Ejercicios programacion funcional

Descargar estos ejercicios

indice

= Ejercicio 1
= Ejercicio 2
= Ejercicio 3
= Ejercicio 4

= Ejercicio 5

1/8 Ejercicios programacion funcional Kotlin IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B1_Kotlin/ejercicios/tema_1_2/2_Ejercicios_programacion_funcional_Kotlin.pdf

Ejercicio 1

Crea una aplicacion que a partir de una Lista de enteros, te muestre los multiplos de un
numero introducido por teclado que existan en la lista, usando funciones-A. Resuelve de dos

formas distintas, con clausura y sin clausura.

Ejercicio 2
Crea una aplicacion que sirva para buscar coincidencias en una lista de cadenas. Para

ello, definiremos una funcién-A que reciba una lista y una cadena y sobre la lista con el

método filter busque la cadena.
Ten en cuenta que el método filter necesitara un predicado para el cual utilizaremos otra

funcién-A para formarlo.

% Nota: Puede serte de utilidad la funcidon contains sobre cadenas. Por ultimo, muestra,

con forEach la lista resultante.

2/8

Ejercicios programacion funcional Kotlin IES Doctor Balmis

Ejercicio 3

VVamos ha realizar una serie de operaciones funcionales usando funciones-A con el patron
Map - Filter — Fold
Partiremos de la siguiente lista de numeros reales:

List<double> reales = new List<double> {
0.5, 1.6, 2.8, 3.9, 4.1, 5.2, 6.3, 7.4, 8.1, 9.2
¥

Vamos a realizar las siguientes operaciones:

1. Mostrar la lista usando el método forEach(action:Consumer<T>) de lista. Pasando a la
funcién-A action, una clausura de la variable string texto, en la que iremos componiendo
su contenido separado por un espacio en blanco.

2. Cuenta aquellos elementos cuya parte decimal es menor que 0.5

e Map: Paso del valor real a su parte decimal. Ej: 2.8 — 0.8
 Filter: Filtro aquellas partes decimales que cumplen el predicado: d < 0.5
e Fold: Contar los elementos en la secuencia resultante.

3. Calcular la suma de todos los valores de la secuencia cuya parte entera sea multiplo de
3.

e Map: Mapea el valor real a un objeto anénimo con la parte entera y el propio valor
real de la secuencia. Ej: 2.8 > new { e =2, r = 2.8 }

o Filter: Filtro aquellas partes enteras que cumplen el predicado: o.e % 3 ==

e Fold: Suma todos los o.r de la secuencia resultante.

4. Calcular el maximo valor de la secuencia cuya parte decimal es mayor que 0.5

o Map: Mapea el valor real a un objeto anénimo con la parte decimal y el propio valor
real de la secuencia. Ej: 2.8 > new { d = 0.8, r = 2.8 }

o Filter: Filtro aquellas partes decimales que cumplen el predicado: o.d > 0.5

¢ Fold: Me quedo con el maximo de todos los o.r de la secuencia resultante.

3/8

Ejercicios programacion funcional Kotlin IES Doctor Balmis

4/8

Ejercicio 4

En baseEjercicio4.kt de este bloque de ejercicios, encontraras definidas las siguientes clases

@ Producto

+CodArticulo : string { get; init; }
+Descripcion : string { get; init; } @———— +Largo : int { get; init; }
+Categoria : string { get; init; } +Ancho : int { get; init; }
+Colores : string[] { get; init; } +Espesor : int { get; init; }
+Precio : double { get; init; }

© Dimensiones

En la propiedad estatica productos de la clase Datos te devolvera una secuencia de
productos (IEnumerable<Producto>) sobre la que realizar las consultas.

Ademas, en el programa principal tienes un 'esqueleto’ a completar con descripcion de cada
consulta. Por ejemplo, para la primera consulta tendriamos ...

println(SeparadorConsulta);
println(
“"Consulta 1: Usando las funciones filter y map.\n" +
"Mostrar CodArticulo, Descripcion y Precio .\n" +
"de productos con Precio entre 10 y 30 euros\n"
)
val consultal : List<Any> = 1listOf() //A cambiar

println(consultal.joinToString(separator = "\n"));

Nosotros deberemos rellenar la consulta de acuerdo a las especificaciones de la descripcion,
cuidando la presentacion y sangria para que sean legibles. Por ejemplo ...

Ejercicios programacion funcional Kotlin IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B1_Kotlin/ejercicios/tema_1_2/BaseEjercicio4.kt

val consultal = Datos.productos.filter { it.precio >= 10 && it.precio <= 30 }
.map { p: Producto ->
object {
val codArticulo = p.codArticulo
val descripcion = p.descripcion
val precio = p.precio

override fun toString() = "$codArticulo $descripcion $precio”

Una vez completadas todas las consultas. Al ejecutar el programa la salida por pantalla del
programa debera ser ...

Consulta 1: Usando las funciones filter y map.
Mostrar CodArticulo, Descripcion y Precio .

de productos con Precio entre 10 y 30 euros

{ CodArticulo = A@1l, Descripcion = Uno, Precio = 15,05 }
Dos, Precio = 25,95 }

Cuatro, Precio = 18,45 }

{ CodArticulo = A@2, Descripcion
{ CodArticulo

A@4, Descripcion

Consulta 2: Usando las funciones map, sortedByDescending y take.
Muestra CodArticulo, Descripcion y Precio de los 3 productos.

mds caros (ordenando por Precio descendente)

{ CodArticulo
{ CodArticulo
{ CodArticulo

A@3, Descripcion

Tres, Precio = 30,25 }
Dos, Precio = 25,95 }
Cuatro, Precio = 18,45 }

A@2, Descripcion

A@4, Descripcion

Consulta 3: Usando las funciones groupBy, map, sortedByDescending y last.
Muestra el precio mas barato por categoria

{ Categoria = C1, PrecioMasBarato = 15,05 }
18,45 }

{ Categoria = C2, PrecioMasBarato

5/8 Ejercicios programacion funcional Kotlin IES Doctor Balmis

6/8

Consulta 4: Usando las funciones

é¢Cuantos productos hay de cada ca

{ Categoria = C1, NumeroProductos

{ Categoria = C2, NumeroProductos

Consulta 5: Usando las funciones

Mostrar las categorias que tengan

c1

Consulta 6: Usando la funcién map
Mostrar CodArticulo, Descripcion,

siendo Descuento el 10% del Preci

{ CodArticulo = A@1l, Descripcion
{ CodArticulo = A@2, Descripcion
{ CodArticulo
{ CodArticulo

A@3, Descripcion

A@4, Descripcion

Consulta 7: Usando las funciones
Mostrar CodArticulo, Descripcion
de los productos de color verde o

(es decir, que contengan alguno d

{ CodArticulo
{ CodArticulo
{ CodArticulo = A@4, Descripcion

A@2, Descripcion

A3, Descripcion

Consulta 8: Usando las funciones
Mostrar CodArticulo, Descripcion

de los productos que se fabrican

{ CodArticulo
{ CodArticulo
{ CodArticulo

A@1, Descripcion

A@2, Descripcion

A@3, Descripcion

Ejercicios programacion funcional Kotlin

groupBy, count.
tegoria?

I
= w
(S

groupBy, map y filter

mas de 2 productos

Precio y Descuento redondeado a

(o]

Uno, Precio = 15,05, Descuento

Dos, Precio = 25,95, Descuento

Tres, Precio = 30,25, Descuento

filter, contains y map.
y Colores
rojo

e los dos)

2

decimales,

1,5}
2,6 }
3,03 }

Cuatro, Precio = 18,45, Descuento = 1,84 }

Dos, Colores = [blanco, gris, rojo] }

= Tres, Colores = [rojo, gris, verde] }

filter y map.
y Colores.

en tres Colores

IES Doctor Balmis

Cuatro, Colores = [verde, rojo] }

Uno, Colores = [blanco, negro, gris] }
Dos, Colores = [blanco, gris, rojo] }

Tres, Colores = [rojo, gris, verde] }

Consulta 9: Usando las funciones filter y map.
Mostrar CodArticulo, Descripcion y Dimensiones

de los productos con espesor de 3 cm

{ CodArticulo
{ CodArticulo

A@1l, Descripcion = Uno, Dimensiones = L:4 x A:4 x E:3 }

A@3, Descripcion = Tres, Dimensiones = L:5 x A:5 x E:3 }

Consulta 10: Usando las funciones flatMap, distinct y sortedBy.

Mostrar los colores de productos ordenados y sin repeticiones

blanco
gris
negro
rojo

verde

7/8 Ejercicios programacion funcional Kotlin IES Doctor Balmis

Ejercicio 5

Vamos a practicas los conceptos del anterior tema, ademas de afiadir HOF y funciones
Lambda. Para ellos nos crearemos una data class Usuario, con solamente login y password
de tipo String. Crearemos una interface sellada UsuarioEvent, para gestionar los eventos del

usuario:

e AfadeUsuario al que le llega un usuario
e ModificicaUsuario al que le llega un string
e MuestraUsuario de tipo object

Por otro lado tendremos una clase donde gestionaremos la l6gica de la aplicacion llamada
UsuarioViewModel, que contendra una lista mutable de usuarios y el método
onUsuarioEvent al que le llega una UsuarioEvent y le da la funcionalidad necesaria a cada

evento para que hagan lo que su nombre indica, sobre la lista de usuarios.

Para la parte de la interaccion del usuario con la aplicaciéon crearemos una funcién
usuarioScreen a la que le llegara una funcion de nivel superior HOF, con un UsuarioEvent de
parametro de entrada y vacio de salida (usuarioEvent: (UsuarioEvent) -> Unit). Esta
funcién tendra un menu que nos permitira afadir, modificar y mostrar usuarios invocando a los
eventos a través del parametro de entrada de la funcidn. Por ejemplo, para mostrar podria ser

algo como usuarioEvent(UsuarioEvent.MuestraUsuarios) .

En el programa principal habra que crear un objeto de tipo ViewModel y con este llamar a la
funcion de interaccién con el cliente.

. Tips: Para realizar la llamada a la funcion con el objeto ViewModel se tendra que

hacer de la siguiente manera:

val usuarioViewModel = UsuarioViewModel () usuarioScreen(usuarioViewModel: :onUsuarioEvent)

J

8/8

Ejercicios programacion funcional Kotlin IES Doctor Balmis

