[values]
[xml]

[Gradle Scripts]

Los grupos de recursos se dividen en subdirectorios. Cada uno de ellos contiene archivos que
cumplen una función específica dentro de la aplicación y en ocasiones estos directorios de recursos
dependerá del tipo de desarrollo que estemos haciendo. Por ejemplo, si estamos usando XML para
crear la interfaz de usuario, tendremos los directorios layout y menu donde se guardarán los
archivos XML que contienen la interfaz de usuario y los menús de la aplicación respectivamente.

Debes respetar esta estructura de documentos para no tener problemas en la ejecución. En la
siguiente Tabla de Recursos, podemos ver un resumen de los más usados.

En nuestra plantilla de aplicación de compose tenemos los siguientes recursos ...

2/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/providing-resources.html?hl=es

Recursos alternativos
Un recurso alternativo es una variación de un recurso, que se ajusta a una característica de
configuración en el dispositivo móvil donde se ejecuta la aplicación. Esto se logra a través de una
tabla de calificadores creada por Google que estandariza todas las configuraciones posibles que se
puedan presentar.

Un calificador es un mecanismo gramatical que especifica el propósito de un recurso. Su sintaxis es
la siguiente: <nombre_recurso>-<calificador>

Ejemplo: mipmap-hdpi/ contendrá la variación del recurso ic_launcher.png para dispositivos
con densidad de pantalla de 240 dpi .

Todos los archivos que correspondan al mismo recursos deberán de tener el mismo nombre, se
identificarán gracias al calificador añadido al identificador de carpeta.

Si hay que indicar más de un calificador, se separan por guiones y el orden de preferencia es el
que se sigue en la tabla, el primer calificador será el de más preferencia.

Ejemplo: Dispositivos en inglés de Estados Unidos y en orientación horizontal, tendrán un
nombre de recurso alternativo en el drawable/ , de la siguiente manera
 drawable-en-rUS-land/ .

Una vez que guardes los recursos alternativos en directorios denominados con estos calificadores,
Android aplicará automáticamente los recursos en tu aplicación de acuerdo con la configuración del
dispositivo actual.

Drawables (drawable/)
Contiene los elementos de diseño ('dibujables') en nuestra aplicación. Iremos usándolos a lo largo
del curso.

Archivos de mapas de bits o vectoriales
Archivos nine-patch (mapas de bits reajustables)
Listas de estados
Formas
Elementos de diseño de animaciones
Otros elementos de diseño

3/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/providing-resources.html?hl=es#table2
https://developer.android.com/guide/topics/resources/drawable-resource?hl=es

Mipmaps (mipmap/)
Son archivos de diseño para diferentes densidades de los íconos de selectores.

Android Studio crea un icono adaptativo para su aplicación que solo está disponible en SDK 26 y
posteriores. Estos iconos adaptativos se incluyen en la carpeta mipmap-anydpi-v26 , son archivos
 .xml que se adaptan a la tecnología del dispositivo.

Ejemplo: Un ícono de selector adaptable se puede mostrar con una forma circular en un
dispositivo OEM y con un cuadrado con esquinas redondeadas en otro.

La diferencia con respecto a los contenidos de drawable\ es que esta última sirve para colocar
todas las imágenes que vaya a utilizar nuestra aplicación, siguiendo el mismo esquema de sufijos
que mipmap. Mientras que en la carpeta mipmap\ únicamente colocaremos el icono de la app.

Como podemos observar, cuando creamos un proyecto en Android Studio, por defecto, ya nos
coloca ahí el icono con el nombre de ic_launcher .

Lo más común es encontrar recursos alternativos dependientes de la densidad y la versión del SDK.

Densidad Descripción DPI Dispositivos Ejemplo

ldpi Baja densidad 120 240x320 Android watch

mdpi Densidad media 160 320x480 Teléfonos básicos

hdpi Alta densidad 240 480x800
Smartphones
antiguos

xhdpi Extra alta densidad 320 720x1280
Smartphones
modernos

xxhdpi Extra extra alta densidad 480 1080x1920
Smartphones
premium

xxxhdpi Extra extra extra alta densidad 640 1440x2560 Televisión 4K

nodpi Sin densidad 0

anydpi Cualquier densidad 0

anydpi-
v26

Cualquier densidad para SDK 26
y posteriores

0

4/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/practices/ui_guidelines/icon_design_adaptive

Values (values/)
Son archivos en formato XML que contienen valores simples, como cadenas,
valores enteros y colores.

Los archivos de recursos XML en otros subdirectorios res/ definen un único
recurso basado en el nombre del archivo en formato XML, mientras que los
archivos del directorio values/ describen varios recursos.

Dado que cada recurso se define con su propio elemento XML, puedes asignar
el nombre que desees al archivo y colocar diferentes tipos de recursos en un
archivo. Sin embargo, para mayor claridad, es recomendable que coloques
tipos de recursos únicos en diferentes archivos. Por ejemplo, a continuación, se
incluyen los archivos de recurso que se crean en la platilla de compose:

Andrioid
[app]

[manifests]
[java]
[res]

[drawable]
[mipmap]
[values]
colors.xml
strings.xml
themes.xml
[xml]

[Gradle Scripts]

Colores (colors.xml)

Definirá nombres de colores a usar en nuestra aplicación o nuestros temas. Por ejemplo ...

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="purple_200">#FFBB86FC</color>
 <color name="purple_500">#FF6200EE</color>
 <color name="purple_700">#FF3700B3</color>
 ...
</resources>

5/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/more-resources?hl=es#Color

Textos (strings.xml)

En lugar de 'hardcodear' los textos en nuestra aplicación, los definiremos en este archivo. Por
ejemplo ...

<!-- string.xml dentro de res → values -->
<resources>
 <string name="app_name">HolaMundo</string>
</resources>

Si quisiéramos tener diferentes traducciones pulsaríamos el botón derecho sobre el archivo
 strings.xml y seleccionaríamos Open Translations Editor en el menú contextual. En la ventana
que se abre podemos añadir diferentes traducciones para los textos de nuestra aplicación.

El editor básicamente me creará un recurso alternativo strings.xml por cada idioma que añada.
Por ejemplo, si añado el idioma inglés de UK, me creará un fichero strings.xml en el directorio
 values-en-rGB\ con el siguiente contenido...

<resources>
<!-- string.xml dentro de res → values-en-rGB -->
 <string name="app_name">HelloWorld</string>
</resources>

📌 Nota: Si quieres sabes más de cómo localizar tu aplicación usando el 'Editor de
Traducciones` de android estudio. Puedes consultar la documentación oficial.

A nivel organizativo creará una estructura de directorios values con el sufijo de la localización
según la ISO 639-1 y la ISO 3166-1. Por eso es interesante usar el 'Editor de Traducciones` en
lugar de hacerlo manualmente. Una vez, creado ya lo podríamos modificar a mano. Aunque no es
recomendable porque el editor de traducciones me gestiona aquellas que están pendientes de
traducir.

En el siguiente esquema puedes ver la estructura de directorios que se crea en la vista Proyecto y
la estructura organizativa equivalente en la vista Android .

Project
[Workspace]

[app]
[src]

[main]
[res]

[values]
strings.xml
[values-en-rGB]
strings.xml

→

Andrioid
[app]

[res]
[values]
colors.xml

strings
strings.xml
strings.xml (en-rGB)

themes.xml

6/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/string-resource?hl=es
https://developer.android.com/studio/write/translations-editor?hl=es-419

Temas (themes.xml)

Los estilos XML son este caso una herencia de estilos que se aplican a la aplicación o a un
componente concreto. En el tema de Capa UI daremos alguna pincelada más sobre los temas en
Compose.

Acceder a los recursos de la aplicación
Ahora que se ha entendido que son los recursos, vamos a entender como pueden ser accedidos en
el código Kotlin o en el código XML de otros recursos. Para obtener la referencia de un recurso es
necesario que se le asigne un identificador que lo diferencie y le indique al programador donde
se encuentra.

Cada identificador se ubica en una clase llamada R a través de una constante entera. Esta clase es
generada automáticamente por una herramienta del SDK llamada appt, por lo que no es
recomendable editarlo manualmente.

Cada tipo de recurso existente dentro de la carpeta res es una clase anidada estática del
archivo R.class .

Ejemplo: El subdirectorio drawable/ puede ser accedido como R.drawable.

Accediendo desde Kotlin

Ahora, si deseas obtener el identificador de un recurso desde código Kotlin, entonces usas el
operador punto para acceder a los miembros de cada clase interna
 Paquete.R.tipoRecurso.nombreRecurso .

Ejemplo: Si tenemos una imagen cuyo identificador es ic_launcher_background . Para acceder
a su contenido debes navegas de la siguiente forma R.drawable.ic_launcher_background .

Por ejemplo, aunque hablaremos de 'Compose' cuando lleguemos a la capa de UI, aquí tienes
un fragmento de código para crear un componente con una imagen a partir del recurso del
ejemplo.

7/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/style-resource?hl=es

Accediendo desde otro recurso XML

Esta forma de referencia se da cuando dentro de un recurso definido en un archivo XML
necesitamos usar el valor de otro recurso. Para ello usamos la sintaxis
 @[Paquete:]tipoRecurso/nombreRecurso

Ejemplo: Si tenemos una imagen cuyo identificador es ic_launcher_background . Para acceder
a su contenido solo navegas de la siguiente forma @drawable/ic_launcher_background .

Por ejemplo, aunque este curso no vamos a abordar la interfaces de usuario con XML,
aquí tienes un fragmento de código para crear una vista con una imagen a partir del recurso del
ejemplo.

<ImageView android:background="@drawable/ic_launcher_background" />

@Composable
fun MiApp() {
 Image(
 // Reemplaza "R.drawable.ic_launcher_background" con el ID de tu recurso drawa
 painter = painterResource(id = R.drawable.ic_launcher_background),
 contentDescription = null,
 modifier = Modifier
 .fillMaxSize()
 .background(Color.White)
)
}

5

8/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

Activities (Actividad)
Documentación oficial.

Las actividades son uno de los componentes fundamentales de las apps en la plataforma de
Android. Sirven como punto de entrada para la interacción del usuario con una app.

Una actividad es una ventana que contiene la interfaz de usuario de una app. Por lo general, cada
actividad tiene una pantalla completa que ocupa toda la superficie de la pantalla.

Tradicionalmente con los interfaces de usuario basadas en XML podíamos tener una o varias
actividades entre las cuales se podía navegar. Posteriormente apareció el concepto de fragmento
que es una parte de una actividad que se puede reutilizar en otras actividades e incluso en otras
aplicaciones. De esta forma se creaba una única actividad que contenía varios fragmentos y se
podía navegar entre ellos.

Con JetPack Compose y la posibilidad de crear interfaces de usuario de forma declarativa, se ha
vuelto a la idea de tener una única actividad que contiene la interfaz de usuario completa de la
aplicación. En este caso la navegación entre pantallas se realiza mediante la composición de
vistas. A este tipo de aplicaciones se les llama Single Activity Apps. Profundizaremos más
adelante en la navegación basada en composición de vistas.

El concepto de actividades
Documentación oficial
Recursos Adicionales:

Castellano: DevExperto
Inglés: Philipp Lackner

La experiencia con la app para dispositivos móviles difiere de la versión de escritorio, ya que la
interacción del usuario con la app no siempre comienza en el mismo lugar. En este caso, no hay un
lugar específico desde donde el usuario comienza su actividad. Por ejemplo, si abres una app de
correo electrónico desde la pantalla principal, es posible que veas una lista de correos electrónicos.
Por el contrario, si usas una app de redes sociales que luego inicia tu app de correo electrónico, es
posible que accedas directamente a la pantalla de la app de correo electrónico para redactar uno.

La clase Activity está diseñada para facilitar este paradigma. Cuando una app invoca a otra, la app
que realiza la llamada invoca una actividad en la otra, en lugar de a la app en sí. De esta manera, la
actividad sirve como el punto de entrada para la interacción de una app con el usuario. Implementas
una actividad como una subclase de la clase Activity.

9/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/components/activities?hl=es
https://developer.android.com/guide/components/activities/intro-activities?hl=es#tcoa
https://www.youtube.com/watch?v=YDPHFl5LC34
https://www.youtube.com/watch?v=SJw3Nu_h8kk&t=1s

Una actividad proporciona la ventana en la que la app dibuja su IU. Por lo general, esta ventana
llena la pantalla, pero puede ser más pequeña y flotar sobre otras ventanas. Generalmente, una
actividad implementa una pantalla en una app. Por ejemplo, una actividad de una app puede
implementar una pantalla Preferencias mientras otra implementa una pantalla Seleccionar foto.

La mayoría de las apps contienen varias pantallas, lo cual significa que incluyen varias actividades.
Por lo general, una actividad en una app se especifica como la actividad principal, que es la primera
pantalla que aparece cuando el usuario inicia la app. Luego, cada actividad puede iniciar otra
actividad a fin de realizar diferentes acciones. Por ejemplo, la actividad principal de una app de
correo electrónico simple podría proporcionar una pantalla en la que se muestra una casilla de
correo electrónico. A partir de aquí, la actividad principal podría iniciar otras actividades que
proporcionan pantallas para tareas como redactar correos y abrir correos electrónicos individuales.

Si bien las actividades trabajan en conjunto a fin de crear una experiencia del usuario coherente en
una app, cada actividad se relaciona vagamente con otras actividades; por lo general, hay una
pequeña cantidad de dependencias entre las actividades de una app. De hecho, estas suelen iniciar
actividades que pertenecen a otras apps. Por ejemplo, una app de navegador podría iniciar la
acción de "Compartir actividad" de una app de redes sociales.

✋ Importante: Si quieres usar actividades en tu app, debes registrar información sobre estas
en el manifiesto de la app y administrar los ciclos de vida de las actividades de manera
apropiada.

Ciclo de vida de una Activity
Documentación oficial
Recursos Adicionales:

Inglés: Udacity

Como hemos comentado en el punto anterior. La activity es uno de los componentes esenciales de
una aplicación Android, además de ser el componente que tiene asociada la interfaz de usuario.
Una misma aplicación puede tener una o varias actividades y Android permite controlar por
completo el ciclo de vida de cada una de estas.

Los estados por los cuales puede pasar una Activity son los siguientes: Creación, Ejecución,
Reanudación, Pausa, Parada y Destrucción.

A la relación entre ellos se le llama Ciclo de vida de una Actividad.

10/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/components/activities/activity-lifecycle?hl=es
https://www.youtube.com/watch?v=85MppyLJHz0&t=54s

Create CreatedonCreate()
Started
(Visible)

onStart()

Resumed
(Visible)

onResume()

Paused
(Partially visible) onPause()

onResume()

Stopped
(Hidden) onStop()

onRestart()
onStart()

Destroyed onDestroy()

El ciclo de vida de una Activity nos describe los estados y las transiciones entre estados de una
determinada Activity, que como se ve en la imagen son:

Creación: una actividad se ha creado cuando su estructura se encuentra en memoria, pero
esta no es visible aun. Cuando el usuario presiona sobre el icono de la aplicación en su
dispositivo, el método onCreate() es ejecutado inmediatamente para cargar el layout de la
actividad principal en memoria.
Ejecución-Reanudación: después de haber sido cargada la actividad se ejecutan en
secuencia el método onStart() y onResume() . Aunque onStart() hace visible la actividad, es
 onResume() quien le transfiere el foco para que interactúe con el usuario.
Pausa: una actividad está en pausa cuando se encuentra en la pantalla parcialmente visible.

Ejemplo: Cuando se abren diálogos que toman el foco superponiéndose a la actividad. El
método llamado para la transición hacia la pausa es onPause() .

Detención: Una actividad está detenida cuando no es visible en la pantalla, pero aún se
encuentra en memoria y en cualquier momento puede ser reanudada. Cuando una aplicación
es enviada a segundo plano se ejecuta el método onStop() . Al reanudar la actividad, se pasa
por el método onRestart() hasta llegar a el estado de ejecución y luego al de reanudación.
Destrucción: cuando la actividad ya no existe en memoria se encuentra en estado de
destrucción. Antes de pasar a destruir la aplicación se ejecuta el método onDestroy() . Es
común que la mayoría de actividades no implementen este método, a menos que deban
destruir procesos como servicios en segundo plano.

📌 Nota: Aunque hay muchos más conceptos básicos que debemos conocer sobre las
actividades y la comunicación entre ellas. Por ahora, con lo que hemos visto es suficiente para
empezar a crear nuestras primeras aplicaciones.

11/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

El contexto en Android
El contexto de una aplicación es una interfaz entre la aplicación y el sistema operativo, la cual
describe la información que representa tu aplicación dentro del ámbito del sistema operativo.

También permite acceder a los recursos de la aplicación y coordinar el funcionamiento de los
bloques de la aplicación.

El contexto representa toda la meta-información sobre las relaciones que tiene la aplicación con
otras aplicaciones o el sistema y podemos implementarlo a través de la Context.

En Android nos encontramos con los siguientes tipos de contextos:

Aplicación: Este contexto engloba a todos los demás, y cubre todo el ciclo de vida de la
aplicación desde que la arrancamos hasta que muere. Por lo que cada aplicación tiene 'un
único contexto de aplicación'. El Context de la aplicación vive hasta que se termina por
completo la aplicación (hasta que muere, no hasta que se pausa)
✋ Importante: Se puede acceder desde una Activity o un Service con application o
desde cualquiera que herede de Context con applicationContext .

Activity o Service: Como hemos dicho, un Context vive tanto como el elemento al que
pertenece, por lo que depende del ciclo de vida. Así, un Context de una Activity vivirá el
mismo tiempo que viva la activity y siempre será un tiempo menor que el de la Aplicación.
Recursos Adicionales:

Inglés: Philipp Lackner

12/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/reference/android/content/Context?hl=es
https://www.youtube.com/watch?v=YdnM2ZvrIFM&list=PLQkwcJG4YTCSVDhww92llY3CAnc_vUhsm&index=4

La clase Application
Documentación oficial

La clase Application es la clase base para las aplicaciones de Android y es el punto de partida
para iniciar las actividades de la aplicación. Cuando se inicia una aplicación, el sistema crea una
única instancia de Application para la misma, y la asigna a un proceso de ejecución de la
aplicación. La clase Application permanece en el proceso de ejecución de la aplicación durante
toda la duración de la vida de la aplicación.

Esta clase Application es una subclase de Context y por tanto tiene acceso a todos los métodos
y propiedades de esta clase. Además, es un objeto singleton que se crea cuando se inicia la
aplicación y se destruye cuando se cierra la aplicación.

📌 Nota: Aunque no es obligatorio, es una buena práctica crear una subclase de
 Application para mantener el estado global de la aplicación. En el siguiente apartado veremos
como crearla.

Crear una subclase de Application
Por ejemplo, si quisiéramos añadir a nuestro 'Hola Mundo' nuestra propia clase Application . Lo
primero que tenemos que hacer es crear una clase que herede de Application . Por ejemplo,
 MiHolaMundo . Para ello, seguiremos estos dos pasos:

1. Creamos una clase HolaMundoApplication que herede de
 Application en el paquete principal com.pmdm.holamundo .

package com.pmdm.holamundo
import android.app.Application

// No tiene porque tener cuerpo si no tiene nada que inicializar
class HolaMundoApplication : Application()

Andrioid
[app]

[manifests]
[java]

[com.pmdm.holamundo]
MainActivity.kt
HolaMundoApplication.kt

[res]
[Gradle Scripts]

2. Modificamos el archivo AndroidManifest.xml para que la aplicación use nuestra clase
 MiHolaMundo en lugar de la clase Application por defecto.

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>
 <application
 android:name="com.pmdm.holamundo.HolaMundoApplication"
 ...>
 </application>
</manifest>

4

13/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/reference/android/app/Application?hl=es

La clase Activity
Documentación oficial

Anteriormente ya hemos explicado el concepto de Activity y su ciclo de
vida. Ahora vamos a ver sobre la clase que la representa y la actividad
principal que se crea en la plantilla de aplicación de compose.

En el programa por defecto tendremos ya definida una clase
 MainActivity que hereda de ComponentActivity . Esta clase es una
subclase de Activity que nos proporciona la librería de Jetpack
Compose y nos permitirá crear la interfaz de usuario de nuestra
aplicación usando Compose en lugar de XML tradicional.

Andrioid
[app]

[manifests]
[java]

[com.pmdm.holamundo]
MainActivity.kt
HolaMundoApplication.kt

[res]
[Gradle Scripts]

El código de la clase MainActivity es el siguiente:

class MainActivity : ComponentActivity() {
 // Método que se ejecuta cuando se crea la actividad.
 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 // Código donde se establece la UI de la Activity
 // y que comentaremos más adelante
 setContent {
 HolaMundoTheme {
 Surface(
 modifier = Modifier.fillMaxSize(),
 color = MaterialTheme.colorScheme.background
) {
 Greeting("Hola Mundo")
 }
 }
 }
 }
}

y básicamente no hace nada más que establecer la interfaz de usuario de la aplicación. Aunque
como hemos comentado, desde ella podremos acceder a la aplicación y a sus recursos....

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 val aplicacion = this.application as HolaMundoApplication
}

4

14/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/reference/android/app/Activity?hl=es

Android Manifest
Documentación oficial

El manifiesto de Android es un archivo XML que contiene información
esencial sobre la aplicación para el sistema operativo Android. Esta
información sirve para que el sistema operativo pueda identificar la aplicación
y sus componentes, así como para declarar los permisos que necesita la
aplicación para acceder a partes del sistema operativo o a otros servicios.

Andrioid
[app]

[manifests]
AndroidManifest.xml
[java]
[res]
[Gradle Scripts]

Si examinamos el contenido del archivo AndroidManifest.xml de nuestra plantilla de aplicación de
compose, podemos ver que tiene la siguiente estructura...

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">

 <application
 android:name="com.pmdm.holamundo.HolaMundoApplication"
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/HolaMundo"
 android:usesCleartextTraffic="true"
 tools:targetApi="31">
 <activity
 android:name="com.pmdm.holamundo.MainActivity"
 android:exported="true"
 android:label="@string/app_name"
 android:theme="@style/HolaMundo">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Vamos a ver los elementos más importantes de este archivo. El cual iremos modificando a lo largo
del curso, añadiendo permisos, servicios, etc.

15/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/manifest-intro?hl=es

<manifest> contiene como atributos los dos espacios de nombres con la definición del
esquema XML. Su inclusión permitirá al editor de XML de Android Studio validar el contenido
del archivo y ofrecernos ayuda mientras lo rellenamos.

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools">
 ...
</manifest>

<application> es el elemento raíz del manifiesto. Contiene información sobre la aplicación y
cada uno de sus componentes. En este caso, solo tenemos un componente, la actividad
principal.

<application
 android:name="com.pmdm.holamundo.HolaMundoApplication"
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/HolaMundo"
 android:usesCleartextTraffic="true"
 tools:targetApi="31">
 ...
</application>

 android:name es el nombre de la clase que implementa la clase Application . Es opcional
y por defecto no se define. En el apartado anterior le asignamos el valor
 com.pmdm.holamundo.HolaMundoApplication .
 android:allowBackup determina si se permite a la aplicación participar en la infraestructura
de copia de seguridad y restablecimiento.
 android:dataExtractionRules las aplicaciones pueden establecer este atributo en un
recurso XML en el que se especifican las reglas que determinan qué archivos y directorios
puedes copiar del dispositivo como parte de las operaciones de copia de seguridad o
transferencia. Por defecto, el valor está definido en el recurso @xml/data_extraction_rules .
 android:fullBackupContent es un archivo XML que contiene reglas de exclusión de datos
para la copia de seguridad de la aplicación. Por defecto, el valor está definido en el recurso
 @xml/backup_rules y puedes ver su sintaxis aquí.
 android:icon es el icono de la aplicación. Por defecto, el valor es el recurso
 @mipmap/ic_launcher .
 android:label es el nombre de la aplicación. Por defecto, el valor está en el recurso
 @string/app_name .

16/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/manifest-element?hl=es
https://developer.android.com/guide/topics/manifest/application-element?hl=es
https://developer.android.com/guide/topics/data/autobackup?hl=es#XMLSyntax

 android:roundIcon es el icono redondo de la aplicación. Por defecto, el valor está en el
recurso @mipmap/ic_launcher_round .
 android:supportsRtl indica si la aplicación soporta la escritura de derecha a izquierda. Por
defecto, el valor es true .
 android:theme es el tema de la aplicación. Por defecto, el valor está en el recurso
 @style/HolaMundo .
 android:usesCleartextTraffic indica si la aplicación usa tráfico HTTP de texto simple sin
formato implica que cualquier persona que supervise el tráfico de red pueda ver y
manipular los datos que se transmiten. Esta es una vulnerabilidad si los datos transmitidos
incluyen información sensible, como contraseñas, números de tarjetas de crédito o
cualquier otro tipo de información personal. Por razones obvias, el valor por defecto false
pero nosotros lo hemos cambiado a true para poder hacer peticiones a una API de
prueba.

<activity> es el componente que representa una pantalla con una interfaz de usuario. En
este caso, solo tenemos una actividad, la principal.

 <application ...>
 <activity
 android:name="com.pmdm.holamundo.MainActivity"
 android:exported="true"
 android:label="@string/app_name"
 android:theme="@style/HolaMundo">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

 android:name es el nombre de la clase que implementa la actividad. En nuestro ejemplo, el
valor es com.pmdm.holamundo.MainActivity .
 android:exported indica si la actividad puede ser iniciada por componentes de otras
aplicaciones. Esto es, si es accesible desde fuera de la aplicación.
 android:label la etiqueta que se muestra en la pantalla cuando la actividad se representa
al usuario. Por lo general, se muestra junto al ícono de la actividad. Si no se establece este
atributo, en su lugar se usa la etiqueta configurada para toda la aplicación (consulta el
atributo label del elemento <application>). Por defecto, el valor está en el recurso
 @string/app_name .
 android:theme Es la referencia a un recurso de estilo que define un tema general para
toda la actividad. Establece automáticamente el contexto de la actividad para el uso de
este theme y también puede generar animaciones de "inicio" antes del lanzamiento de la

17/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/activity-element?hl=es

actividad (para una mejor adecuación a la apariencia real de la actividad). Por defecto, el
valor está en el recurso @style/HolaMundo .
<intent-filter> en Android no existe un único punto de entrada para nuestra aplicación.
Podemos iniciarla a través de múltiples activities o services que pueden ser iniciados a
partir de intents específicos que puede enviar el sistema u otra aplicación. Para decir a
Android ante qué intent debe reaccionar nuestra aplicación y cómo, existe esta etiqueta.

 <action> es un elemento que contiene un nombre de acción que describe la
capacidad general que la actividad puede realizar. Con android.intent.action.MAIN
es una acción que indica que la actividad puede ser el punto de entrada principal de la
aplicación (es decir, la actividad que se inicia cuando el usuario selecciona el ícono de
la aplicación). Sólo puede haber una activity que reaccione a este intent.
 <category> es un elemento que contiene un nombre de categoría que describe la
capacidad general que la actividad puede realizar. Con
 android.intent.category.LAUNCHER le decimos a Android que queremos que esta
activity sea añadida al lanzador de la aplicación. Pueden haber varias activities que
reaccionen a este intent.

📌 Nota: Aunque hay muchos más conceptos básicos que debemos conocer sobre el
manifiesto de la aplicación. Por ahora, con lo que hemos visto es suficiente para empezar a
crear nuestras primeras aplicaciones. Más adelante iremos viendo más conceptos. Por
ejemplo, como añadir permisos, etc.

18/18 PMDM 2º DAM Tema 2.2 - Entendiendo la estructura básica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/intent-filter-element?hl=es

