
Ejercicios programación funcional
Descargar estos ejercicios

Índice
Ejercicio 1
Ejercicio 2
Ejercicio 3
Ejercicio 4
Ejercicio 5

1/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B1_Kotlin/ejercicios/tema_1_2/2_Ejercicios_programacion_funcional_Kotlin.pdf

Ejercicio 1
Crea una aplicación que a partir de una Lista de enteros, te muestre los múltiplos de un
número introducido por teclado que existan en la lista, usando funciones-λ. Resuelve de dos
formas distintas, con clausura y sin clausura.

Ejercicio 2
Crea una aplicación que sirva para buscar coincidencias en una lista de cadenas. Para
ello, definiremos una función-λ que reciba una lista y una cadena y sobre la lista con el
método filter busque la cadena.
Ten en cuenta que el método filter necesitará un predicado para el cual utilizaremos otra
función-λ para formarlo.

📌 Nota: Puede serte de utilidad la función contains sobre cadenas. Por último, muestra,
con forEach la lista resultante.

2/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

Ejercicio 3
Vamos ha realizar una serie de operaciones funcionales usando funciones-λ con el patrón
Map – Filter – Fold
Partiremos de la siguiente lista de números reales:

List<double> reales = new List<double> {

 0.5, 1.6, 2.8, 3.9, 4.1, 5.2, 6.3, 7.4, 8.1, 9.2

};

Vamos a realizar las siguientes operaciones:

1. Mostrar la lista usando el método forEach(action:Consumer<T>) de lista. Pasando a la
función-λ action, una clausura de la variable string texto, en la que iremos componiendo
su contenido separado por un espacio en blanco.

2. Cuenta aquellos elementos cuya parte decimal es menor que 0.5
Map: Paso del valor real a su parte decimal. Ej: 2.8 → 0.8
Filter: Filtro aquellas partes decimales que cumplen el predicado: d < 0.5
Fold: Contar los elementos en la secuencia resultante.

3. Calcular la suma de todos los valores de la secuencia cuya parte entera sea múltiplo de
3.

Map: Mapea el valor real a un objeto anónimo con la parte entera y el propio valor
real de la secuencia. Ej: 2.8 → new { e = 2, r = 2.8 }
Filter: Filtro aquellas partes enteras que cumplen el predicado: o.e % 3 == 0
Fold: Suma todos los o.r de la secuencia resultante.

4. Calcular el máximo valor de la secuencia cuya parte decimal es mayor que 0.5
Map: Mapea el valor real a un objeto anónimo con la parte decimal y el propio valor
real de la secuencia. Ej: 2.8 → new { d = 0.8, r = 2.8 }
Filter: Filtro aquellas partes decimales que cumplen el predicado: o.d > 0.5
Fold: Me quedo con el máximo de todos los o.r de la secuencia resultante.

3/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

Ejercicio 4
En baseEjercicio4.kt de este bloque de ejercicios, encontrarás definidas las siguientes clases
...

Producto

+CodArticulo : string { get; init; }
+Descripcion : string { get; init; }
+Categoria : string { get; init; }
+Colores : string[] { get; init; }
+Precio : double { get; init; }

Dimensiones

+Largo : int { get; init; }
+Ancho : int { get; init; }
+Espesor : int { get; init; }

1 1

En la propiedad estática productos de la clase Datos te devolverá una secuencia de
productos (IEnumerable<Producto>) sobre la que realizar las consultas.

Además, en el programa principal tienes un 'esqueleto' a completar con descripción de cada
consulta. Por ejemplo, para la primera consulta tendríamos ...

println(SeparadorConsulta);

println(

 "Consulta 1: Usando las funciones filter y map.\n" +

 "Mostrar CodArticulo, Descripcion y Precio .\n" +

 "de productos con Precio entre 10 y 30 euros\n"

);

val consulta1 : List<Any> = listOf() //A cambiar

println(consulta1.joinToString(separator = "\n"));

Nosotros deberemos rellenar la consulta de acuerdo a las especificaciones de la descripción,
cuidando la presentación y sangría para que sean legibles. Por ejemplo ...

4/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

file:///G:/TRABAJO/MODULOS/PMDM/PMDM/B1_Kotlin/ejercicios/tema_1_2/BaseEjercicio4.kt

 ...

 val consulta1 = Datos.productos.filter { it.precio >= 10 && it.precio <= 30 }

 .map { p: Producto ->

 object {

 val codArticulo = p.codArticulo

 val descripcion = p.descripcion

 val precio = p.precio

 override fun toString() = "$codArticulo $descripcion $precio"

 }

 }

 ...

Una vez completadas todas las consultas. Al ejecutar el programa la salida por pantalla del
programa deberá ser ...

Consulta 1: Usando las funciones filter y map.

Mostrar CodArticulo, Descripcion y Precio .

de productos con Precio entre 10 y 30 euros

{ CodArticulo = A01, Descripcion = Uno, Precio = 15,05 }

{ CodArticulo = A02, Descripcion = Dos, Precio = 25,95 }

{ CodArticulo = A04, Descripcion = Cuatro, Precio = 18,45 }

Consulta 2: Usando las funciones map, sortedByDescending y take.

Muestra CodArticulo, Descripcion y Precio de los 3 productos.

más caros (ordenando por Precio descendente)

{ CodArticulo = A03, Descripcion = Tres, Precio = 30,25 }

{ CodArticulo = A02, Descripcion = Dos, Precio = 25,95 }

{ CodArticulo = A04, Descripcion = Cuatro, Precio = 18,45 }

Consulta 3: Usando las funciones groupBy, map, sortedByDescending y last.

Muestra el precio más barato por categoría

{ Categoria = C1, PrecioMasBarato = 15,05 }

{ Categoria = C2, PrecioMasBarato = 18,45 }

5/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

Consulta 4: Usando las funciones groupBy, count.

¿Cuántos productos hay de cada categoría?

{ Categoria = C1, NumeroProductos = 3 }

{ Categoria = C2, NumeroProductos = 1 }

Consulta 5: Usando las funciones groupBy, map y filter

Mostrar las categorías que tengan más de 2 productos

C1

Consulta 6: Usando la función map

Mostrar CodArticulo, Descripcion, Precio y Descuento redondeado a 2 decimales,

siendo Descuento el 10% del Precio

{ CodArticulo = A01, Descripcion = Uno, Precio = 15,05, Descuento = 1,5 }

{ CodArticulo = A02, Descripcion = Dos, Precio = 25,95, Descuento = 2,6 }

{ CodArticulo = A03, Descripcion = Tres, Precio = 30,25, Descuento = 3,03 }

{ CodArticulo = A04, Descripcion = Cuatro, Precio = 18,45, Descuento = 1,84 }

Consulta 7: Usando las funciones filter, contains y map.

Mostrar CodArticulo, Descripcion y Colores

de los productos de color verde o rojo

(es decir, que contengan alguno de los dos)

{ CodArticulo = A02, Descripcion = Dos, Colores = [blanco, gris, rojo] }

{ CodArticulo = A03, Descripcion = Tres, Colores = [rojo, gris, verde] }

{ CodArticulo = A04, Descripcion = Cuatro, Colores = [verde, rojo] }

Consulta 8: Usando las funciones filter y map.

Mostrar CodArticulo, Descripcion y Colores.

de los productos que se fabrican en tres Colores

{ CodArticulo = A01, Descripcion = Uno, Colores = [blanco, negro, gris] }

{ CodArticulo = A02, Descripcion = Dos, Colores = [blanco, gris, rojo] }

{ CodArticulo = A03, Descripcion = Tres, Colores = [rojo, gris, verde] }

6/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

Consulta 9: Usando las funciones filter y map.

Mostrar CodArticulo, Descripcion y Dimensiones

de los productos con espesor de 3 cm

{ CodArticulo = A01, Descripcion = Uno, Dimensiones = L:4 x A:4 x E:3 }

{ CodArticulo = A03, Descripcion = Tres, Dimensiones = L:5 x A:5 x E:3 }

Consulta 10: Usando las funciones flatMap, distinct y sortedBy.

Mostrar los colores de productos ordenados y sin repeticiones

blanco

gris

negro

rojo

verde

7/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

Ejercicio 5
Vamos a prácticas los conceptos del anterior tema, además de añadir HOF y funciones
Lambda. Para ellos nos crearemos una data class Usuario, con solamente login y password
de tipo String. Crearemos una interface sellada UsuarioEvent, para gestionar los eventos del
usuario:

 AñadeUsuario al que le llega un usuario
 ModificicaUsuario al que le llega un string
 MuestraUsuario de tipo object

Por otro lado tendremos una clase donde gestionaremos la lógica de la aplicación llamada
UsuarioViewModel, que contendrá una lista mutable de usuarios y el método
onUsuarioEvent al que le llega una UsuarioEvent y le da la funcionalidad necesaria a cada
evento para que hagan lo que su nombre indica, sobre la lista de usuarios.

Para la parte de la interacción del usuario con la aplicación crearemos una función
usuarioScreen a la que le llegará una función de nivel superior HOF, con un UsuarioEvent de
parámetro de entrada y vacío de salida (usuarioEvent: (UsuarioEvent) -> Unit). Esta
función tendrá un menú que nos permitirá añadir, modificar y mostrar usuarios invocando a los
eventos a través del parámetro de entrada de la función. Por ejemplo, para mostrar podría ser
algo como usuarioEvent(UsuarioEvent.MuestraUsuarios) .

En el programa principal habrá que crear un objeto de tipo ViewModel y con este llamar a la
función de interacción con el cliente.

💡 Tips: Para realizar la llamada a la función con el objeto ViewModel se tendrá que
hacer de la siguiente manera:
 val usuarioViewModel = UsuarioViewModel() usuarioScreen(usuarioViewModel::onUsuarioEvent)

8/8 Ejercicios programación funcional Kotlin IES Doctor Balmis

