Tema 2.2 - Entendiendo la estructura
basica
Descargar estos apuntes pdf o html

indice

= Introduccion
¥ Recursos de la aplicacién
= Recursos alternativos
= Drawables (drawable/)
¥ Mipmaps (mipmap/)
= Colores (colors.xml)
= Textos (strings.xml)
= Temas (themes.xml)
¥ Acceder a los recursos de la aplicacion
= Accediendo desde Kotlin
= Accediendo desde otro recurso XML
¥ Activities (Actividad)
= El concepto de actividades
= Ciclo de vida de una Activity
= El contexto en Android
¥ La clase Application
= Crear una subclase de Application
= La clase Activity
= Android Manifest

1/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_2_entendiendo_la_estructura_basica.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_2_entendiendo_la_estructura_basica.html

Introduccion

En este tema vamos a ver como se estructura una aplicaciéon Android y como se relacionan estos
componentes entre si. Pero antes de empezar con la capa mas laboriosa de Ul, vamos a ver como
se estructura una aplicacién Android a nivel de ficheros y a profundizar en algunos elementos que
ya hemos visto al renombrar un proyectos basico, ademas de otros componentes esenciales para el
funcionamiento de una aplicacion Android.

Recursos de la aplicacion

Los recursos son archivos o datos externos que soportan el comportamiento de
nuestra aplicacion Android, por ejemplo imagenes, strings, colores, temas,

etc.
Formalmente en un proyecto, estos elementos se encuentran en la carpeta [Andrioid |V
res . Alli se encuentran subdirectorios que agrupan los diferentes tipos de m[app]
— m[manifests]
recursos. — w[java]
— m[res]
. .y o m[drawable]
La idea del uso de recursos es dividir el codigo de tu app para mantener &[mipmap]
independencia. Todo con el fin de agregar variaciones de los archivos para Egva'ﬁesl
(XM
adaptar la aplicacion a diferentes tipos de pantallas, idiomas, versiones, — m[Gradle Scripts]

dimensiones, configuraciones de orientacion, etc. Por ejemplo: no es lo mismo
el espacio de un teléfono movil que el de una tableta, sin embargo se pueden
crear variaciones de los recursos para que la aplicacion se adapte a la densidad

de pantalla de cada uno.

Los grupos de recursos se dividen en subdirectorios. Cada uno de ellos contiene archivos que
cumplen una funcién especifica dentro de la aplicacion y en ocasiones estos directorios de recursos
dependera del tipo de desarrollo que estemos haciendo. Por ejemplo, si estamos usando XML para
crear la interfaz de usuario, tendremos los directorios layout y menu donde se guardaran los
archivos XML que contienen la interfaz de usuario y los menus de la aplicacion respectivamente.

Debes respetar esta estructura de documentos para no tener problemas en la ejecucion. En la
siguiente Tabla de Recursos, podemos ver un resumen de los mas usados.

En nuestra plantilla de aplicacion de compose tenemos los siguientes recursos ...

2/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/providing-resources.html?hl=es

Recursos alternativos

Un recurso alternativo es una variacion de un recurso, que se ajusta a una caracteristica de
configuracion en el dispositivo movil donde se ejecuta la aplicacion. Esto se logra a través de una
tabla de calificadores creada por Google que estandariza todas las configuraciones posibles que se
puedan presentar.

Un calificador es un mecanismo gramatical que especifica el propdsito de un recurso. Su sintaxis es

la siguiente: <nombre_recurso>-<calificador>

Ejemplo: mipmap-hdpi/ contendra la variacion del recurso ic_launcher.png para dispositivos
con densidad de pantalla de 24e dpi .

Todos los archivos que correspondan al mismo recursos deberan de tener el mismo nombre, se
identificaran gracias al calificador afadido al identificador de carpeta.

Si hay que indicar mas de un calificador, se separan por guiones y el orden de preferencia es el
que se sigue en la tabla, el primer calificador sera el de mas preferencia.

Ejemplo: Dispositivos en inglés de Estados Unidos y en orientacién horizontal, tendran un
nombre de recurso alternativo en el drawable/ , de la siguiente manera
drawable-en-rUS-land/ .

Una vez que guardes los recursos alternativos en directorios denominados con estos calificadores,
Android aplicara automaticamente los recursos en tu aplicacion de acuerdo con la configuracion del
dispositivo actual.

Drawables (drawable/)

Contiene los elementos de diseio (‘dibujables') en nuestra aplicacion. Iremos usandolos a lo largo
del curso.

o Archivos de mapas de bits o vectoriales

» Archivos nine-patch (mapas de bits reajustables)
o Listas de estados

e Formas

o Elementos de disefo de animaciones

o Otros elementos de disefio

3/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/providing-resources.html?hl=es#table2
https://developer.android.com/guide/topics/resources/drawable-resource?hl=es

Mipmaps (mipmap/)
Son archivos de diseno para diferentes densidades de los iconos de selectores.

Android Studio crea un icono adaptativo para su aplicacion que solo esta disponible en SDK 26 y
posteriores. Estos iconos adaptativos se incluyen en la carpeta mipmap-anydpi-v26 , son archivos
.xml que se adaptan a la tecnologia del dispositivo.

Ejemplo: Un icono de selector adaptable se puede mostrar con una forma circular en un
dispositivo OEM y con un cuadrado con esquinas redondeadas en otro.

La diferencia con respecto a los contenidos de drawable\ es que esta ultima sirve para colocar
todas las imagenes que vaya a utilizar nuestra aplicacion, siguiendo el mismo esquema de sufijos
que mipmap. Mientras que en la carpeta mipmap\ Unicamente colocaremos el icono de la app.

Como podemos observar, cuando creamos un proyecto en Android Studio, por defecto, ya nos

coloca ahi el icono con el nombre de ic_launcher .

Lo mas comun es encontrar recursos alternativos dependientes de la densidad y la version del SDK.

Densidad Descripcién DPlI Dispositivos Ejemplo
Idpi Baja densidad 120 240x320 Android watch
mdpi Densidad media 160 320x480 Teléfonos basicos
. . Smartphones
hdpi Alta densidad 240 480x800 ,
antiguos
_ Smartphones
xhdpi Extra alta densidad 320 720x1280
modernos
. . Smartphones
xxhdpi Extra extra alta densidad 480 1080x1920 .
premium
xxxhdpi Extra extra extra alta densidad 640 1440x2560 Television 4K
nodpi Sin densidad 0
anydpi Cualquier densidad 0
anydpi- Cualquier densidad para SDK 26
v26 y posteriores

4/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/practices/ui_guidelines/icon_design_adaptive

Values (values/)

Son archivos en formato XML que contienen valores simples, como cadenas,
valores enteros y colores.

Los archivos de recursos XML en otros subdirectorios res/ definen un Unico
recurso basado en el nombre del archivo en formato XML, mientras que los
archivos del directorio values/ describen varios recursos.

Dado que cada recurso se define con su propio elemento XML, puedes asignar
el nombre que desees al archivo y colocar diferentes tipos de recursos en un
archivo. Sin embargo, para mayor claridad, es recomendable que coloques
tipos de recursos unicos en diferentes archivos. Por ejemplo, a continuacion, se
incluyen los archivos de recurso que se crean en la platilla de compose:

Colores (colors.xml)

Andrioid__[¥]

s[app]

— m[manifests]

— M[java)

— M[res]

— m[drawable]

— M[mipmap]

— m[values]
colors.xml
strings.xml
themes.xml

— M[xml]

— m[Gradle Scripts]

Definira nombres de colores a usar en nuestra aplicacion o nuestros temas. Por ejemplo ...

<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="purple_ 200" >#FFBB86FC</color>
<color name="purple_500">#FF6200EE</color>
<color name="purple 700" >#FF3700B3</color>

</resources>

5/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/more-resources?hl=es#Color

Textos (strings.xml)

En lugar de 'hardcodear los textos en nuestra aplicacion, los definiremos en este archivo. Por
ejemplo ...

<!-- string.xml dentro de res - values -->
<resources>

<string name="app_name">HolaMundo</string>
</resources>

Si quisiéramos tener diferentes traducciones pulsariamos el botén derecho sobre el archivo
strings.xml y seleccionariamos Open Translations Editor en el menu contextual. En la ventana
gue se abre podemos afadir diferentes traducciones para los textos de nuestra aplicacion.

El editor basicamente me creara un recurso alternativo strings.xml por cada idioma que afada.
Por ejemplo, si afiado el idioma inglés de UK, me creara un fichero strings.xml en el directorio
values-en-rGB\ con el siguiente contenido...

<resources>

<!-- string.xml dentro de res -» values-en-rGB -->
<string name="app_name">HelloWorld</string>

</resources>

@ Nota: Si quieres sabes mas de como localizar tu aplicaciéon usando el 'Editor de
Traducciones’ de android estudio. Puedes consultar la documentacion oficial.

A nivel organizativo creara una estructura de directorios values con el sufijo de la localizacion
segun la ISO 639-1 y la ISO 3166-1. Por eso es interesante usar el 'Editor de Traducciones’ en
lugar de hacerlo manualmente. Una vez, creado ya lo podriamos modificar a mano. Aunque no es
recomendable porque el editor de traducciones me gestiona aquellas que estan pendientes de
traducir.

En el siguiente esquema puedes ver la estructura de directorios que se crea en la vista Proyecto y
la estructura organizativa equivalente en la vista Android .

e rcion Ty
+ m[Workspace] —
L &[app] "L-[fpp]
L, m[src] "Lll[ies]
L =[main] i M[values]
L & [res] - colors.xml
H 7 mstrings
"L-[Viiluesl strings.xml
strings.xml ings.
= strings.xml (en-rGB)
¢ m[values-en-rGB]
L strings.xml themes.xml

6/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/string-resource?hl=es
https://developer.android.com/studio/write/translations-editor?hl=es-419

Temas (themes.xml)

Los estilos XML son este caso una herencia de estilos que se aplican a la aplicacion o a un
componente concreto. En el tema de Capa Ul daremos alguna pincelada mas sobre los temas en
Compose.

Acceder a los recursos de la aplicacion

Ahora que se ha entendido que son los recursos, vamos a entender como pueden ser accedidos en
el codigo Kotlin o en el codigo XML de otros recursos. Para obtener la referencia de un recurso es
necesario que se le asigne un identificador que lo diferencie y le indique al programador donde
se encuentra.

Cada identificador se ubica en una clase llamada R a través de una constante entera. Esta clase es
generada automaticamente por una herramienta del SDK llamada appt, por lo que no es
recomendable editarlo manualmente.

Cada tipo de recurso existente dentro de la carpeta res es una clase anidada estatica del
archivo R.class .

Ejemplo: El subdirectorio drawable/ puede ser accedido como R.drawable.

Accediendo desde Kotlin

Ahora, si deseas obtener el identificador de un recurso desde codigo Kotlin, entonces usas el
operador punto para acceder a los miembros de cada clase interna

Paquete.R.tipoRecurso.nombreRecurso .

Ejemplo: Si tenemos una imagen cuyo identificador es ic_launcher_background . Para acceder
a su contenido debes navegas de la siguiente forma R.drawable.ic_launcher_background .

Por ejemplo, aunque hablaremos de 'Compose' cuando lleguemos a la capa de Ul, aqui tienes
un fragmento de cddigo para crear un componente con una imagen a partir del recurso del
ejemplo.

7/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/resources/style-resource?hl=es

@Composable
fun MiApp() {
Image(
// Reemplaza "R.drawable.ic_launcher_background" con el ID de tu recurso draw:
painter = painterResource(id = R.drawable.ic_launcher_background),
contentDescription = null,
modifier = Modifier
.fillMaxSize()
.background(Color.White)

Accediendo desde otro recurso XML

Esta forma de referencia se da cuando dentro de un recurso definido en un archivo XML
necesitamos usar el valor de otro recurso. Para ello usamos la sintaxis

@[Paquete: JtipoRecurso/nombreRecurso

Ejemplo: Si tenemos una imagen cuyo identificador es ic_launcher_background . Para acceder
a su contenido solo navegas de la siguiente forma @drawable/ic_launcher_background .

Por ejemplo, aunque este curso no vamos a abordar la interfaces de usuario con XML,
aqui tienes un fragmento de cddigo para crear una vista con una imagen a partir del recurso del

ejemplo.

<ImageView android:background="@drawable/ic_launcher_background" />

8/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

Activities (Actividad)

e Documentacion oficial.

Las actividades son uno de los componentes fundamentales de las apps en la plataforma de
Android. Sirven como punto de entrada para la interaccion del usuario con una app.

Una actividad es una ventana que contiene la interfaz de usuario de una app. Por lo general, cada
actividad tiene una pantalla completa que ocupa toda la superficie de la pantalla.

Tradicionalmente con los interfaces de usuario basadas en XML podiamos tener una o varias
actividades entre las cuales se podia navegar. Posteriormente aparecio el concepto de fragmento
que es una parte de una actividad que se puede reutilizar en otras actividades e incluso en otras
aplicaciones. De esta forma se creaba una uUnica actividad que contenia varios fragmentos y se
podia navegar entre ellos.

Con JetPack Compose y la posibilidad de crear interfaces de usuario de forma declarativa, se ha
vuelto a la idea de tener una unica actividad que contiene la interfaz de usuario completa de la
aplicacion. En este caso la navegacion entre pantallas se realiza mediante la composicion de
vistas. A este tipo de aplicaciones se les llama Single Activity Apps. Profundizaremos mas
adelante en la navegacion basada en composicion de vistas.

El concepto de actividades

 Documentacion oficial

e Recursos Adicionales:
o Castellano: DevExperto
o Inglés: Philipp Lackner

La experiencia con la app para dispositivos moéviles difiere de la version de escritorio, ya que la
interaccidn del usuario con la app no siempre comienza en el mismo lugar. En este caso, no hay un
lugar especifico desde donde el usuario comienza su actividad. Por ejemplo, si abres una app de
correo electronico desde la pantalla principal, es posible que veas una lista de correos electronicos.
Por el contrario, si usas una app de redes sociales que luego inicia tu app de correo electronico, es
posible que accedas directamente a la pantalla de la app de correo electronico para redactar uno.

La clase Activity esta disefiada para facilitar este paradigma. Cuando una app invoca a otra, la app
que realiza la llamada invoca una actividad en la otra, en lugar de a la app en si. De esta manera, la
actividad sirve como el punto de entrada para la interaccion de una app con el usuario. Implementas
una actividad como una subclase de la clase Activity.

9/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/components/activities?hl=es
https://developer.android.com/guide/components/activities/intro-activities?hl=es#tcoa
https://www.youtube.com/watch?v=YDPHFl5LC34
https://www.youtube.com/watch?v=SJw3Nu_h8kk&t=1s

Una actividad proporciona la ventana en la que la app dibuja su IU. Por lo general, esta ventana
llena la pantalla, pero puede ser mas pequefa y flotar sobre otras ventanas. Generalmente, una
actividad implementa una pantalla en una app. Por ejemplo, una actividad de una app puede
implementar una pantalla Preferencias mientras otra implementa una pantalla Seleccionar foto.

La mayoria de las apps contienen varias pantallas, lo cual significa que incluyen varias actividades.
Por lo general, una actividad en una app se especifica como la actividad principal, que es la primera
pantalla que aparece cuando el usuario inicia la app. Luego, cada actividad puede iniciar otra
actividad a fin de realizar diferentes acciones. Por ejemplo, la actividad principal de una app de
correo electrénico simple podria proporcionar una pantalla en la que se muestra una casilla de
correo electronico. A partir de aqui, la actividad principal podria iniciar otras actividades que
proporcionan pantallas para tareas como redactar correos y abrir correos electrénicos individuales.

Si bien las actividades trabajan en conjunto a fin de crear una experiencia del usuario coherente en
una app, cada actividad se relaciona vagamente con otras actividades; por lo general, hay una
pequena cantidad de dependencias entre las actividades de una app. De hecho, estas suelen iniciar
actividades que pertenecen a otras apps. Por ejemplo, una app de navegador podria iniciar la
accion de "Compartir actividad" de una app de redes sociales.

% Importante: Si quieres usar actividades en tu app, debes registrar informacion sobre estas
en el manifiesto de la app y administrar los ciclos de vida de las actividades de manera

apropiada.

Ciclo de vida de una Activity

e Documentacion oficial
¢ Recursos Adicionales:
o Inglés: Udacity

Como hemos comentado en el punto anterior. La activity es uno de los componentes esenciales de
una aplicacion Android, ademas de ser el componente que tiene asociada la interfaz de usuario.
Una misma aplicacion puede tener una o varias actividades y Android permite controlar por
completo el ciclo de vida de cada una de estas.

Los estados por los cuales puede pasar una Activity son los siguientes: Creacioén, Ejecucion,
Reanudacién, Pausa, Parada y Destruccién.

A la relacion entre ellos se le llama Ciclo de vida de una Actividad.

10/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/components/activities/activity-lifecycle?hl=es
https://www.youtube.com/watch?v=85MppyLJHz0&t=54s

Create onCreate() _,, [QINING onStart()

Started
(Visible)

onResume()
onRestart()
onStart()

Resumed
(Visible)

onResume()

onDestroy() Stopped
(Hidden) onPause()

Destroyed |

El ciclo de vida de una Activity nos describe los estados y las transiciones entre estados de una
determinada Activity, que como se ve en la imagen son:

Creacion: una actividad se ha creado cuando su estructura se encuentra en memoria, pero
esta no es visible aun. Cuando el usuario presiona sobre el icono de la aplicacion en su
dispositivo, el método oncreate() es ejecutado inmediatamente para cargar el layout de la
actividad principal en memoria.

* Ejecucion-Reanudacion: después de haber sido cargada la actividad se ejecutan en
secuencia el método onstart() y onResume() . Aunque onStart() hace visible la actividad, es
onResume() quien le transfiere el foco para que interactue con el usuario.

o Pausa: una actividad esta en pausa cuando se encuentra en la pantalla parcialmente visible.

Ejemplo: Cuando se abren didlogos que toman el foco superponiéndose a la actividad. El

meétodo llamado para la transicidon hacia la pausa es onPause() -

o Detencién: Una actividad esta detenida cuando no es visible en la pantalla, pero aun se
encuentra en memoria y en cualquier momento puede ser reanudada. Cuando una aplicacion
es enviada a segundo plano se ejecuta el método onstop() . Al reanudar la actividad, se pasa
por el método onRestart() hasta llegar a el estado de ejecucion y luego al de reanudacion.

o Destruccion: cuando la actividad ya no existe en memoria se encuentra en estado de
destruccion. Antes de pasar a destruir la aplicacion se ejecuta el método onbestroy() . Es
comun que la mayoria de actividades no implementen este método, a menos que deban
destruir procesos como servicios en segundo plano.

€ Nota: Aunque hay muchos mas conceptos basicos que debemos conocer sobre las
actividades y la comunicacion entre ellas. Por ahora, con lo que hemos visto es suficiente para
empezar a crear nuestras primeras aplicaciones.

11/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

El contexto en Android

El contexto de una aplicacion es una interfaz entre la aplicacién y el sistema operativo, la cual
describe la informacion que representa tu aplicacion dentro del ambito del sistema operativo.

También permite acceder a los recursos de la aplicacion y coordinar el funcionamiento de los

bloques de la aplicacion.

El contexto representa toda la meta-informacion sobre las relaciones que tiene la aplicacién con
otras aplicaciones o el sistema y podemos implementarlo a través de la Context.

En Android nos encontramos con los siguientes tipos de contextos:

o Aplicacion: Este contexto engloba a todos los demas, y cubre todo el ciclo de vida de la
aplicacién desde que la arrancamos hasta que muere. Por lo que cada aplicacion tiene ‘un
unico contexto de aplicacion’. El context de la aplicacion vive hasta que se termina por
completo la aplicacion (hasta que muere, no hasta que se pausa)

2 Importante: Se puede acceder desde una Activity O un Service con application O

desde cualquiera que herede de Context con applicationContext .

o Activity o Service: Como hemos dicho, un context vive tanto como el elemento al que
pertenece, por lo que depende del ciclo de vida. Asi, un Context de una Activity vivira el
mismo tiempo que viva la activity y siempre sera un tiempo menor que el de la Aplicacion.

e Recursos Adicionales:

o Inglés: Philipp Lackner

12/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/reference/android/content/Context?hl=es
https://www.youtube.com/watch?v=YdnM2ZvrIFM&list=PLQkwcJG4YTCSVDhww92llY3CAnc_vUhsm&index=4

La clase Application

e Documentacion oficial

La clase Application es la clase base para las aplicaciones de Android y es el punto de partida
para iniciar las actividades de la aplicaciéon. Cuando se inicia una aplicacion, el sistema crea una
Unica instancia de Application parala misma, y la asigna a un proceso de ejecucion de la
aplicacion. La clase application permanece en el proceso de ejecucion de la aplicacion durante
toda la duracion de la vida de la aplicacion.

Esta clase Application es una subclase de context y por tanto tiene acceso a todos los métodos
y propiedades de esta clase. Ademas, es un objeto singleton que se crea cuando se inicia la
aplicacion y se destruye cuando se cierra la aplicacion.

€ Nota: Aunque no es obligatorio, es una buena practica crear una subclase de
Application para mantener el estado global de la aplicacion. En el siguiente apartado veremos

como crearla.

Crear una subclase de Application

Por ejemplo, si quisiéramos afadir a nuestro 'Hola Mundo' nuestra propia clase Application . LO
primero que tenemos que hacer es crear una clase que herede de Application . Por ejemplo,
MiHolaMundo . Para ello, seguiremos estos dos pasos:

1. Creamos una clase HolaMundoApplication que herede de u
Application en el paquete principal com.pmdm.holamundo . m[app]
— m[manifests]
package com.pmdm.holamundo 7 [java]
. . . . + M[com.pmdm.holamundo]
import android.app.Application &: MainActivity kt
HolaMundoApplication.kt
// No tiene porque tener cuerpo si no tiene nada que inicializar [[res]

class HolaMundoApplication : Application() — M[Gradle Scripts]

2. Modificamos el archivo AndroidManifest.xml para que la aplicacion use nuestra clase
MiHolaMundo en lugar de la clase Application por defecto.

<?xml version="1.0" encoding="utf-8"?>
<manifest ...>
<application
android:name="com.pmdm.holamundo.HolaMundoApplication"
0
</application>
</manifest>

13/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/reference/android/app/Application?hl=es

La clase Activity

e Documentacion oficial

Anteriormente ya hemos explicado el concepto de Activity y su ciclo de
vida. Ahora vamos a ver sobre la clase que la representa y la actividad Andrioid]

principal que se crea en la plantilla de aplicacién de compose. m[app]
— m[manifests]
.. — M[java]
En el programa por defecto tendremos ya definida una clase - @[com.pmdm.holamundo]
MainActivity que hereda de ComponentActivity . Esta clase es una i: MainActivity.kt
HolaMundoApplication.kt
subclase de Activity que nos proporciona la libreria de Jetpack — H[res]

e . . . — M [Gradle Scripts]
Compose y nos permitira crear la interfaz de usuario de nuestra

aplicacion usando Compose en lugar de XML tradicional.

El codigo de la clase MainActivity es el siguiente:

class MainActivity : ComponentActivity() {
// Método que se ejecuta cuando se crea la actividad.
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
// Codigo donde se establece la UI de la Activity
// y que comentaremos mas adelante
setContent {
HolaMundoTheme {
Surface(
modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background

) {
Greeting("Hola Mundo")

y basicamente no hace nada mas que establecer la interfaz de usuario de la aplicacion. Aunque
como hemos comentado, desde ella podremos acceder a la aplicacion y a sus recursos....

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

val aplicacion = this.application as HolaMundoApplication

14/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/reference/android/app/Activity?hl=es

Android Manifest

e Documentacion oficial

El manifiesto de Android es un archivo XML que contiene informacion Andrioid |V]
esencial sobre la aplicacion para el sistema operativo Android. Esta | Wlapp]

+ M[manifests]
informacion sirve para que el sistema operativo pueda identificar la aplicacion L AndroidManifest.xmi

, . . m[java]
y sus componentes, asi como para declarar los permisos que necesita la &[res]
aplicacion para acceder a partes del sistema operativo o a otros servicios. u[Gradle Scripts]

Si examinamos el contenido del archivo AndroidManifest.xml de nuestra plantilla de aplicacion de
compose, podemos ver que tiene la siguiente estructura...

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

<application

android:name="com.pmdm.holamundo.HolaMundoApplication”
android:allowBackup="true"
android:dataExtractionRules="@xml/data_extraction_rules"
android:fullBackupContent="@xml/backup_rules"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/HolaMundo"
android:usesCleartextTraffic="true"
tools:targetApi="31">
<activity

android:name="com.pmdm.holamundo.MainActivity"

android:exported="true"

android:label="@string/app_name"

android:theme="@style/HolaMundo" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Vamos a ver los elementos mas importantes de este archivo. El cual iremos modificando a lo largo

del curso, anadiendo permisos, servicios, etc.

15/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/manifest-intro?hl=es

e <manifest> contiene como atributos los dos espacios de nombres con la definicion del
esquema XML. Su inclusion permitira al editor de XML de Android Studio validar el contenido
del archivo y ofrecernos ayuda mientras lo rellenamos.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">

</manifest>

o <application> es el elemento raiz del manifiesto. Contiene informacién sobre la aplicacién y
cada uno de sus componentes. En este caso, solo tenemos un componente, la actividad
principal.

<application
android:name="com.pmdm.holamundo.HolaMundoApplication”
android:allowBackup="true"
android:dataExtractionRules="@xml/data_extraction_rules"
android:fullBackupContent="@xml/backup_rules"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/HolaMundo"

android:usesCleartextTraffic="true"
tools:targetApi="31">

</application>

o android:name es el nombre de la clase que implementa la clase Application . Es opcional

y por defecto no se define. En el apartado anterior le asignamos el valor
com.pmdm.holamundo.HolaMundoApplication .

o android:allowBackup determina si se permite a la aplicacion participar en la infraestructura
de copia de seguridad y restablecimiento.

o android:dataExtractionRules las aplicaciones pueden establecer este atributo en un
recurso XML en el que se especifican las reglas que determinan qué archivos y directorios
puedes copiar del dispositivo como parte de las operaciones de copia de seguridad o
transferencia. Por defecto, el valor esta definido en el recurso @xml/data_extraction_rules .

o android:fullBackupContent es un archivo XML que contiene reglas de exclusion de datos
para la copia de seguridad de la aplicacion. Por defecto, el valor esta definido en el recurso
@xml/backup_rules Yy puedes ver su sintaxis aqui.

o android:icon es el icono de la aplicacion. Por defecto, el valor es el recurso
@mipmap/ic_launcher .

o android:label es el nombre de la aplicacion. Por defecto, el valor esta en el recurso

@string/app_name .

16/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/manifest-element?hl=es
https://developer.android.com/guide/topics/manifest/application-element?hl=es
https://developer.android.com/guide/topics/data/autobackup?hl=es#XMLSyntax

[e]

[e]

android:roundIcon es el icono redondo de la aplicacion. Por defecto, el valor esta en el
recurso @mipmap/ic_launcher_round .

android:supportsRtl indica si la aplicacion soporta la escritura de derecha a izquierda. Por
defecto, el valor es true .

android:theme es el tema de la aplicacion. Por defecto, el valor esta en el recurso
@style/HolaMundo .

android:usesCleartextTraffic indica sila aplicacion usa trafico HTTP de texto simple sin
formato implica que cualquier persona que supervise el trafico de red pueda very
manipular los datos que se transmiten. Esta es una vulnerabilidad si los datos transmitidos
incluyen informacién sensible, como contrasefias, numeros de tarjetas de crédito o
cualquier otro tipo de informacion personal. Por razones obvias, el valor por defecto false
pero nosotros lo hemos cambiado a true para poder hacer peticiones a una API de
prueba.

o <activity> es el componente que representa una pantalla con una interfaz de usuario. En

17/18

este caso, solo tenemos una actividad, la principal.

[e]

<application ...>
<activity
android:name="com.pmdm.holamundo.MainActivity"
android:exported="true"
android:label="@string/app_name"
android:theme="@style/HolaMundo" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>

android:name es el nombre de la clase que implementa la actividad. En nuestro ejemplo, el
valor es com.pmdm.holamundo.MainActivity .

android:exported indica sila actividad puede ser iniciada por componentes de otras
aplicaciones. Esto es, si es accesible desde fuera de la aplicacion.

android:label la etiqueta que se muestra en la pantalla cuando la actividad se representa
al usuario. Por lo general, se muestra junto al icono de la actividad. Si no se establece este
atributo, en su lugar se usa la etiqueta configurada para toda la aplicacion (consulta el
atributo label del elemento <application>). Por defecto, el valor esta en el recurso
@string/app_name .

android:theme Es la referencia a un recurso de estilo que define un tema general para
toda la actividad. Establece automaticamente el contexto de la actividad para el uso de
este theme y también puede generar animaciones de "inicio" antes del lanzamiento de la

PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/activity-element?hl=es

actividad (para una mejor adecuacion a la apariencia real de la actividad). Por defecto, el
valor esta en el recurso @style/HolaMundo .

o <intent-filter> en Android no existe un unico punto de entrada para nuestra aplicacion.
Podemos iniciarla a través de multiples activities o services que pueden ser iniciados a
partir de intents especificos que puede enviar el sistema u otra aplicacion. Para decir a
Android ante qué intent debe reaccionar nuestra aplicacion y como, existe esta etiqueta.

= <action> es un elemento que contiene un nombre de accidén que describe la
capacidad general que la actividad puede realizar. Con android.intent.action.MAIN
es una accion que indica que la actividad puede ser el punto de entrada principal de la
aplicacion (es decir, la actividad que se inicia cuando el usuario selecciona el icono de
la aplicacion). Solo puede haber una activity que reaccione a este intent.

= <category> es un elemento que contiene un nombre de categoria que describe la
capacidad general que la actividad puede realizar. Con
android.intent.category.LAUNCHER |e decimos a Android que queremos que esta
activity sea afadida al lanzador de la aplicaciéon. Pueden haber varias activities que
reaccionen a este intent.

< Nota: Aunque hay muchos mas conceptos basicos que debemos conocer sobre el
manifiesto de la aplicacion. Por ahora, con lo que hemos visto es suficiente para empezar a
crear nuestras primeras aplicaciones. Mas adelante iremos viendo mas conceptos. Por
ejemplo, como afadir permisos, etc.

18/18 PMDM 2° DAM Tema 2.2 - Entendiendo la estructura basica Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/guide/topics/manifest/intent-filter-element?hl=es

