
Tema 1 parte 2 - Lenguaje Kotlin II
Descargar estos apuntes pdf o html

Índice
Colecciones

Arrays
Array Bidimensional
Listas Mutables

Mapas Mutables
Programación Funcional

Lambdas
Definiendo y usando funciones de orden superior HOF
Clausuras

Map-Filter-Fold
Creando objetos anónimos de consultas sobre objetos complejos
Trasformaciones de datos usando map
Haciendo agrupaciones con groupBy
Obteniendo secuencias anidadas con flatMap

Ejemplo de consulta de datos mapeados a objetos en Kolin

1/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_2_kotlin.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_2_kotlin.html

Colecciones
Colecciones en Kotlin

Ya las hemos usado en algunos de los diferentes ejemplos que hemos estado viendo en el tema.
Sin embargo, en Kotlin hay diferentes formas de generar secuencias de objetos: arrays, listas
inmutables, listas mutables, etc.

📣 Resumen:Tabla resumen de las más comunes y cómo inicializarlas por extensión

Tipo Descripción Literales Mutabilidad
Modificar
tamaño

arrayOf
Array de objectes
tradicional

Llista immutable sí no

listOf Llista immutable listOf(1, 2) no no

arrayListOf Llista mutable arrayListOf(1, 2) sí sí

mapOf
HashMap
immutable

mapOf(1 to "A", 2
to "B")

no no

mutableMapOf HashMap mutable ... sí sí

📌 Nota: Debemos llevar cuidado, hay que distinguir la inmutabilidad de la colección de la
inmutabilidad de la variable que la contiene.

2/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/collections-overview.html

Arrays
Los arrays son mutable, es decir pueden cambiar el valor de sus elementos durante la ejecución,
pero como ya conocemos por otro lenguajes, su tamaño no se puede cambiar una vez esté
definido, existiendo otro tipo de colecciones para este uso.

✋ Importante: En Kotlin las declaraciones y acceso a las posiciones del array no suelen
realizarse mediante corchetes, como en otros lenguajes, sino que se utilizan los métodos de la
clase Array.

En el siguiente ejemplo podemos ver diferentes formas de recorrer el array...

fun main() {
 val weekDays = arrayOf("primavera", "verano", "otoño", "invierno")

 // Similar al foreach de C#
 for (dato in weekDays) println(dato)

 // Recorrido con iterador
 val it = weekDays.iterator()
 while (it.hasNext()) println(it.next())

 // Foreach con HOF
 weekDays.forEach { println(it) }

 // Acceso mediante índice
 for (i in weekDays.indices) println(weekDays[i])

 // Acceso mediante índice con until
 for (i in 0 until weekDays.size) println(weekDays[i])

 // Volcando ambos datos en una tupla
 for ((posicion, valor) in weekDays.withIndex())
 println("La posición $posicion contiene el valor $valor")
}

Además Kotlin distingue los arrays de primitivas usando clases propias:
 BooleanArray, ByteArray, CharArray, ShortArray, IntArray, FloatArray, DoubleArray , y la forma
de construir literales es mediante:
 booleanArrayOf, byteArrayOf, charArrayOf, shortArrayOf, intArrayOf, floatArrayOf, doubleArrayOf

.

3/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/basic-types.html#arrays

En el siguiente ejemplo se ha creado un array de float de tamaño 4, el acceso está realizado
mediante [] además la última línea produce excepción al intentar realizar un acceso no permitido.

fun main() {
 val arrayFloat = FloatArray(size = 4)
 arrayFloat[3] = 2.5f;
 arrayFloat.set(0, 3f);
 print(arrayFloat[0])
 arrayFloat[4] = 8.9f // Excepción por acceso fuera límites
}

Si queremos crear un array de un tipo de objeto determinado, vamos a suponer un tipo Persona
con el siguiente código:

data class Persona(val nombre: String, val edad: Int)

El array de personas lo podremos inicializar en el momento de creación del array, de la siguiente
manera (en este caso solo tendrá un elemento):

fun main() {
 val personas = arrayOf(Persona(nombre = "Ana", edad = 12))
 println(personas[0])
}

Otra opción es permitir que el array pueda tener valores nulos, para añadir posteriormente los
elementos. En este caso tendremos que utilizar el operador de llamadas seguras ?. , que solo
llamará al método en el caso que el valor no sea nulo, evitando NullPointerException .

fun main() {
 val personas = arrayOfNulls<Persona>(size = 2)
 personas[0] = Persona(nombre = "Ana", edad = 12)
 println(personas[0] ?: "No hay datos")
}

4/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Array Bidimensional

En kotlin los arrays de más de una dimensión se tratan como arrays de arrays (similar a las tablas
dentadas de C#). Por lo que se pueden crear filas de distintos tamaños. El siguiente código crea
una matriz de enteros de 4 x 4 inicializada a valor 0 y en el elemento segunda fila y segunda
columna a valor 3.

fun main() {
 val matriz = Array(4) { IntArray(4) }
 matriz[1][1] = 3
 for (e in matriz) {
 for (i in e) {
 print(String.format("%3d", i))
 }
 println()
 }
}

Si no queremos inicializar cada una de las filas cuando creamos el array, se puede hacer
posteriormente si se crear la matriz anulable. En este ejemplo creamos una matriz de tres filas,
cada una de ellas con tamaño de columnas distinto (2, 3 y 4 respectivamente) e inicializamos toda
la matriz a valor 3.

fun main() {
 val dentada = arrayOfNulls<IntArray>(3)
 dentada[0] = IntArray(2)
 dentada[1] = IntArray(3)
 dentada[2] = IntArray(4)

 for (i in dentada.indices)
 for (j in 0 until dentada[i]!!.size)
 dentada[i]!![j] = 3
}

5/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Listas Mutables

Listas mutables

Las listas mutables están representadas por la clase ArrayList que implementa la interface
MutableList y en el fondo es equivalente al tipo ArryList de Java.

Dispondremos de métodos similares a otros lenguajes remove , removeAt , indexOf , clear . Así
como la posibilidad de obtener un iterador para iterar entre los elementos de la secuencia.

Formas de rellenar un lista mutable ...

fun main() {
 // Definiendola por extensión
 val personas1 = mutableListOf(
 Persona(nombre = "Ana", edad = 12),
 Persona(nombre = "Pedro", edad = 15)
)
 // Equivalente a Java
 val personas2 = ArrayList<Persona>()
 personas2.add(Persona("Ana", 12))
 personas2.add(Persona("Pedro", 15))
 // Usando apply me permite aplicar las operaciones entre llaves al
 // objeto que acabo de crear. Es una forma de no repetir personas.
 val personas3 = ArrayList<Persona>().apply {
 add(Persona("Ana", 12))
 add(Persona("Pedro", 15))
 }
}

Formas de recorrer un lista mutable ...

// Foreach tradicional
for (p in personas1) {
 println(p)
}
// Foreach funcional
personas2.forEach { p -> println(p) }
// Usando un indizador
for (i in personas3.indices) {
 println(personas3[i])
}
// Obtengo un iterador con sus operaciones típicas.
val it = personas3.iterator()
while (it.hasNext()) {
 println(it.next())
}

6/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-list/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-array-list/

7/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Mapas Mutables
También tendremos mapas MutableMap y mapas inmutables Map en kotlin. El funcionamiento es
similar, por lo que vamos a ver los ejemplos de los mapas mutables.

Tendremos diferentes formas de añadir pares clave-valor como sucede en otros lenguajes pero, la
clase Pair, de la que hablamos en las funciones y que representa una tupla con dos valores, nos
permitirá crear pares de valores que ayudarán a añadir elementos a una mapa o recorrerlo.
Además, podemos usar el operador += para agregar elementos.

Formas de rellenar un mapa mutable ...

fun main() {
 // Definiéndolo por extensión con el operador to
 val personas1 = mutableMapOf(
 "21456874L" to Persona("Ana", 12),
 "13232345K" to Persona("Luis", 13)
)

 // Tradicional con índices
 val personas2 = mutableMapOf<String, Persona>()
 personas2["21456874L"] = Persona("Ana", 12)
 personas2["13232345K"] = Persona("Luis", 13)

 // Con put como en Java usando tuplas y apply
 val personas3 = mutableMapOf<String, Persona>().apply {
 put("21456874L", Persona(nombre = "Ana", edad = 12))
 put("13232345K", Persona(nombre = "Luis", edad = 13))
 }

 // Con el operador +=
 val personas4 = mutableMapOf<String, Persona>()
 personas3 += Pair("21456874L", Persona("Ana", 12))
 personas3 += Pair("13232345K", Persona("Luis", 13))
}

8/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-mutable-map/
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-map/

Formas de recorrer un mapa mutable ...

fun main() {
 // Usando las claves y un indizador.
 for (dni in personas1.keys) {
 println("$dni -> ${personas1[dni]}")
 }

 // Usando tuplas clave - valor ...
 // Con un foreach tradicional
 for ((dni, persona) in personas3) {
 println("$dni -> $persona")
 }
 // Con un iterador con sus operaciones típicas.
 val iterador = personas3.iterator()
 while (iterador.hasNext()) {
 val (dni, persona) = iterador.next()
 println("$dni -> $persona")
 }
 // Con un foreach funcional
 personas3.forEach { (dni, persona) ->
 println("$dni -> $persona")
 }
}

9/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Programación Funcional
Vamos a ver algunas de las peculiaridades de la programación funcional en Kotlin a través de
conceptos vistos en primer curso.

Lambdas
Lambdas en Kotlin

Son tipados como sucede en C# y se definen siempre entre llaves { definición } análogamente a
otros lenguajes con el operador -> por ejemplo { v:Int -> v % 2 == 0 } .

📌 Nota: Debemos poner el tipo del parámetro si no va implícito.

Si es un procedimiento que no tiene ningún parámetro de entrada no hace falta poner
 { () -> evaluación } sino directamente { evaluación } . Por eso utilizamos las llaves.

✋ Importante: En ocasiones esta sintaxis entre llaves puede llevarnos a confusión porque
 { evaluación } puede confundirse con un bloque de código cuando realmente estamos
definiendo una función lambda con los argumentos implícitos o sin argumentos.

El tipo de estas funciones puede definirse de tres formas:

1. SAM ('Single Abstract Method') interface o también conocido como 'functional interface':
Podemos ponerle nombre al tipo y tal y como sucede en Java, es una interfaz pero con una
única función abstracta. Por eso ponemos fun delante de la palabra reservada interface.

fun interface Predicat<T> {
 fun compleix(dato: T): Boolean
}

fun main() {
 val esPar = Predicat<Int> { v -> v % 2 == 0 }
 println("Es par 4 = ${esPar.compleix(4)}")
}

📌 Nota: Aunque es muy similar a Java en Kotlin es poco usada por ser muy verbosa y
ser poco práctica al obligarnos a definir un tipo de forma explícita.

10/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/lambdas.html

2. El tipo se deduce de la inicialización

fun main() {
 // Fíjate que tenemos que indicar el tipo del parámetro
 // o parámetros de entrada.
 val esPar = { v: Int -> v % 2 == 0 }
 println("Es par 6 = ${esPar(6)}")

 val sumaDivisores = { n: Int ->
 (1..n / 2).filter { n % it == 0 }.sum()
 }
 // Aquí tenemos más de un parámetro de entrada.
 // Fíjate que no ponemos paréntesis.
 val sonAmigos = { n1: Int, n2: Int ->
 sumaDivisores(n1) == n2 && sumaDivisores(n2) == n1
 }
 println("Amigos 234, 565 = ${sonAmigos(234, 265)}")
}

3. El tipo es anónimo y viene definido por la signatura de la función lambda.
📌 Nota: Solo tiene sentido si vamos a pasar la lambda como función de orden superior
(HOF).

fun main() {
 // Aquí tiene poco sentido hacer esto.
 lateinit var esPar: (Int) -> Boolean
 esPar = { v -> v % 2 == 0 }

 println("Es par 9 = ${esPar(9)}")
}

11/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Definiendo y usando funciones de orden superior HOF

✋ Importante: Este tipo de código y definiciones será muy común encontrarlo en la
programación con Android y difiere un poco con la sintaxis de C#, vista en primer curso.

Podemos utilizar un tipo con nombre o no, como ya hemos indicado. Aunque lo más común es no
usarlo.

1. Tipado con un SAM interface:
Es más similar a Java o a otros lenguajes como C#, pero no es muy común usarla.

fun interface Predicate<T> {
 fun cumple(dato: T): Boolean
}

// El tipo del callback es Predicate<T>
fun<T> muestraPredicado(nombre: String, dato: T,
 predicadoCallback: Predicate<T>)
= println("${nombre} ${dato} = ${predicadoCallback.cumple(dato)}")

fun esPar(v: Int) = v % 2 == 0

fun main() {
 // Pasamos un identificador de función definido en el mismo ámbito del main
 muestraPredicado("Es par", 6, ::esPar)
 // Pasamos un lambda como parámetro.
 muestraPredicado("Es impar", 6, { v -> v % 2 == 0 })
}

2. Tipado con un tipo anónimo:

// En este caso el tipo del callback es anónimo y es (T) -> Boolean
// Esto es lo más habitual en Kotlin y lo recomendable.
fun <T> muestraPredicado(
 nombre: String, dato: T,
 predicadoCallback: (T) -> Boolean
) = println("${nombre} ${dato} = ${predicadoCallback(dato)}")

fun main() {
 // Pasamos un lambda como parámetro con la misma signatura del tipo anónimo
 muestraPredicado("Es impar", 6) { v ->
 v % 2 == 0
 }
}

12/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

✋ Muy importante: Fíjate que al ir la función lambda como último parámetro podemos
ponerla fuera de los paréntesis.

Es válido pero no lo recomendable en Kotlin.

muestraPredicado("Es impar", 6, { v -> v % 2 == 0 })

👍 Esta es la sintaxis recomendada en Kotlin y la que vamos usar durante los ejemplos
del curso.

muestraPredicado("Es impar", 6) { v ->
 v % 2 == 0
}

Clausuras

Funcionan de la misma forma que en C#.

// Es una HOF porque retorna una función
fun contador() : () -> Int {
 var i : Int = 0;

 // i es una variable clausurada.
 // no ponemos el () -> en la lambda de retorno.
 return { i++ }
}

fun main() {
 var cuenta1 = contador()
 var cuenta2 = contador()

 println("cuenta1 = ${cuenta1()}")
 println("cuenta1 = ${cuenta1()}")
 println("cuenta1 = ${cuenta1()}")
 println("cuenta2 = ${cuenta2()}")
 println("cuenta2 = ${cuenta2()}")
}

13/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Map-Filter-Fold
Podemos aplicar los mismos conceptos de primer curso en CSharp.

De hecho el código es muy similar y podremos hacer una analogía fácilmente.

En C# podíamos hacer:

double[] notas = [1.0, 3.4, 4.3, 4.6, 4.3, 7.2, 7.6, 5.6, 8.7];

// Contamos aquellas notas redondeadas a entero que son mayores o iguales a 5.
int aprobados1 = notas.Select(n => (int)Math.Round(n))
 .Where(n => n >= 5)
 .aggregate(0, (c, n) => c + 1);
// Lo mismo pero usando la función de fold Count a la que le pasamos
// el predicado para filtrar los aprobados.
int aprobados2 = notas.Select(n => (int)Math.Round(n)).Count(n => n >= 5)

// Ordenamos por notas sin repeticiones y tras ordenar de forma
// descendente tomamos el primero.
int notaMayor1 = notas.Select(n => (int)Math.Round(n))
 .Distinct()
 .OrderByDescending(n => n)
 .First();
// Lo mismo pero usando la función de fold Max
int notaMayor2 = notas.Select(n => (int)Math.Round(n)).Max();

El código en Kotlin equivalente sería:

val notas = listOf(1.0, 3.4, 4.3, 4.6, 4.3, 7.2, 7.6, 5.6, 8.7);

val aprobados1 = notas.map { n -> n.roundToInt() }
 .filter { n -> n >= 5 }
 .fold(0) { c, _ -> c + 1 }
val aprobados2 = notas.map { n -> n.roundToInt() }.count { n -> n >= 5 }

val notaMayor1 = notas.map { n -> n.roundToInt() }
 .distinct()
 .sortedByDescending { n -> n }
 .first()
val notaMayor2 = notas.map { n -> n.roundToInt() }.maxOf { n -> n }

14/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Creando objetos anónimos de consultas sobre objetos complejos

Ya sabemos un porque que podemos aplicar los conceptos de Map-Filter-Fold a tipos sencillos
pero, ¿y si queremos aplicarlos a tipos complejos?. Es más, ¿y si queremos crear objetos anónimos
a partir de los resultados de las consultas?

Supongamos la siguiente definición de datos:

data class Empleado(val nombre: String, val edad: Int, val ciudad: Ciudad) {
 enum class Ciudad() { Elche, Alicante }
}
object Datos {
 val empleados = listOf(
 Empleado("Xusa", 45, Empleado.Ciudad.Alicante),
 Empleado("Pepe", 54, Empleado.Ciudad.Alicante),
 Empleado("Juanjo", 52, Empleado.Ciudad.Elche),
 Empleado("Vicente", 45, Empleado.Ciudad.Elche))
}

Queremos obtener una lista de objetos anónimos con el nombre y la ciudad de los empleados
mayores de 45 años sin repeticiones y ordenados por nombre.

val res = Datos.empleados
 .filter { e -> e.edad > 45 } // Filtramos por edad
 .map { e -> // Proyectamos lo filtrado a un objeto anónimo
 object {
 val nombre = e.nombre
 val ciudad = e.ciudad
 }
 }
 .distinct() // Eliminamos repeticiones
 .sortedBy { d -> d.nombre } // Ordenamos por nombre
 .toList() // Pasamos la secuencia a una lista

// Si quisiéramos retornar la lista
// deberíamos usar una data class en lugar de objetos anónimos.
println(res.joinToString("\n", String.format("%-10s%-10s\n","Nombre", "Ciudad")){
 d -> String.format("%-10s%-10s",d.nombre, d.ciudad)
})

📌 Nota: Nos interesará más usar data class que objetos anónimos cuando queramos hacer
consultas sobre objetos complejos y hacer agrupaciones o recuperar los datos de la consulta
en una lista.

✋ Importante:: Los objetos anónimos no definen el toString por defecto como ocurre en C#,
por lo que si es necesario se deberá crear un toString dentro de la implementación del objeto:

15/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

 val helloWorld = object {
 val hello = "Hello"
 val world = "World"
 // las expresiones de objeto extienden Any, por lo que se requiere `override` en `to
 override fun toString() = "$hello $world"
 }

16/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Trasformaciones de datos usando map

En la programación con Android nos encontraremos con que tenemos que transformar objetos del
modelo o dominio en objetos de presentación y viceversa. De esta forma evitamos acoplar la vista
a los objetos del modelo y viceversa.

Supongamos que guardamos en nuestro modelo de datos una seríe de datos de contacto de
agenda de la siguiente forma:

data class Contacto(
 val id: Int,
 val nombre: String,
 val telefono: String,
 val listas: EnumSet<Lista>
) {
 enum class Lista {
 Amigos, Trabajo, Familia
 }
}

Donde listas es un conjunto de valores del enumerado Lista que indica a qué
 lista o listas de contactos pertenece el registro.

Supongamos una fuente de datos de contactos que nos devuelve una lista de objetos de tipo
 Contacto :

object ContactosRepository {
 val datos = mutableListOf(
 Contacto(
 1, "Xusa", "111666666",
 listas = EnumSet.of(Contacto.Lista.Trabajo, Contacto.Lista.Amigos)
),
 Contacto(
 2, "Pepe", "222666666",
 listas = EnumSet.of(Contacto.Lista.Trabajo, Contacto.Lista.Familia)
),
 Contacto(
 3, "Juanjo", "333666666",
 listas = EnumSet.of(Contacto.Lista.Amigos)
),
 Contacto(
 4, "Vicente", "444666666",
 listas = EnumSet.of(Contacto.Lista.Familia)
)
)
}

17/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Añadimos un método Update para actualizar un contacto en la fuente de datos:

object ContactosRepository {
 ...
 fun Update(contacto: Contacto) {
 val index = datos.indexOfFirst { it.id == contacto.id }
 if (index != -1) {
 datos[index] = contacto
 }
 }
}

En el interfaz de usuario queremos mostrar cada contacto en la lista con un icono que me indique a
qué lista de contactos pertenece. Para ello,vamos a crear un tipo en la capa de presentación de tipo
 ContactoUiState con el estado de visualización del interfaz de usuario (UI) que contenga una
propiedad booleana para cada una de las posibles listas de contactos...

data class ContactoUiState(
 val id: Int,
 val nombre: String,
 val telefono: String,
 val trabajo: Boolean,
 val familia: Boolean,
 val amigos: Boolean
)

Para pasar de un objeto a otro usaremos el método map de las colecciones de Kotlin. Pero antes
de nada, vamos a crear una función que nos ayude a crear objetos de tipo ContactoUiState a partir
de objetos de tipo Contacto .

Esta función la podemos crear como una función de extensión de la clase Contacto para evitar
acoplamientos y que la clase Contacto no tenga que conocer la clase ContactoUiState .

fun Contacto.toContactoUiState() = ContactoUiState(
 id = id,
 nombre = nombre,
 telefono = telefono,
 trabajo = listas.contains(Contacto.Lista.Trabajo),
 familia = listas.contains(Contacto.Lista.Familia),
 amigos = listas.contains(Contacto.Lista.Amigos)
)

18/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

De forma análoga podemos crear una función de extensión para pasar de ContactoUiState a
 Contacto .

fun ContactoUiState.toContacto() = Contacto(
 id = id,
 nombre = nombre,
 telefono = telefono,
 listas = EnumSet.noneOf(Contacto.Lista::class.java).apply {
 if (trabajo) add(Contacto.Lista.Trabajo)
 if (familia) add(Contacto.Lista.Familia)
 if (amigos) add(Contacto.Lista.Amigos)
 }
)

Ahora podemos usar el método map para transformar la lista de Contacto en una lista de
 ContactoUiState y viceversa de forma sencilla:

fun main() {
 // Mostramos los datos de la fuente de datos
 println(ContactosRepository.datos.joinToString(separator = "\n"))

 // Transformamos los datos de la fuente de datos a datos de presentación con map
 val contactosEnUi = ContactosRepository.datos.map { it.toContactoUiState() }.toMutableList
 println(contactosEnUi.joinToString(separator = "\n"))

 // Modificamos el primer contacto de la lista de presentación
 // para que no pertenezca a la lista de amigos
 contactosEnUi[0] = contactosEnUi[0].copy(amigos = false)

 // Actualizamos los datos de la fuente de datos con los datos de presentación
 // usando map. Aunque lo más normal, será actualizar solo un contacto haciendo
 // ContactosRepository.Update(contactosEnUi[0].toContacto())
 contactosEnUi.map { it.toContacto() }.forEach { ContactosRepository.Update(it) }

 println(ContactosRepository.datos.joinToString(separator = "\n"))
}

19/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Haciendo agrupaciones con groupBy

Si quisiéramos mostrar los empleados por ciudad ordenados por nombre podríamos usar el método
 groupBy como en C#.

// Fíjate que aunque no es necesario especificar el tipo de la variable
// nosotros lo hemos hecho para ver que la agrupación me
// devuelve un Map<Ciudad, List<Empleado>> donde la clave es la
// propiedad `pr la que agrupamos.
val empleatsPerCiutat : Map<Empleado.Ciudad, List<Empleado>> =
Datos.empleados.groupBy { e -> e.ciudad }

var salida : StringBuilder = StringBuilder()
for (eXc in empleatsPerCiutat) {
 salida.append("${eXc.key}:\n")
 eXc.value.sortedBy { e -> e.edad }.forEach {
 e -> salida.append("\t${e}\n")
 }
}
println(salida);

Obteniendo secuencias anidadas con flatMap

Supongamos la siguiente de representación donde tenemos el típico array de arrays o tabla
dentada. En el fondo, podemos considerarlo como una secuencia de secuencias (sub-secuencias)
de enteros:

11

22

34

35

29

10

17

14

30

31

11 22 34 35 29 10 17 14 30 31
Flat o Aplanado

Si te fijas en el diagrama podemos ver que la operación de flat consiste en generar una nueva
secuencia con datos de las sub-secuencias de entrada. El efecto es como si estuviéramos
'aplanando' la tabla dentada.

En Kotlin podemos usar el método flatMap para obtener la secuencia de enteros de la tabla
dentada. El código sería el siguiente:

20/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

val jagged = arrayOf(
 arrayOf(11, 22),
 arrayOf(34, 25, 29),
 arrayOf(10),
 arrayOf(17, 14, 30, 31)
)

// flatMap = Array<Array<Int>> → (Array<Int> → List<Int>) → List<Int>
val flat = jagged.flatMap { v -> v.toList() }

println(flat.joinToString(", "))
// Mostrará por pantalla: 11, 22, 34, 25, 29, 10, 17, 14, 30, 31

21/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Ejemplo de consulta de datos mapeados a objetos en Kolin
Descarga los archivos de este ejemplo de aquí.

Supongamos las siguientes definiciones de a modo de DTOs:

data class Libro(
 val titulo: String,
 val año: Int,
 val paginas: Int
) {
 override fun toString(): String =
 "Titulo: ${titulo.padEnd(37)} Año: ${año.toString().padEnd(4)} Páginas: $paginas"
}

data class Autor(
 val nombre: String,
 val nacionalidad: String,
 val muerte: LocalDate,
 val libros: List<Libro>
) {
 override fun toString(): String =
 "Nombre: ${nombre.padEnd(37)} Nacionalidad: ${nacionalidad.padEnd(10)} " +
 "Muerte: ${muerte.format(DateTimeFormatter.ofPattern("dd/MM/yyyy"))}\n" +
 "Libros:\n\t${libros.joinToString("\n\t")}"
}

22/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/assets/codigo/ejemplo_consultas_funcionales_recurso.zip

y los siguientes datos de prueba:

object Datos {
 val autores: List<Autor> = listOf(
 Autor(
 "William Shakespeare",
 "Inglesa",
 LocalDate.of(1616, 5, 3),
 listOf(
 Libro("Macbeth", 1623, 128),
 Libro("La tempestad", 1611, 160)
)
),
 Autor(
 "Miguel de Cervantes",
 "Española",
 LocalDate.of(1616, 6, 22),
 listOf(
 Libro("Don Quijote de la Mancha", 1605, 1376),
 Libro("La Galatea", 1585, 664),
 Libro("Los trabajos de Persiles y Sigismunda", 1617, 888),
 Libro("Novelas ejemplares", 1613, 1160)
)
),
 Autor(
 "Fernando de Rojas",
 "Española",
 LocalDate.of(1541, 2, 7),
 listOf(
 Libro("La Celestina", 1500, 160)
)
)
)
}

fun separadorDato() =
 "\n--\n"

23/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

Con estos datos de prueba podemos hacer consultas sobre los datos de los autores. Por ejemplo:

1. Si queremos obtener una lista de los autores que han escrito más de un libro podríamos hacer
lo siguiente:

fun autoresConMasDeUnLibro() {
 val snapshot = Datos.autores
 .filter { it.libros.size > 1 }
 println(snapshot.joinToString(separadorDato()) { it.toString() })
}

2. Si queremos obtener el total de libros escritos por autores españoles podríamos hacer lo
siguiente:

fun totalLibrosEscritosPorEspañoles() {
 val totalLibros = Datos.autores
 // Filtramos por nacionalidad
 .filter { it.nacionalidad == "Española" }
 // Obtenemos el número de libros de cada autor
 .map { it.libros.size }
 // Sumamos los libros escritos por cada autor
 .sum()
 println("Hay $totalLibros escritos por españoles")
}

24/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

3. Si queremos obtener una lista de autores agrupados por siglo podríamos hacer lo siguiente:

fun autoresAgrupadosPorSiglo() {

 // Creamos un DTO para evitar usar objetos anónimos.
 data class AutorMuerte(val nombre: String, val muerte: LocalDate)
 // Nota: Podríamos haber usado un Pair<String, LocalDate> en
 // lugar de un DTO pero el código sería menos legible.

 val snapshot = Datos.autores
 // Mapeamos a un objeto tipado AutorMuerte
 // para hacer la consulta en este ámbito
 .map { a -> AutorMuerte(nombre = a.nombre, muerte = a.muerte) }
 // Ordenamos por fecha de muerte
 .sortedBy { a -> a.muerte }
 // Agrupamos por siglo obteniendo un Map<Int, List<Autor>>
 // donde Int es el siglo y List<AutorMuerte> los autores
 .groupBy { it.muerte.year / 100 + 1 }

 snapshot.forEach { (siglo, autores) ->
 print(separadorDato())
 print("Siglo ${siglo}:\n\t")
 println(autores.joinToString("\n\t") { a ->
 "${a.nombre} ${a.muerte.format(DateTimeFormatter.ofPattern("dd/MM/yyyy"))}"
 })
 }
}

4. Calcular el total de páginas publicadas por William Shakespeare:

fun totalPaginasWilliamShakespeare() {
 val totalPaginas = Datos.autores
 // Filtramos por nombre
 .filter { it.nombre == "William Shakespeare" }
 // De cada autor obtenemos la lista de libros
 // En este caso solo tendríamos un autor.
 .flatMap { it.libros }
 // De cada libro obtenemos el número de páginas
 .map { it.paginas }
 // Sumamos las páginas de cada libro
 .sum()
 println("William Shakespeare ha escrito $totalPaginas páginas")
}

25/25 PMDM 2º DAM Tema 1.2 - Lenguaje Kotlin II Rev. 11/09/2024 IES Doctor Balmis

