Tema 1 parte 2 - Lenguaje Kotlin |

Descargar estos apuntes pdf o html

indice

¥ Colecciones
v Arrays
= Array Bidimensional
s Listas Mutables
= Mapas Mutables
¥ Programacién Funcional
¥ Lambdas
» Definiendo y usando funciones de orden superior HOF
= Clausuras
V¥ Map-Filter-Fold
Creando objetos anonimos de consultas sobre objetos complejos

Trasformaciones de datos usando map

Haciendo agrupaciones con groupBy

Obteniendo secuencias anidadas con flatMap
= Ejemplo de consulta de datos mapeados a objetos en Kolin

1/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_2_kotlin.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_2_kotlin.html

Colecciones

¢ Colecciones en Kotlin

Ya las hemos usado en algunos de los diferentes ejemplos que hemos estado viendo en el tema.
Sin embargo, en Kotlin hay diferentes formas de generar secuencias de objetos: arrays, listas
inmutables, listas mutables, etc.

Resumen:Tabla resumen de las mas comunes y como inicializarlas por extension

. L . . Modificar
Tipo Descripcién Literales Mutabilidad .
tamano

Array de objectes o)

arrayOf o Llista immutable Si no
tradicional

listOf Llista immutable listOf(1, 2) no no

arrayListOf Llista mutable arrayListOf(1, 2) si Si
HashMap mapOf(1 to "A", 2

mapOf) no no
immutable to "B")

mutableMapOf HashMap mutable si Si

€ Nota: Debemos llevar cuidado, hay que distinguir la inmutabilidad de la coleccion de la
inmutabilidad de la variable que la contiene.

2/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/collections-overview.html

Arrays

Los arrays son mutable, es decir pueden cambiar el valor de sus elementos durante la ejecucion,
pero como ya conocemaos por otro lenguajes, su tamafo no se puede cambiar una vez esté
definido, existiendo otro tipo de colecciones para este uso.

% Importante: En Kotlin las declaraciones y acceso a las posiciones del array no suelen
realizarse mediante corchetes, como en otros lenguajes, sino que se utilizan los métodos de la

clase Array.

En el siguiente ejemplo podemos ver diferentes formas de recorrer el array...

fun main() {

val weekDays = arrayOf("primavera", "verano", "otono", "invierno"

// Similar al foreach de C#
for (dato in weekDays) println(dato)

// Recorrido con iterador
val it = weekDays.iterator()
while (it.hasNext()) println(it.next())

// Foreach con HOF
weekDays.forEach { println(it) }

// Acceso mediante indice
for (i in weekDays.indices) println(weekDays[i])

// Acceso mediante indice con until
for (i in @ until weekDays.size) println(weekDays[i])

// Volcando ambos datos en una tupla
for ((posicion, valor) in weekDays.withIndex())
println("La posicién $posicion contiene el valor $valor")

Ademas Kaotlin distingue los arrays de primitivas usando clases propias:
BooleanArray, ByteArray, CharArray, ShortArray, IntArray, FloatArray, DoubleArray , Y la forma
de construir literales es mediante:

booleanArrayOf, byteArrayOf, charArrayOf, shortArrayOf, intArrayOf, floatArrayOf, doubleArrayOf

3/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/basic-types.html#arrays

En el siguiente ejemplo se ha creado un array de float de tamario 4, el acceso esta realizado

mediante [] ademas la ultima linea produce excepcion al intentar realizar un acceso no permitido.

fun main() {
val arrayFloat = FloatArray(size = 4)
arrayFloat[3] = 2.5f;
arrayFloat.set(0, 3f);
print(arrayFloat[@])
arrayFloat[4] = 8.9f // Excepciodn por acceso fuera limites

Si queremos crear un array de un tipo de objeto determinado, vamos a suponer un tipo Persona
con el siguiente codigo:

data class Persona(val nombre: String, val edad: Int)

El array de personas lo podremos inicializar en el momento de creacion del array, de la siguiente
manera (en este caso solo tendra un elemento):

fun main() {
val personas = arrayOf(Persona(nombre = "Ana", edad = 12))
println(personas[@])

Otra opcidn es permitir que el array pueda tener valores nulos, para afiadir posteriormente los
elementos. En este caso tendremos que utilizar el operador de llamadas seguras ?. , que solo
llamara al método en el caso que el valor no sea nulo, evitando NullPointerException .

fun main() {
val personas = arrayOfNulls<Persona>(size = 2)
personas[@] = Persona(nombre = "Ana", edad = 12)
println(personas[@] ?: "No hay datos")

4/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Array Bidimensional

En kotlin los arrays de mas de una dimensién se tratan como arrays de arrays (similar a las tablas
dentadas de C#). Por lo que se pueden crear filas de distintos tamafios. El siguiente codigo crea
una matriz de enteros de 4 x 4 inicializada a valor 0 y en el elemento segunda fila y segunda
columna a valor 3.

fun main() {
val matriz = Array(4) { IntArray(4) }
matriz[1][1] = 3
for (e in matriz) {
for (i in e) {
print(String.format("%3d", i))

}
println()

Si no queremos inicializar cada una de las filas cuando creamos el array, se puede hacer
posteriormente si se crear la matriz anulable. En este ejemplo creamos una matriz de tres filas,
cada una de ellas con tamafio de columnas distinto (2, 3 y 4 respectivamente) e inicializamos toda
la matriz a valor 3.

fun main() {
val dentada = arrayOfNulls<IntArray>(3)
dentada[@] = IntArray(2)
dentada[1] IntArray(3)
dentada[2] IntArray(4)

for (i in dentada.indices)
for (j in @ until dentada[i]!!.size)
dentada[i]!![]j] = 3

5/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Listas Mutables

e Listas mutables

Las listas mutables estan representadas por la clase ArrayList que implementa la interface
MutableList y en el fondo es equivalente al tipo ArryList de Java.

Dispondremos de métodos similares a otros lenguajes remove , removeAt , indexOf , clear . Asi
como la posibilidad de obtener un iterador para iterar entre los elementos de la secuencia.

Formas de rellenar un lista mutable ...

fun main() {
// Definiendola por extensidn
val personasl = mutablelListOf(
Persona(nombre = "Ana", edad = 12),
Persona(nombre = "Pedro", edad = 15)
)
// Equivalente a Java
val personas2 = ArraylList<Persona>()
personas2.add(Persona("Ana", 12))
personas2.add(Persona("Pedro", 15))
// Usando apply me permite aplicar las operaciones entre llaves al
// objeto que acabo de crear. Es una forma de no repetir personas.
val personas3 = ArraylList<Persona>().apply {
add(Persona("Ana", 12))
add(Persona("Pedro", 15))

Formas de recorrer un lista mutable ...

// Foreach tradicional

for (p in personasl) {
println(p)

}

// Foreach funcional

personas2.forEach { p -> println(p) }

// Usando un indizador

for (i in personas3.indices) {
println(personas3[i])

}

// Obtengo un iterador con sus operaciones tipicas.

val it = personas3.iterator()

while (it.hasNext()) {
println(it.next())

6/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-array-list/

7/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Mapas Mutables

También tendremos mapas MutableMap y mapas inmutables Map en kotlin. El funcionamiento es
similar, por lo que vamos a ver los ejemplos de los mapas mutables.

Tendremos diferentes formas de afiadir pares clave-valor como sucede en otros lenguajes pero, la
clase Pair, de la que hablamos en las funciones y que representa una tupla con dos valores, nos
permitira crear pares de valores que ayudaran a afiadir elementos a una mapa o recorrerlo.
Ademas, podemos usar el operador += para agregar elementos.

Formas de rellenar un mapa mutable ...

fun main() {
// Definiéndolo por extensidn con el operador to
val personasl = mutableMapO-f(
"21456874L" to Persona("Ana", 12),
"13232345K" to Persona("Luis", 13)

// Tradicional con indices

val personas2 = mutableMapOf<String, Persona>()
personas2["21456874L"] Persona("Ana", 12)
personas2["13232345K"] Persona("Luis", 13)

// Con put como en Java usando tuplas y apply

val personas3 = mutableMapOf<String, Persona>().apply {
put("21456874L", Persona(nombre = "Ana", edad = 12))
put("13232345K", Persona(nombre = "Luis", edad = 13))

// Con el operador +=

val personas4 = mutableMapOf<String, Persona>()
personas3 += Pair("21456874L", Persona("Ana", 12))
personas3 += Pair("13232345K", Persona("Luis", 13))

8/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/

Formas de recorrer un mapa mutable ...

fun main() {

9/25

// Usando las claves y un indizador.
for (dni in personasl.keys) {
println("$dni -> ${personasi[dni]}")

// Usando tuplas clave - valor ...

// Con un foreach tradicional

for ((dni, persona) in personas3) {
println("$dni -> $persona")

}

// Con un iterador con sus operaciones tipicas.

val iterador = personas3.iterator()
while (iterador.hasNext()) {
val (dni, persona) = iterador.next()
println("$dni -> $persona”)
}
// Con un foreach funcional
personas3.fortach { (dni, persona) ->
println("$dni -> $persona")

PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024

IES Doctor Balmis

Programacion Funcional

Vamos a ver algunas de las peculiaridades de la programacion funcional en Kotlin a través de

conceptos vistos en primer curso.
Lambdas

e Lambdas en Kotlin

Son tipados como sucede en C# y se definen siempre entre llaves { definicién } analogamente a
otros lenguajes con el operador -> por ejemplo { v:Int -> v % 2 ==0 }.

€ Nota: Debemos poner el tipo del parametro si no va implicito.

Si es un procedimiento que no tiene ningun parametro de entrada no hace falta poner

{ () -> evaluacién } sino directamente { evaluacién } . Por eso utilizamos las llaves.

“ Importante: En ocasiones esta sintaxis entre llaves puede llevarnos a confusién porque
{ evaluacién } puede confundirse con un bloque de cédigo cuando realmente estamos
definiendo una funcion lambda con los argumentos implicitos o sin argumentos.

El tipo de estas funciones puede definirse de tres formas:

1. SAM ('Single Abstract Method') interface o también conocido como 'functional interface':
Podemos ponerle nombre al tipo y tal y como sucede en Java, es una interfaz pero con una
unica funcién abstracta. Por eso ponemos fun delante de la palabra reservada interface.

fun interface Predicat<T> {
fun compleix(dato: T): Boolean

fun main() {
val esPar = Predicat<Int> { v -> v % 2 == 0 }
println("Es par 4 = ${esPar.compleix(4)}")

€ Nota: Aunque es muy similar a Java en Kotlin es poco usada por ser muy verbosa y
ser poco practica al obligarnos a definir un tipo de forma explicita.

10/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/lambdas.html

2. El tipo se deduce de la inicializacion

fun main() {
// Fijate que tenemos que indicar el tipo del parametro
// o parametros de entrada.
val esPar = { v: Int -> Vv % 2 ==0 }
println("Es par 6 = ${esPar(6)}")

val sumaDivisores = { n: Int ->
(1..n / 2).filter { n % it == @ }.sum()

}

// Aqui tenemos mas de un parametro de entrada.

// Fijate que no ponemos paréntesis.

val sonAmigos = { nl: Int, n2: Int ->
sumaDivisores(nl) == n2 && sumaDivisores(n2) == nl

}
println("Amigos 234, 565 = ${sonAmigos(234, 265)}")

3. El tipo es anénimo y viene definido por la signatura de la funcién lambda.
¥ Nota: Solo tiene sentido si vamos a pasar la lambda como funcién de orden superior
(HOF).

fun main() {
// Aqui tiene poco sentido hacer esto.
lateinit var esPar: (Int) -> Boolean
esPar = { v ->Vv %2 ==0 1}

println("Es par 9 = ${esPar(9)}")

11/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Definiendo y usando funciones de orden superior HOF

% Importante: Este tipo de codigo y definiciones serda muy comun encontrarlo en la
programacion con Android y difiere un poco con la sintaxis de C#, vista en primer curso.

Podemos utilizar un tipo con nombre 0 no, como ya hemos indicado. Aunque o mas comun es no
usarlo.

1. Tipado con un SAM interface:
Es mas similar a Java o a otros lenguajes como C#, pero no es muy comun usarla.

fun interface Predicate<T> {
fun cumple(dato: T): Boolean

// El tipo del callback es Predicate<T>

fun<T> muestraPredicado(nombre: String, dato: T,
predicadoCallback: Predicate<T>)

= println("${nombre} ${dato} = ${predicadoCallback.cumple(dato)}")

fun esPar(v: Int) = v % 2 ==0

fun main() {
// Pasamos un identificador de funcidn definido en el mismo ambito del main
muestraPredicado("Es par", 6, ::esPar)
// Pasamos un lambda como parametro.
muestraPredicado("Es impar", 6, { Vv -> v % 2 == 0 })

2. Tipado con un tipo andénimo:

// En este caso el tipo del callback es anénimo y es (T) -> Boolean
// Esto es lo mas habitual en Kotlin y lo recomendable.
fun <T> muestraPredicado(
nombre: String, dato: T,
predicadoCallback: (T) -> Boolean
) = println("${nombre} ${dato} = ${predicadoCallback(dato)}")

fun main() {
// Pasamos un lambda como parametro con la misma signatura del tipo andnimo
muestraPredicado("Es impar", 6) { v ->
vV % 2 ==

12/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

% Muy importante: Fijate que al ir la funcién lambda como ultimo parametro podemos
ponerla fuera de los paréntesis.
e Es valido pero no lo recomendable en Kotlin.

muestraPredicado("Es impar", 6, { v -> v % 2 == 0 })

o Estaes la sintaxis recomendada en Kotlin y la que vamos usar durante los ejemplos
del curso.

muestraPredicado("Es impar", 6) { v ->
vV %2 ==

Clausuras

Funcionan de la misma forma que en C#.

// Es una HOF porque retorna una funcidn
fun contador() : () -> Int {
var i : Int = 0;

// 1 es una variable clausurada.
// no ponemos el () -> en la lambda de retorno.
return { i++ }

fun main() {
var cuental
var cuenta2

contador()
contador()

println("cuental

${cuental()}")
${cuental()}")
${cuental()}")
${cuenta2()}")
${cuentaz2()}")

println("cuental
println("cuental
println("cuenta2
println("cuenta2

13/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Map-Filter-Fold

Podemos aplicar los mismos conceptos de primer curso en CSharp.
De hecho el codigo es muy similar y podremos hacer una analogia faciimente.

o En C# podiamos hacer:

double[] notas = [1.0, 3.4, 4.3, 4.6, 4.3, 7.2, 7.6, 5.6, 8.7];

// Contamos aquellas notas redondeadas a entero que son mayores o iguales a 5.
int aprobadosl = notas.Select(n => (int)Math.Round(n))
.Where(n => n >= 5)
.aggregate(®, (c, n) => c + 1);
// Lo mismo pero usando la funcion de fold Count a la que le pasamos
// el predicado para filtrar los aprobados.
int aprobados2 = notas.Select(n => (int)Math.Round(n)).Count(n => n >= 5)

// Ordenamos por notas sin repeticiones y tras ordenar de forma
// descendente tomamos el primero.
int notaMayorl = notas.Select(n => (int)Math.Round(n))
.Distinct()
.OrderByDescending(n => n)
First();
// Lo mismo pero usando la funcion de fold Max
int notaMayor2 = notas.Select(n => (int)Math.Round(n)).Max();

o El cddigo en Kotlin equivalente seria:

val notas = listOf(1.e, 3.4, 4.3, 4.6, 4.3, 7.2, 7.6, 5.6, 8.7);

val aprobadosl = notas.map { n -> n.roundToInt() }
.filter { n -> n >= 5 }
.fold(®) { ¢, ->c+ 1}

val aprobados2 = notas.map { n -> n.roundToInt() }.count { n -> n >= 5 }

val notaMayorl

notas.map { n -> n.roundToInt() }
.distinct()
.sortedByDescending { n -> n }
First()

val notaMayor2 = notas.map { n -> n.roundToInt() }.max0f { n -> n }

14/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Creando objetos anénimos de consultas sobre objetos complejos

Ya sabemos un porque que podemos aplicar los conceptos de Map-Filter-Fold a tipos sencillos
pero, ¢4y si queremos aplicarlos a tipos complejos?. Es mas, ¢y si queremos crear objetos andénimos
a partir de los resultados de las consultas?

Supongamos la siguiente definicion de datos:

data class Empleado(val nombre: String, val edad: Int, val ciudad: Ciudad) {
enum class Ciudad() { Elche, Alicante }
}
object Datos {
val empleados = 1listOf(
Empleado("Xusa", 45, Empleado.Ciudad.Alicante),
Empleado("Pepe", 54, Empleado.Ciudad.Alicante),
Empleado("Juanjo", 52, Empleado.Ciudad.Elche),
Empleado("Vicente", 45, Empleado.Ciudad.Elche))

Queremos obtener una lista de objetos andnimos con el nombre y la ciudad de los empleados
mayores de 45 anos sin repeticiones y ordenados por nombre.

val res = Datos.empleados
.filter { e -> e.edad > 45 } // Filtramos por edad
.map { e -> // Proyectamos lo filtrado a un objeto andnimo
object {
val nombre = e.nombre
val ciudad = e.ciudad

}
}
.distinct() // Eliminamos repeticiones
.sortedBy { d -> d.nombre } // Ordenamos por nombre
.tolList() // Pasamos la secuencia a una lista

// Si quisiéramos retornar la lista

// deberiamos usar una data class en lugar de objetos andnimos.

println(res.joinToString("\n", String.format("%-10s%-10s\n","Nombre", "Ciudad")){
d -> String.format("%-10s%-10s",d.nombre, d.ciudad)

})

€ Nota: Nos interesara mas usar data class que objetos anénimos cuando queramos hacer
consultas sobre objetos complejos y hacer agrupaciones o recuperar los datos de la consulta
en una lista.

% Importante:: Los objetos anonimos no definen el toString por defecto como ocurre en C#,
por lo que si es necesario se debera crear un toString dentro de la implementacion del objeto:

15/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

val helloWorld = object {
val hello = "Hello"
val world = "World"
// las expresiones de objeto extienden Any, por lo que se requiere "override® en "to

override fun toString() = "$hello $world"

16/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Trasformaciones de datos usando map

En la programacién con Android nos encontraremos con que tenemos que transformar objetos del
modelo o dominio en objetos de presentacioén y viceversa. De esta forma evitamos acoplar la vista
a los objetos del modelo y viceversa.

Supongamos que guardamos en nuestro modelo de datos una serie de datos de contacto de
agenda de la siguiente forma:

data class Contacto(
val id: Int,
val nombre: String,
val telefono: String,
val listas: EnumSet<Lista>
) {
enum class Lista {
Amigos, Trabajo, Familia

Donde 1listas es un conjunto de valores del enumerado Lista que indica a qué
lista o listas de contactos pertenece el registro.

Supongamos una fuente de datos de contactos que nos devuelve una lista de objetos de tipo

Contacto :

object ContactosRepository {
val datos = mutablelListOf(
Contacto(
1, "Xusa", "111666666",
listas = EnumSet.of(Contacto.Lista.Trabajo, Contacto.Lista.Amigos)
)J
Contacto(
2, "Pepe", "222666666",
listas = EnumSet.of(Contacto.Lista.Trabajo, Contacto.Lista.Familia)
)J
Contacto(
3, "Juanjo", "333666666",
listas = EnumSet.of(Contacto.Lista.Amigos)
)>
Contacto(
4, “"Vicente", "444666666",
listas = EnumSet.of(Contacto.Lista.Familia)

17/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Anadimos un método Update para actualizar un contacto en la fuente de datos:

object ContactosRepository {

fun Update(contacto: Contacto) {
val index = datos.indexOfFirst { it.id == contacto.id }
if (index != -1) {
datos[index] = contacto

En el interfaz de usuario queremos mostrar cada contacto en la lista con un icono que me indique a
qué lista de contactos pertenece. Para ello,vamos a crear un tipo en la capa de presentacion de tipo
ContactoUiState con el estado de visualizacion del interfaz de usuario (Ul) que contenga una
propiedad booleana para cada una de las posibles listas de contactos...

data class ContactoUiState(
val id: Int,
val nombre: String,
val telefono: String,
val trabajo: Boolean,
val familia: Boolean,
val amigos: Boolean

Para pasar de un objeto a otro usaremos el método map de las colecciones de Kotlin. Pero antes
de nada, vamos a crear una funcién que nos ayude a crear objetos de tipo ContactoUiState a partir
de objetos de tipo Contacto .

Esta funcion la podemos crear como una funcidn de extension de la clase Contacto para evitar
acoplamientos y que la clase contacto no tenga que conocer la clase contactouiState .

fun Contacto.toContactoUiState() = ContactoUiState(
id = id,
nombre = nombre,
telefono = telefono,
trabajo = listas.contains(Contacto.Lista.Trabajo),
familia = listas.contains(Contacto.Lista.Familia),
amigos = listas.contains(Contacto.Lista.Amigos)

18/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

De forma analoga podemos crear una funcién de extension para pasar de ContactoUiState a

Contacto .

fun ContactoUiState.toContacto() = Contacto(

id = id,

nombre = nombre,

telefono = telefono,

listas = EnumSet.noneOf(Contacto.Lista::class.java).apply {
if (trabajo) add(Contacto.Lista.Trabajo)
if (familia) add(Contacto.Lista.Familia)
if (amigos) add(Contacto.Lista.Amigos)

Ahora podemos usar el método map para transformar la lista de contacto en una lista de
ContactoUiState Y viceversa de forma sencilla:

fun main() {
// Mostramos los datos de la fuente de datos
println(ContactosRepository.datos.joinToString(separator = "\n"))

// Transformamos los datos de la fuente de datos a datos de presentacion con map
val contactosEnUi = ContactosRepository.datos.map { it.toContactoUiState() }.toMutablelist
println(contactosEnUi.joinToString(separator = "\n"))

// Modificamos el primer contacto de la lista de presentacion
// para que no pertenezca a la lista de amigos
contactosEnUi[@] = contactosEnUi[0].copy(amigos = false)

// Actualizamos los datos de la fuente de datos con los datos de presentacidn

// usando map. Aunque lo mas normal, serd actualizar solo un contacto haciendo
// ContactosRepository.Update(contactosEnUi[@].toContacto())

contactosEnUi.map { it.toContacto() }.forEach { ContactosRepository.Update(it) }

println(ContactosRepository.datos.joinToString(separator = "\n"))

19/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Haciendo agrupaciones con groupBy

Si quisiéramos mostrar los empleados por ciudad ordenados por nombre podriamos usar el método

groupBy como en C#.

// Fijate que aunque no es necesario especificar el tipo de la variable
// nosotros lo hemos hecho para ver que la agrupacidn me

// devuelve un Map<Ciudad, List<Empleado>> donde la clave es la

// propiedad "pr la que agrupamos.

val empleatsPerCiutat : Map<Empleado.Ciudad, List<Empleado>> =
Datos.empleados.groupBy { e -> e.ciudad }

var salida : StringBuilder = StringBuilder()
for (eXc in empleatsPerCiutat) {
salida.append("${eXc.key}:\n")
eXc.value.sortedBy { e -> e.edad }.forEach {
e -> salida.append("\t${e}\n")

}
println(salida);

Obteniendo secuencias anidadas con flatMap

Supongamos la siguiente de representacion donde tenemos el tipico array de arrays o tabla
dentada. En el fondo, podemos considerarlo como una secuencia de secuencias (sub-secuencias)

de enteros:
Flat o Aplanado
> (1122|134 (|35(29 10| 17 | 14| 30 | 31
17
34
11 14
35 10
22 30
29
31

Si te fijas en el diagrama podemos ver que la operacién de flat consiste en generar una nueva
secuencia con datos de las sub-secuencias de entrada. El efecto es como si estuviéramos

‘aplanando' |la tabla dentada.

En Kotlin podemos usar el método flatmap para obtener la secuencia de enteros de la tabla

dentada. El codigo seria el siguiente:

20/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

val jagged = arrayOf(
arrayOf(11, 22),
arrayOf (34, 25, 29),
array0f(10),
array0f(17, 14, 30, 31)

// flatMap = Array<Array<Int>> - (Array<Int> » List<Int>) - List<Int>
val flat = jagged.flatMap { v -> v.tolList() }

println(flat.joinToString(", "))
// Mostrara por pantalla: 11, 22, 34, 25, 29, 10, 17, 14, 30, 31

21/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Ejemplo de consulta de datos mapeados a objetos en Kolin
e Descarga los archivos de este ejemplo de aqui.

Supongamos las siguientes definiciones de a modo de DTOs:

data class Libro(
val titulo: String,
val ano: Int,
val paginas: Int
) {
override fun toString(): String =
"Titulo: ${titulo.padEnd(37)} Ano: ${afo.toString().padEnd(4)} Paginas: $paginas"”

data class Autor(
val nombre: String,
val nacionalidad: String,
val muerte: LocalDate,
val libros: List<Libro>

) {
override fun toString(): String =
"Nombre: ${nombre.padEnd(37)} Nacionalidad: ${nacionalidad.padEnd(10)} " +
"Muerte: ${muerte.format(DateTimeFormatter.ofPattern("dd/MM/yyyy"))}\n" +
"Libros:\n\t${1libros.joinToString("\n\t")}"
}

22/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/assets/codigo/ejemplo_consultas_funcionales_recurso.zip

y los siguientes datos de prueba:

object Datos {
val autores: List<Autor> = 1listOf(
Autor(
"William Shakespeare",
"Inglesa",
LocalDate.of(1616, 5, 3),
1istOf(
Libro("Macbeth", 1623, 128),
Libro("La tempestad", 1611, 160)

)>
Autor(

"Miguel de Cervantes",
"Espanola",
LocalDate.of (1616, 6, 22),
1istOf(
Libro("Don Quijote de la Mancha", 1605, 1376),
Libro("La Galatea", 1585, 664),
Libro("Los trabajos de Persiles y Sigismunda", 1617, 888),
Libro("Novelas ejemplares"”, 1613, 1160)

)>
Autor(

"Fernando de Rojas",
"Espanola",
LocalDate.of (1541, 2, 7),
1istOf(
Libro("La Celestina", 1500, 160)

fun separadorDato() =

23/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

Con estos datos de prueba podemos hacer consultas sobre los datos de los autores. Por ejemplo:

1. Si queremos obtener una lista de los autores que han escrito mas de un libro podriamos hacer
lo siguiente:

fun autoresConMasDeUnLibro() {
val snapshot = Datos.autores
.filter { it.libros.size > 1 }
println(snapshot.joinToString(separadorDato()) { it.toString() })

2. Si queremos obtener el total de libros escritos por autores espafioles podriamos hacer lo
siguiente:

fun totallLibrosEscritosPorEspafioles() {

val totalLibros = Datos.autores
// Filtramos por nacionalidad
.filter { it.nacionalidad == "Espanola" }
// Obtenemos el numero de libros de cada autor
.map { it.libros.size }
// Sumamos los libros escritos por cada autor
.sum()

println("Hay $totallLibros escritos por espafioles")

24/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

3. Si queremos obtener una lista de autores agrupados por siglo podriamos hacer lo siguiente:

fun autoresAgrupadosPorSiglo() {

// Creamos un DTO para evitar usar objetos andnimos.

data class AutorMuerte(val nombre: String, val muerte: LocalDate)
// Nota: Podriamos haber usado un Pair<String, LocalDate> en

// lugar de un DTO pero el cédigo seria menos legible.

val snapshot = Datos.autores
// Mapeamos a un objeto tipado AutorMuerte
// para hacer la consulta en este ambito
.map { a -> AutorMuerte(nombre = a.nombre, muerte = a.muerte) }
// Ordenamos por fecha de muerte
.sortedBy { a -> a.muerte }
// Agrupamos por siglo obteniendo un Map<Int, List<Autor>>
// donde Int es el siglo y List<AutorMuerte> los autores
.groupBy { it.muerte.year / 100 + 1 }

snapshot.forkach { (siglo, autores) ->
print(separadorDato())
print("Siglo ${siglo}:\n\t")
println(autores.joinToString("\n\t") { a ->
"${a.nombre} ${a.muerte.format(DateTimeFormatter.ofPattern("dd/MM/yyyy"))}"
})

4. Calcular el total de paginas publicadas por William Shakespeare:

fun totalPaginasWilliamShakespeare() {

val totalPaginas = Datos.autores
// Filtramos por nombre
.filter { it.nombre == "William Shakespeare" }
// De cada autor obtenemos la lista de libros
// En este caso solo tendriamos un autor.
.flatMap { it.libros }
// De cada libro obtenemos el numero de paginas
.map { it.paginas }
// Sumamos las paginas de cada libro
.sum()

println("William Shakespeare ha escrito $totalPaginas pdaginas")

25/25 PMDM 2° DAM Tema 1.2 - Lenguaje Kotlin Il Rev. 11/09/2024 IES Doctor Balmis

