Tema 2.1 - Usando un proyecto plantilla

Descargar estos apuntes pdf o html

indice

= |ntroduccion
V¥ Proyecto base

» Caracteristicas del proyecto base
= Renombrando un proyecto base

= Ampliando la plantilla del proyecto base

1/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_1_usando_un_proyecto_plantilla.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/Tema_2_1_usando_un_proyecto_plantilla.html

Introduccion

Android Studio es un IDE que se esta actualizando constantemente desde Google empezé a
adoptar Jetpack Compose como nueva forma de declarar Interfaces de Usuario. Es mas, las
propias librerias de Compose y Componentes de Material también se actualizan muy a menudo.

Cada version de Android Studio tiene sus propias plantillas para crear proyectos nuevos. Estas
plantillas se actualizan con cada nueva version de Android Studio. Por lo tanto, esto supone que
posiblemente los proyectos basico que se crean en cada version utilicen versiones diferentes de
las librerias de Compose, Material, etc.

Ademas, las plantillas que traen actualmente compose son muy basicas y no incluyen muchas de
las librerias que se suelen utilizar en un proyecto real y el 'scaffolding' o0 andamiaje basico de un
proyecto a veces es un poco complejo y laborioso de crear.

Existen muchos repositorios en GitHub que contienen proyectos base para empezar a trabajar con
Compose siguiendo las buenas practicas de arquitectura de Android y diferentes interpretaciones
de patrones.

De hecho, existe un repositorio oficial de Android en GitHub
https://github.com/android/architecture-templates. Donde se esta trabajando en diferentes
plantillas para crear proyectos con diferentes arquitecturas y patrones de disefio que aun esta en
versién beta y cuya idea es integrarlo en el futuro con Android Studio. Este tipo de proyectos
incluyen scripts para renombrar de forma sencilla paquetes, nombres de clases, etc.

Proyecto base

Nosotros hemos incluido un proyecto base que incluye las librerias principales a usar en el curso a
modo de plantilla como si fuera una foto de las dependencias y versiones a la fecha 11/09/2024.
Pudes descargar el proyecto base desde el siguiente enlace:

» Proyecto base 11/09/2024

% Importante: Lo ideal es que partas de esta proyecto base, copiando la carpeta del
'workspace' y la renombres con el nombre de tu aplicacién. A continuacion, puedes seguir los
pasos que se indican en el siguiente apartado para renombrar el proyecto base.

2/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

https://github.com/android/architecture-templates
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B2_Arquitectura_de_una_Aplicacion/assets/codigo/ProyectoBase_11_09_2024_recurso.zip

Caracteristicas del proyecto base

€ Nota: Este apartado, se incluye a modo divulgativo para ser consultado mas adelante en
el curso. No es necesario que lo leas ahora pues mucho de lo que pone aun carece de
sentido para nosotros

1. Usa Kotlin como lenguaje para el DSL de Gradle.

2. Define 1libs.versions.toml en la carpeta gradle que contiene las versiones de las librerias
gue se usan en el proyecto. Este archivo se usa para centralizar las versiones de las librerias
y poder referenciarlas en los scripts de Gradle. De esta forma, si queremos cambiar la version
de una libreria, solo tendremos que hacerlo en un unico lugar. Podemos destacar las

lifecycleRuntimeKtx = "2.8.6"
activityCompose = "1.9.2"
composeBom = "2024.09.02"

Libreria de ciclo de vida de las Activities
Libreria de Compose para las Activities
Bill Of Materials de Compose

siguientes...
[versions]
agp = "8.6.0" # Android Gradle Plugin usado en el proyecto
kotlin = "2.0.20" # Versién de Kotlin y el compilador de compose compatible
coreKtx = "1.13.1" # Extensiones de Kotlin para Android
junit = "4.13.2" # Libreria de testing JUnit
junitVersion = "1.2.1" # Versién de JUnit para Android
espressoCore = "3.6.1" # Libreria de testing Espresso
#
#
#

pmdmIesBalmisVersion = "24.1" # Libreria de componentes de la asignarura.

3. settings.gradle.kts donde estara la configuracion del proyecto ...

o Repositorios de donde se van a descargar los plugings de Gradle y las librerias o
artefactos de Kotlin, Android. En nuestro caso, usamos el repositorio de Google, Maven
Central y JitPack para las librerias que no estan en los repositorios oficiales de Google o
Maven Central como la libreria de componentes de la asignatura.

dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)

repositories {
google()
mavenCentral()
maven {
url = uri("https://jitpack.io")

o Nombre y moédulos que lo forman. En nuestro caso solo tenemos un médulo llamado

app .

3/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

4/9

rootProject.name = "ProyectoBase2425"
include(":app")

4. build.gradle.kts del proyecto donde unica y exclusivamente se definen los pliguins a usar
por Gradle en nuestro proyecto y cuyas versiones estan definidas en el archivo
libs.versions.toml en la seccion [plugins]. Como minimo seran los siguientes:

plugins {

// Aplicamos el plugin de Android que me anadira

// las tareas de compilacion, empaquetado, etc.
alias(libs.plugins.android.application) apply false
// Aplicamos el plugin de Kotlin para Android
alias(libs.plugins.kotlin.android) apply false

// Aplicamos el plugin para el compilador de Compose
alias(libs.plugins.compose.compiler) apply false

5. build.gradle.kts del médulo de la aplicacion. Que incluira diferentes secciones a destacar:
1. plugins: a aplicar en el médulo de la aplicacion, que suelen ser los mismos que para el

proyecto mas alguno especifico adicional que solo se vaya a utilizar en el modulo de la
aplicacion. Por ejemplo, el plugin de kotlin-parcelize que Se usa para generar codigo
de serializacion de objetos en Android.

plugins {
alias(libs.plugins.android.application)
alias(libs.plugins.kotlin.android)
alias(libs.plugins.compose.compiler)
id("kotlin-parcelize")

2. android: donde se definen las propiedades de la aplicacién como el API del SDK de

Android a usar, y la minima versiéon de Android a la que se va a dirigir la aplicacion, el
nombre del paquete base de la aplicacion, la version del JDK de Java a usair, etc.

PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

3. dependencies: donde se definen las dependencias de la aplicacion. En nuestro caso,

librerias que a lo largo del curso iran tomando sentido para nosotros, muchas de ellas

llevan el prefijo androidx indicandonos que son extensiones oficiales de la libreria de

soporte de Android y puede que en un futuro se incluyan en el propio SDK de Android y

cuyas versiones estan definidas en el archivo 1ibs.versions.toml e incluiremos aqui a

través de su alias definido en dicho fichero. Entre ellas podemos destacar:

= Librerias especificas de Android:

implementation(libs.androidx.core.ktx)
implementation(libs.androidx.lifecycle.runtime.ktx)

// Libreria que permite cargar UIs de Compose en Activities
implementation(libs.androidx.activity.compose)

implementation(libs.androidx.ui)
implementation(libs.androidx.ui.graphics)

// Libreria que permite previsualizar las UIs de Compose
implementation(libs.androidx.ui.tooling.preview)

= Bill Of Materials (BOM): BOM nos permite usar las librerias de Compose y

Material de forma coherente y que todas las librerias tengan la misma version.

Podemos decir, que es como un conjunto de versiones de librerias que se deben

usar juntas.

implementation(platform(libs.androidx.compose.bom))

Algunas de estas librerias son:

androidx.
androidx.
androidx.
androidx.

compose
compose
compose
compose

.foundation:foundation
.runtime:runtime
.ui:ui
.animation:animation

Nosotros podremos especificar actualizaciones personalizadas de estas librerias en

el archivo 1ibs.versions.toml . Pero hay que tener cuidado por que el BOM ya

incluye las versiones de las librerias de Compose y Material que se deben usar

juntas por compatibilidad.

= Librerias de Material Design: Define los componentes de Material Design y

aspectos de disefo que se pueden usar en Compose.

implementation(libs.androidx.material3)

5/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

https://developer.android.com/jetpack/compose/bom
https://developer.android.com/jetpack/compose/bom/bom-mapping

Renombrando un proyecto base

Una vez hemos descargado el proyecto base y lo hemos descomprimido.

Los pasos a realizar para renombrar correctamente el proyecto son los siguientes:

1. Copiamos el proyecto base en el lugar que deseemos.

2. Cambiamos el nombre a la carpeta o 'workspace’ del proyecto base, si lo consideramos

necesario.Por ejemplo, HolaMundo .

3. Abrimos Android Studio y seleccionamos la carpeta que contiene nuestro proyecto base.

4. Cuando Gradle finalice todo seleccionaremos la vista
Android . En esta mas que carpeta lo que contendra una
serie de unidades organizativas jerarquicas de los
elementos del proyecto similar al esquema de la derecha.
renombraremos el paquete de la aplicacion, para ello
haremos click derecho sobre el paquete
com.pmdm.proyectobase Yy seleccionaremos
Refactor -> Rename O Ctrl + R, R siusamos el Keymap
de Visual Studio.
o Seleccionaremos All Directories
o Cambiaremos proyectobase por el nombre de nuestra
app en minusculas, sin espacios y sin caracteres
especiales. Por ejemplo, holamundo Yy pulsaremos
Refactor . Si nos ofrece un preview de los cambios

pulsaremos Do Refactor .

6/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024

Andrioid__[¥]

H[app]
—7 M[manifests]
AndroidManifest.xml
— wi[kotlin+java]
— mM[com.pmdm.proyectobase]
|: m[ui.theme]
MainActivity.kt
— m[com.pmdm.proyectobase] (androidTest)
— wm[com.pmdm.proyectobase] (test)
—7 H[res]
— m[drawable]
— m[mipmap]
— m[values]
colors.xml
strings.xml
themes.xml
— H[xml]

— m[Gradle Scripts]

— build.gradle.kts (Project:ProyectoBase)
build.gradle.kts (Module:app)

— libs.versions.toml (Versions Catalog)

— settings.gradle.kts

IES Doctor Balmis

5. Abriremos el archivo gradle del médulo de la aplicacidn que se encuentra en
app -» Gradle Scripts - build.gradle.kts (Module:app)
Cambiaremos el nombre del paquete de nuestro programa principal com.pmdm.proyectobase
por el que hayamos puesto en el paso 4. En nuetro ejemplo com.pmdm.holamundo . Fijate en el
siguiente script de ejemplo.
android {
namespace = "com.pmdm.holamundo"

compileSdk = 34

defaultConfig {

applicationId = "com.pmdm.holamundo"
minSdk = 28

targetSdk = 34

versionCode = 1

versionName = "1.0"

% Importante: Puesto que hemos cambiado un archivo de la configuracion de Gradle
deberemos pulsar el botén de sincronizacion de Gradle que aparece en la barra de
herramientas arriba a la derecha con el icono del elefante de Gradle para que los

cambios tengas efecto.

6. Aunque los paquetes se hayan renombrado, todavia quedaria por realizar algun paso mas. Si
abrimos el fichero app -+ manifests - AndroidManifest.xml todavia aparece el nombre

ProyectoBase en la etiqueta y en el Theme . Tendremos pues que hacer lo siguiente:

<application ...>

<activity
// Si se produce un error aqui deberemos sincornizar el
// proyecto con Gradle o poner la ruta completa a la
// definicién, esto es, android:name="com.pmdm.holamundo.MainActivity"
android:name=".MainActivity"

android:exported="true"
android:label="@string/app_name"

// Renombraremos el ProyectoBase a HolaMundo con
// la refactorizacidén del menud contextual o Ctrl + R, R

android:theme="@style/Theme.HolaMundo" >

</activity>

719 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

7. Cambiaremos el nombre de la APP en app > res » values » strings.xml . Por ejemplo, por
HolaMundo .

<resources>

<string name="app_name">HolaMundo</string>
</resources>

8. Abriremos al archivo de configuracion de Gradle app - Gradle Scripts - settings.gradle.kts

y cambiaremos el nombre del proyecto ProyectoBase por el nuevo nombre que le queramos
dar. Por ejemplo, HolaMundo .

rootProject.name = "HolaMundo"
include(":app")

€ Nota: Este sera el nombre del proyecto que aparecera al abrir el proyecto con Android
Studio independientemente del nombre que le hayamos puesto a la carpeta del
'Workspace'.

9. Ademas del nombre del tema de la MainActivity que hemos cambiado en el ‘'manifest’,
deberemos cambiar el nombre del tema de compose. Para ello iremos

app » java > com.pmdm.holamundo.ui.theme - Theme.kt y cambiaremos el nombre del tema

ProyectoBaseTheme por HolaMundoTheme para seguir la nomenclatura de nuestro ejemplo.
€ Nota: Recuerda que es importante hacer un refactorizacion del nombre del tema con
ctrl + R, R para que se cambie en todos los lugares donde se usa.

@Composable
fun HolaMundoTheme(

darkTheme: Boolean = isSystemInDarkTheme(),
dynamicColor: Boolean = true,

content: @Composable() () -> Unit
) {

10. Por ultimo, sincronizaremos una vez mas el proyecto con la opcién de menu
File » Sync Project with Gradle Files O Ctrl + Mayds + 0. También podemos pulsar el

botdn de sincronizacion de Gradle que aparece en la barra de herramientas arriba a la
derecha con el icono del elefante de Gradle.

8/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

Ampliando la plantilla del proyecto base

Durante el curso iremos aplicando la arquitectura de una aplicacion de Android propuesta por
Google y que veremos en el siguiente tema. Para implementarla iremos afadiendo una
organizacion de paquetes, clases, nombres y diferentes librerias segun vayamos avanzando en el

Curso.

Por tanto, a medida que vayamos avanzando en el curso podemos ir actualizando la plantilla o
esqueleto de proyecto base, con las nuevas librerias y organizacion de paquetes y clases que
vayamos viendo y asi tener un 'Template' personalizado para iniciar un proyecto de forma rapida.

9/9 PMDM 2° DAM Tema 2.1 - Usando un proyecto plantilla Rev. 22/09/2024 IES Doctor Balmis

