Tema 1 parte 1 - Lenguaje Kotlin |

Descargar estos apuntes pdf o html

indice

» [ntroduccién
¥ Creando nuestro "Hola Mundo" en Kotlin
» Usando Gradle
» Usando Android Studio
V¥ El lenguaje Kotlin
» Enlaces de interés
= Control de Nulos
V¥ Variables
= Interpolacion de cadenas
= Literales de cadena multilinea
v Control de flujo
» Condicionales como expresion
= Bucles con for y while
= Condicional multiple con when
¥ Funciones
= Retornando una tupla 'Pair<A, B>', 'Triple<A, B, C>'
= Numero de argumentos indefinido con 'varargs'
= Funciones de extension
= EXxcepciones
V¥ Clases e Interfaces
» Constructores
» Definir métodos y propiedades estaticas
= Herencia
» Interfaces
= Definiendo ValueObjects o DTO's con data class
» Clases y métodos parametrizados
= Scope functions
» Clases enumeradas con enum class
» Clases Selladas (Sum Type Pattern)
= Delegacion de propiedades con by

1/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_1_kotlin.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_1_kotlin.html

Introduccion

Kotlin es un lenguaje de programacién fuertemente tipado desarrollado por JetBrains en 2010 y
que esta influenciado por lenguajes como C#, Scala, Groovy y Java.

A partir de la actualizacion Kotlin 1.3.30, se incluyeron las mejoras para Kotlin/Native que permite
compilar el codigo fuente de Kotlin en datos binarios independientes para diferentes sistemas
operativos y arquitecturas de CPU, incluido |0S, Linux, Windows y Mac.

La mayoria de desarrollos con Kotlin, tienen como destino Android o la maquina virtual de java
(JVM) y puedes encontrar 'ports' al lenguaje de Frameworks y librerias como:

e Desarrollo Nativo a Android NDK

e Multiplataforma.

o Desarrollo web con interactividad y transpilacion a JavaScript con JS IR Compiler.

o Desarrollo Backend de acceso a datos y Microservicios con Frameworks como Spring boot,
Quarkus, Micronaut, Ktor

e Videojuegos con Frameworks como LibKTX o KorGE

e Ciencia de datos con plataformas como Jupyter Notebooks o Datalore

< Nota: Nosotros vamos a ver la sintaxis de Kotlin 1.9.0. Sin embargo, podriamos usar la
version version 2.0.20, el cuya caracteristica mas importante es usar el nuevo compilador
K2 que mejora la velocidad de compilacion y la calidad del cédigo generado.

2/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/multiplatform-get-started.html
https://kotlinlang.org/docs/js-overview.html
https://kotlinlang.org/docs/js-ir-compiler.html
https://kotlinlang.org/docs/server-overview.html
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://quarkus.io/guides/kotlin
https://guides.micronaut.io/latest/creating-your-first-micronaut-app-maven-kotlin.html
https://ktor.io/
https://libktx.github.io/
https://korge.org/
https://github.com/Kotlin/kotlin-jupyter
https://blog.jetbrains.com/datalore/
https://kotlinlang.org/docs/whatsnew2020.html
https://kotlinlang.org/docs/k2-compiler-migration-guide.html
https://kotlinlang.org/docs/k2-compiler-migration-guide.html

Creando nuestro "Hola Mundo" en Kotlin

Usando Gradle

Aqui puedes encontrar los pasos en el web oficial :
https://docs.gradle.org/current/samples/sample_building_kotlin_applications.html

Aunque podemos resumirlos aqui:

1. Creamos la carpeta o wrkspace, por ejemplo, _proyecto_consola_kotlin .
2. Abrimos una consola de comandos emd en la carpeta creada.
3. Ejecutamos el comando gradle init y seguimos los pasos introduciendo las opciones del

ejemplo a continuacion.

3/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://docs.gradle.org/current/samples/sample_building_kotlin_applications.html

~\proyecto_consola_kotlin>gradle init
Starting a Gradle Daemon, 2 stopped Daemons could not be reused, use --status for details

Select type of build to generate:
1: Application
2: Library

Enter selection (default: Application) [1..4] 1

Select implementation language:
1: Java
2: Kotlin

Enter selection (default: Java) [1..6] 2
Enter target Java version (min: 7, default: 21): 17
Project name (default: consola):

Select application structure:

1: Single application project

2: Application and library project

Enter selection (default: Single application project) [1..2] 1

Select build script DSL:

1: Kotlin

2: Groovy

Enter selection (default: Kotlin) [1..2] 1

Generate build using new APIs and behavior (some features may change in
the next minor release)? (default: no) [yes, no]

BUILD SUCCESSFUL in 2m 36s
1 actionable task: 1 executed

4. Para compilar y ejecutar nuestro proyecto ejecutaremos gradlew run

~\proyecto_consola_kotlin>gradlew run

> Task :app:run
Hello World!

BUILD SUCCESSFUL in 8s
2 actionable tasks: 2 executed

5. Si quieres ver el resto de tareas predefinidas para nuestru proyecto, puedes ejecutar
gradlew tasks . Si quieres indagar un poco mas sobre la ejecucion de tareas puedes ver la
documentacion oficial del proyecto.

6. Por ultimo podremos abrir el proyecto con cualquier IDE que permita importar proyectos de
Gradle como Android Studio.

4/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://docs.gradle.org/current/userguide/command_line_interface.html

Usando Android Studio

Aunque no es lo recomendado porque afiade dependencias de Android que no necesitamos.
Podemos usar la platilla 'No Activity' para hacerlo de una forma asistida.:

1. Arrancaremos Android Studio y seleccionaremos New Proyect -> No Activity

o O in, tienen como de
te la posibilidad de
yra todavia son pot

" Android Studio & Search projects New Project Open Get from VCS

Chipmunk | 2021.2.1

a B New Project
Projects -
Customize d e
= p r -y
Plugins Phone and Tablet H]
]
e
Learn Android Studio A | Wear0Os : l} '
[)
m s\ Androidre o mme=es
1 Automotive
Al Vv
. i No Activity Basic Activity

2. Indicaremos la ubicacion y el nombre de paquete, esto se explica mejor en el siguiente tema.

New Project

No Activity

Creates a new empty project

Name My Application
Package name com.ejemplo.consola
Save location C \Users\PuhIit\(unsulJ
Language Kotlin

Minimum SDK APl 22: Android 5.1 (Lollipop) v

© Your app will run on approximately 98,1% of devices.
Help me choose

5/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

1. Una vez se ha creado el proyecto, dentro del paquete de la carpeta Java (vista Android)
seleccionaremos New -> Kotlin Class/File

&% FRile Edit View Navigate Code Refactor Build Run Tools VCS Window Help My Application [C\Users\Public\Cc

= H S A | ®app ~ (L Pixel 2API282 + P 5 1 @ L9
Consola app src - main = java com = ejemplo consola
g Android « T - I
£ 7 app
= > manifests
~ Java

o T ¢ - : C:
> com.e;
5 v Add C++ to Module

4. Seleccionaremos File y le indicaremos el nombre del fichero a crear.

8= Structure

New Kotlin Class/File

EjemploConsold

€ Class

I. Interface

T. Sealed Interface
¢ Data Class

£ Enum Class

€. Sealed Class

& Annotation

5. De esta manera se habra creado un fichero con extension .kt (Kotlin), vacio.

Android DT - | & — EjemploConsola.kt
v [, app package com.ejemplo.consola
> manifests
v java |
v com.ejemplo.consola

EjemploConsola.kt

6. Ahora solo quedara anadir las funciones que necesitemos, por ejemplo si queremos crear el
Hola Mundo basico.

fun main() {
println("Hola Mundo™)

6/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

El lenguaje Kotlin

Enlaces de interés

» Pagina oficial del lenguaje.

e Learn Kotlin by Example

e Curso guiado de iniciacién

e Curso guiado de profundizacion

o Capacitacion oficial de Kotlin para programadores (profundizacion)

e Curso de Kotlin (Lista de reproduccion de DevExperto en Castellano)
» Kotlin Desde Cero: Primeros Pasos en una hora (MoureDev)

e Curso de Kotlin Basico (Lista de reproduccioén oficial de MoureDev)

o Kotlin desde cero

e PlayGround Kaotlin. (Probar Kotlin On-line)

Control de Nulos
o Null safety

Kotlin ha aportado una serie de elementos que permiten realizar un mayor control de los tipos que
pueden ser nulos Null safety, y que pretende evitar la tan conocida excepcion
NullPointerException.

Como ocurre con otros lenguajes, Kotlin permite definir un tipo no nulo como anulable. Esto lo
hace mediante el elemento ? , por ejemplo una variable de tipo entera no podria almacenar un
valor nulo, pero se puede cambiar esta condicion de la siguiente manera.

fun main() {
var numero: Int
numero = null // @e® ERROR de compilacidén, los tipos valor no son anulables

var numeroAnulable: Int?
numeroAnulable = null // 0K

Para comprobar si las variables son nulas, siempre se puede usar el condicional if/else, aunque
Kotlin nos permite otras opciones. El operador llamada segura ?. que solo realizara la llamada
en caso que el valor sea distinto de nulo y devolvera null en otro caso.

7/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/
https://play.kotlinlang.org/byExample/overview
https://developer.android.com/courses/pathways/android-basics-compose-unit-1-pathway-1?hl=es-419
https://developer.android.com/courses/pathways/android-basics-compose-unit-2-pathway-1?hl=es-419
https://developer.android.com/courses/kotlin-bootcamp/overview?hl=es-419
https://www.youtube.com/watch?v=Y0tcdQ7Nfqk&list=PLrn69hTK5FBz7meApXjpGnvBVZjec-FCr
https://www.youtube.com/watch?v=T3ugOYTRF7c
https://www.youtube.com/watch?v=hug4TNmhw78&list=PLNdFk2_brsReZeIQ1-2r783GWus0ZZ5io
https://www.youtube.com/playlist?list=PLAzlSdU-KYwVd0mby6H9gLfJ7bkmXNjQJ
https://play.kotlinlang.org/#eyJ2ZXJzaW9uIjoiMS44LjEwIiwicGxhdGZvcm0iOiJqYXZhIiwiYXJncyI6IiIsIm5vbmVNYXJrZXJzIjp0cnVlLCJ0aGVtZSI6ImlkZWEiLCJjb2RlIjoiLyoqXG4gKiBZb3UgY2FuIGVkaXQsIHJ1biwgYW5kIHNoYXJlIHRoaXMgY29kZS5cbiAqIHBsYXkua290bGlubGFuZy5vcmdcbiAqL1xuZnVuIG1haW4oKSB7XG4gICAgcHJpbnRsbihcIkhlbGxvLCB3b3JsZCEhIVwiKVxufSJ9
https://kotlinlang.org/docs/null-safety.html
https://kotlinlang.org/docs/null-safety.html

fun main() {
var cadenaAnulable: String? = null
println(cadenaAnulable?.length)

En este ejemplo, si no usaramos el operador de llamada segura, el cddigo lanzaria NPE. Pero
ahora mostrara null.

Otro operador, no tan recomendado es el operador de asercion no nula !! . convierte cualquier
valor en un tipo no nulo y lanza una excepcion si el valor es null. Podemos decir de este operador,
que vuelve las cosas a la normalidad ya conocida.

Por lo tanto, si deseas un NPE, puedes tenerla solicitandola con este operador.

fun main() {
var cadenaAnulable: String? = null

// @® ERROR de compilacién, no permite posibilidad de producir excepcidn

v

println(cadenaAnulable.length)

//Solicitamos esta opcién con el operador !!
println(cadenaAnulable!!.length)

Y por ultimo tenemos el operador elvis ?: que comprueba que el valor no es nulo, permitiendo la
llamada en ese caso o devolviendo lo que decidamos en caso que sea nulo. Equivaldra al
operador ?? en C#.

fun main() {
var cadenaAnulable: String? = null
println(cadenaAnulable?.length ?: @)

Recuerda que si la expresion a la izquierda de ?: no es null, se realiza la llamada a length, de lo
contrario devuelve la expresion de la derecha, en este caso 0.

Variables
e Variables

Igual que en todos los lenguajes de programacion, en Kotlin también tendremos el recurso de las
variables para almacenar valores. En Kotlin nos podemos encontrar con variables inmutables y
variables mutables. En el caso de las primeras, una vez se le asigna un valor a la variable no

8/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/basic-syntax.html#variables
https://kotlinlang.org/docs/basic-syntax.html#variables

podra ser modificado, es decir, se comporta como una constante (lo mismo que utilizar final en
Java o readonly en C#).

Mientras que con la mutables podremos modificar en cualquier momento el valor de la variable.

Para declarar una variable como mutable, la tendremos que preceder de la palabra clave var
mientras que para las inmutables usaremos val.

El concepto de inmutabilidad es muy interesante. Al no poder cambiar los objetos estos son mas
robustos y eficientes. Siempre que podamos hemos de usar objetos inmutables.

// Variables mutables
var mutable: Int =5
mutable += 7

var numeroDecimales = 3.14F
numeroDecimales += 5.5F

// Variables inmutables

val inmutable: Char = 'C'
inmutable = 'A' // @® ERROR compilacién!! no se puede modificar una variable inmutable

Como se puede ver en el ejemplo, cuando declaramos una variable, podemos indicar el tipo de
esta o esperar a que el compilador lo infiera.

Para definir el tipo, tendremos que indicarlo con :tipo después del nombre:

(var|val) nombreVariable [:tipo][=valor]

Los tipos basicos de variables en Kotlin son:

Tipo Valor Tamano

Byte 5.toByte() 8 bits

Short 5.toShort() 16 bits

Int 5 32 bits

Long 5L 64 bits

Float 1.45F 32 bits

Double 1.45 64 bits

Boolean true

9/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Tipo Valor Tamano
Char 'H' 16 bits

Unit Unit 0 bits

10/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

% Importante: El tipo unit corresponde a void en Java y C#

Cuando una variable mutable declarada en el cuerpo de una clase, no se quiere inicializar en el
momento de la declaracion, existe el concepto de Inicializacién tardia , afiadiendo el

modificador lateinit delante de la declaracion de la variable.

public class Ejemplo {
lateinit var cadena: String

fun miFuncion() {
cadena = "Hola Mundo"
println(cadena)

% Importante: Como en otros lenguajes de programacion, se debe controlar las operaciones

con variables de distintos tipos, para evitar resultados inesperados o incluso excepciones.
Kotlin tiene varios métodos v.to<Type>() para cambiar los valores al tipo que necesites:

fun main(args: Array<String>) {
var a: Int

var b = 3.5f

a=>b+2 //@® ERROR error: type mismatch: inferred type is Float but Int was exj
a = b.toInt() + 2 // & CORRECTO

println(a)

< Nota: Mientras que a = b.toInt() + 2, evitaria el error, aunque la funcion redondearia a
3.

Interpolacién de cadenas

o Strings Templates

El tipo String representa el literal de cadena ya conocido, podemos ver un ejemplo del uso de
interpolacién con $ para la salida por pantalla.

fun main (args: Array <String>) {

val cadena = "El resultado de:"

val a = 2

val b = 5

println("$cadena $a + $b es: ${a + b}")

}

11/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/strings.html#string-templates
https://kotlinlang.org/docs/basic-types.html#strings

El resultado de: 2 + 5 es: 7

Literales de cadena multilinea

e Multiline Strings

Al igual que sucede en las versiones actuales de lenguajes como C# podré definir cadenas
multilinea con el caracter """ .

fun main() {
val estudiantedson = """

{

"nombre": "Juan",

"edad": 23,

"cursos": ["Kotlin", "Java", "C#"]
}

""" trimIndent() // Elimina los espacios en blanco iniciales
println(estudiantelson)

12/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/strings.html#multiline-strings

Control de flujo

El control de flujo en kotlin tiene algunas diferencias interesantes a otros lenguajes mas conocidos.
Las instrucciones iflelse, for y while se pueden considerar similares, asi que vamos a explicar
solamente los elementos que las diferencian:

Condicionales como expresion

o Conditional expressions

En Kotlin no existe el operador ternario para expresar condiciones simples como por ejemplo
haciamos en C# con string t = exp ? "true" : "false" en sulugar usaremos if - else como
hace Python para realizar este tipo de expresiones. Por tanto, el Kotlin tendremos ...

val t = if (exp) "true" else "false"

Bucles con for y while

o for and while loops

Se diferencia sobre todo en que se tienen que usar rangos en la sentencia for y se pueden usar en

la while:

fun repeticionConForVi(v: Int) {
// Fijate que Kotlin me permite definir rangos de forma similar a C#
for (i in (@..v).reversed()) {
println("$i")

fun repeticionConForV2(v: Int) {
// Otra forma de expresar lo anterior seria...
for (i in v downTo © step 1) {
println("$i")
}

// El operador igual me permite definir 'cuerpos de expresion'
// al igual que haciamos en C#
fun main() = repeticionConForVv1i(10)

13/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/coding-conventions.html#control-flow-statements
https://kotlinlang.org/docs/control-flow.html#if-expression
https://kotlinlang.org/docs/control-flow.html#for-loops

En ambos casos anteriores i tomara valores de 0 a v incluido este ultimo. Si queremos hacer que

llegue hasta v - 1 usaremos until ...

fun repeticionConIndiceArray(v: Int) {
// 1 ird de @ a v - 1
for (i in © until v) {
println("$i")

Nota: En la ultimas versiones de Kotlin podemos usar el operador ..< enlugar de until .

También podemos usare un bucle while ...

fun repeticionConWhile(tope: Int) {

var contador: Int = 0@

do {
print("Introduce numero: ")
var numero = readlLine()!!.toInt()
contador++;
println(contador)

} while (contador < tope && numero !in 50..100)

fun main() = repeticionConWhile(10)

14/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/whatsnew19.html#stable-operator-for-open-ended-ranges

Condicional multiple con when

e When expression

Equivalente a los swich de expresion de C#. Sin embargo no dispondremos del swich como
instruccion.

En el siguiente ejemplo podemos deducir la sintaxis facilmente, teniendo en cuenta que el
operador 'arrow' en Kolines -»> y en C# o JavaScriptes =»:

fun getEstacion(entrada: Int): String {
return when (entrada) {
1 -> "primavera"
2 -> "verano"
3 -> "otono"
4 -> "invierno"
else -> "Estacidén incorrecta"

fun main() = println(getEstacion(2))
En este caso usamos when con patrones que se aplican a la variable x como haciamos en C#.

fun main() {

val x = 12

val validNumbers = 1..15

when (x) {
in 1..10 -> print("$x is in the range")
in validNumbers -> print("$x is valid")
Iin 10..20 -> print("$x is outside the range")
else -> print("none of the above")

Otro ejemplo de la gran funcionalidad que nos permite la sentencia when podria ser el siguiente.
Observa que en este caso el when es sin argumentos y tenemos diferentes expresiones que
iremos comprobando en orden:

15/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/control-flow.html#when-expression
https://kotlinlang.org/docs/control-flow.html#when-expression

fun noHagoNada(x: Int, s: String, v: Float): String {
val res = when {
X in 1..10 -> "entero positivo menor de 10
s.contains("cadena") -> "incluyo cadena"
v is Comparable<*> -> "Soy Comparable"
else -> ""

}

return res

}
fun main() = println(noHagoNada(2, "Hola", 3.5f))

16/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Funciones
e Functions

Como ya hemos podido deducir de los ejemplos del tema, si queremos crear una funcion en kotlin
tendremos que precederla de la palabra reservada fun. Por tanto, una funcién constara de la
palabra fun seguida por el nombre de la funcién y entre paréntesis los parametros, siempre y
cuando los tenga. Si la funcidén retorna un valor se definira al final de la signatura (esto ultimo se
puede omitir siempre que la funcidén no devuelva nada).

fun idFuncion([pl : T1, p2 : T2, ...]) : Tr

fun sumaDatos(datoUno: Int, datoDos: Char) {
println("${datoUno + datoDos.code}")

fun main() {
var mutable = 5;
mutable += 7;
val inmutable = 'C’;
sumaDatos(mutable, inmutable)

Con valor de retorno:

fun mayor(numeroUno: Int, numeroDos: Int): Int {
return if (numeroUno > numeroDos) numeroUno else numeroDos

Aunque ya lo hemos usado en algunos ejemplos, si la funcion tiene una unica instruccion o
expresion. Se pueden omitir las llaves usando el operador =

fun mayor(numeroUno: Int, numeroDos: Int): Int =
if (numeroUno > numeroDos) numeroUno else numeroDos

fun main() = println(mayor(5, 7))

17/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/functions.html
https://kotlinlang.org/docs/basic-syntax.html#functions
https://kotlinlang.org/docs/functions.html#single-expression-functions
https://kotlinlang.org/docs/functions.html#single-expression-functions

Retornando una tupla 'Pair<A, B>', 'Triple<A, B, C>'

Aunque no tenemos la sintaxis de tipo tupla tan avanzada como en Python o C# podemos usar el
tipo Pair<A, B> para retornar dos valores a la vez.

fun angulo(grados: Int): Pair<Double, Double> {
val radianes = grados * 3.1416 / 180
return Pair(kotlin.math.cos(radianes), kotlin.math.sin(radianes))

}

fun main() {
val (seno, coseno) = angulo(grados = 45)

Numero de argumentos indefinido con ‘varargs'

o Variable number of arguments (Varargs)

Para pasar un numero variable de argumentos a una funcion, debemos declarar esa funcion con
un parametro vararg :

// Esto significa que la funcidén suma() puede aceptar cero o mas enteros.
fun suma(vararg xs: Int): Int = xs.sum()

fun main() {
println(suma()) // Muestra ©
println(suma(2)) // Muestra 2
println(suma(2, 4, 6)) // Muestra 12

18/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/functions.html#variable-number-of-arguments-varargs

Funciones de extension

¢ Extension Functions

Idénticos a los métodos de extension en C#. Me permiten ampliar la funcionalidad de una clase
cumpliendo el principio OCP (Abierto para extension. Cerrado para modificacién) de SOLID. No
debemos abusar de ellas. Aunque en algunos casos nos van a ayudar a reducir dependencias.

% Importante: Su ambito de aplicacion se restringira al paquete donde se definen y si

quisiéramos usarlas en otros paquetes deberiamos hacer un import de las mismas.

En el siguiente ejemplo extendemos la funcionalidad de la clase string para anadir dos
operaciones mas sobre los objetos de este tipo.

// Funcion de extension que dado un objeto de tipo String, convierte
// la primera letra de cada palabra a mayusculas.
fun String.capitaliza(): String {

var sCapitalizada: String

if (!this.isNullOrEmpty()) {

// E1 objeto sobre el que realizamos la operacidén lo podemos
// referenciar mediante la palabra reservada this.
val sb = StringBuilder(this)

sb[@] = sb[@].uppercaseChar()
for (i in 1 until this.length)
sb[i] = if (sb[i - 1].isWhitespace()) sb[i].uppercaseChar() else sb[i]
sCapitalizada = sb.toString()
} else {
sCapitalizada = this
}

return sCapitalizada

// También podemos definir propiedades de extensiodn.
val String.numeroPalabras: Int
get() = this.split(' ', ".', "?")
.filter { it.isNotEmpty() }
.size

fun main() {
val texto = "esto es una cadena de texto"
println(texto.capitaliza())
println(texto.numeroPalabras)

19/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/extensions.html

Excepciones

o Exceptions

¥ Importante: try es una expresion. Esto es interesante pues va a ser muy comun
retornar un try en un método teniendo en cuenta que la ultima instruccion de cada bloque

debe evaluarse al mismo tipo.

val a: Int? = try { input.toInt() } catch (e: NumberFormatException) { null }

% Importante: Podemos definir funciones que lancen una excepcién, pero deberemos

indicar que no retorna nada con la palabra reservada uUnit que equivaldra al void de C#.

fun fail(message: String): Unit = throw IllegalArgumentException(message)

fun main() {
val name = readlLine()
val s = name ?: fail("Name required")
println(s)

20/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/exceptions.html

Clases e Interfaces
e Classes and Inheritance

Todos los elementos en Kotlin son publicos por defecto, por lo que también lo seran las clases. Las
clases nos sirven para referenciar objetos del mundo real, y mediante las propiedades podemos
definir las distintas caracteristicas que nos interese manipular de estos. En Kotlin ya no existen los
atributos, sino que todo pasa a ser propiedades, similares a las que utiliza C#, se les puede dar
funcionalidad si lo necesitamos.

Por tanto, una clase Persona CONn nombre Y edad a las que queremos dar funcionalidad, en C# se
podria definir asi:

// C# Example
class EdadException : Exception

{

public EdadException(string message) : base(message) { }

class Persona

{

private string _nombre = "";
private int _edad = 0;

public string Nombre

{
get => _nombre.ToUpper();
private set => _nombre = value

}

public int Edad
{
get => _edad;
set
{
if (value < @ || value > 125)
throw new EdadException("Edad Invalida");
_edad = value;

public Persona(string nombre, int edad) {
Nombre = nombre;
Edad = edad;

21/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/classes.html
https://kotlinlang.org/docs/visibility-modifiers.html#classes-and-interfaces

Su equivalente en Kotlin seria ...

class EdadException(cadena: String) : Exception(cadena)

class Persona(nombre: String, edad: Int = 0) {
var nombre: String = ""
// get() y set() deben ir indentados justo después de
// definir la propiedad.
get() = field.uppercase()
private set

var edad: Int = @ // Si no es lateinit debe ir inicializado.
set(value) {
if (value < @ || value > 125)
throw EdadException("Edad Invalida")
field = value

init {
this.nombre = nombre
this.edad = edad

Si te fijas, ademas de la palabra reservada value que ya teniamos en C#. Kotlin utiliza la palabra
preservada field para referirse al 'campo anénimo' asociado a la propiedad, por lo que no tiene
que crear un campo asociado como ocurre con C#. Ademas, los identificadores de las propiedades

en Kolin irdn en camel-casing.

Resumen: Podemos deducir pues que en Kotlin no podemos definir campos en las
clases sino solo propiedades.

22/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Constructores

Las clases pueden tener un constructor principal y uno o mas constructores secundarios. El
constructor principal es parte del encabezado de la clase, como vimos en el anterior ejemplo.
Esto nos permite construir un objeto sin tener que definir el constructor. Por ejemplo, en otra
version de la clase Persona anterior, pero sin funcionalidad en las propiedades y estas de solo
lectura, solo bastaria con haber hecho lo siguiente:

// Fijate que al usar val nombre es una propiedad de solo lectura.
class Persona(val nombre: String, val edad: Int = 9)

val persona = Persona("Pepe", 23)

En la definicidn equivalente en C# si que tendriamos que definir las propiedades y el constructor.
Mientras que en Kotlin lo hemos hecho de forma muy simplificada:

// C# Example
class Persona

{
public string Nombre { get; }
public int Edad { get; }
public Persona(string nombre, int edad) {
Nombre = nombre;
Edad = edad;
}
}

Persona persona = new("Pepe", 23);

Si necesitamos que ocurra algo en el momento de crear el objeto, se puede usar la clausula init
que sera ejecutada al llamar al constructor principal. Si te fijas en el siguiente cédigo, la propiedad
edad esta declarada en el constructor, mientras que el nombre se ha declarado en el cuerpo de la
clase.

23/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

// En esta definicion nombre no lleva la palabra reservada val
// porque lo vamos a definir dentro del cuerpo de la clase.
class Persona(nombre: String, var edad: Int = 9) {
// Podemos no asignarle un valor a la propiedad
// ya que lo asignhamos en el init.
val nombre: String
get() = field.uppercase()

init {
this.nombre = nombre
if (edad < @ || edad > 125)
throw ExcepcionEdad("Edad Invalida")
this.edad = edad

Si lo que queremos es crear mas de un constructor, tendremos que recurrir a la clausula
constructor indicando los parametros necesarios y llamando al constructor por defecto con this
para enviarle sus propiedades. Ahora hemos afadido una propiedad mas a la clase Ppersona, €l
dni que sera asignado con el segundo constructor

class Persona(nombre: String, var edad: Int = @) {
var dni: String = "NINGUNO"
val nombre: String
get() = field.uppercase()

init {
this.nombre = nombre
if (edad < @ || edad > 125) throw ExcepcionEdad("Edad Invalida")
else this.edad = edad

// Fijate que un constructor llama al otro.
constructor(nombre: String, edad: Int = 0, dni: String)
: this(nombre, edad) {

this.dni = dni

24/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Resumen: Fijate en este otro ejemplo en el que a través de la definicién de una clase

Cuenta vemos las caracteristicas de sintaxis descritas.

// Definicidn de la clase y del constructor principal.
// Ademds, hemos definido implicitamente dos propiedades titular.
class Cuenta(val titular: String, val nudmero: Int) {

// Propiedad mutable privada solo para modificacidén e inicializacion.
// Define un get y set auto-implementado como Ci.
var saldo: Double = 0.0

private set

// Propiedad publica mutable y anulable
// en la que definimos nosotros el get y el set
// field: palabra reservada para hacer referencia al campo asociado a la propiedad.
// value: palabra reservada para hacer referencia al valor recibido en el setter.
var banco: String? = null

get() = field ?: "Desconocido"

set(value) {

field = value!!.toString()

// Propiedad publica de solo lectura calculada y por tanto (inmutable)
// También se puede declarar asi -> val hayDescubierto: Boolean = saldo < ©
val hayDescubierto: Boolean

get() = saldo < @ // Definimos el getter para la propiedad

// Constructor secundario apoyandose en el principal.
constructor(titular: String, numero: Int, saldo: Double) : this(titular, numero) {
this.saldo = saldo

// Método publico normal
fun ingreso(cantidad: Double) {
saldo += cantidad

// Invalidacidn ToString con cuerpo de expresiodn
override fun toString(): String = "Cuenta $numero titular $titular saldo ${saldo}€"

// Método publico que lanza una excepcion
// La anotacidén @Throws es opcional y se usaria para interoperabilidad con Java.
@Throws (IllegalArgumentException::class)
fun reintegro(cantidad: Double) {
if (cantidad > saldo) throw IllegalArgumentException("Saldo insuficiente™)
saldo -= cantidad

25/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Definir métodos y propiedades estaticas

En Kotlin no existen los métodos y propiedades estaticas como en Java o C#. Pero podemos
definirlos de forma similar a como lo hacemos en C# con las clases estaticas .

Declaracion de ‘clases estaticas'

¢ Object Declarations

Creamos un objeto global anénimo denominado por ejemplo Datos . En otras palabras, no
estamos definiendo una clase sino un objeto instanciado, referenciado por el id Datos y de tipo
anonimo.

object Datos {
// La anotacion @JvmStatic es opcional y se usaria para interoperabilidad con Java.
@JvmStatic
val empleados = 1listOf(
Empleado("Xusa", 45, Empleado.Ciudad.Alicante),
Empleado("Pepe", 54, Empleado.Ciudad.Alicante),
Empleado("Juanjo", 52, Empleado.Ciudad.Elche),
Empleado("Vicente", 45, Empleado.Ciudad.Elche))

// Para acceder a la propiedad estatica empleados
Datos.empleados

Métodos y propiedades estaticas en una clase

e Companion Objects
Si queremos hacerlo en otra clase, marcaremos el objeto creado con el modificador companion

% Importante: Fijate que no hace falta que le pongamos un identificador de tipo al
companion object ya que solo podemos definir uno por clase y dentro del mismo definiremos
los métodos o propiedades 'estaticas' de la misma.

26/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/object-declarations.html#object-declarations-overview
https://kotlinlang.org/docs/object-declarations.html#companion-objects

class MiClasse

{

companion object {
val empleados = 1istOf(
Empleado("Xusa", 45, Empleado.Ciudad.Alicante),
Empleado("Pepe", 54, Empleado.Ciudad.Alicante),
Empleado("Juanjo", 52, Empleado.Ciudad.Elche),
Empleado("Vicente", 45, Empleado.Ciudad.Elche))

// Para acceder a la propiedad estatica empleados.
MiClasse.empleados

Objetos anénimos

o Object Expressions

Son equivalentes a las clases anonimas de C# o Java y como sucede en C# las propiedades que
definen no son accesible fuera del ambito donde se define el objeto andénimo a no ser que este
implemente algun tipo de abstraccidn que queramos retornar sin definir un tipo especifico para la
misma. El tipo de retorno de un objeto anénimo es Any y si implementa alguna interfaz, esta sera
la que se devuelva.

interface A {
fun funcionDeA() {}

class B {
// E1l tipo de retorno es Any y la propiedad x no es accesible
fun getObject() = object {

val x: String = "Xx

// E1l tipo de retorno es A y la propiedad x no es accesible
fun getObjectA() = object: A {
override fun funcionDeA() {}

val x: String = "x

27/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/object-declarations.html#object-expressions

Herencia

¢ Inheritance

En Kotlin, la clase Any es la raiz de la jerarquia de clases. Cada clase del lenguaje derivara de
ella si no especificas una superclase. Seria similar a la clase object de C#y Java.

Por otro lado en Kotlin, tanto las clases como los miembros de estas son cerrados, esto significa
que no se puede heredar de una clase y tampoco se pueden sobreescribir sus miembros si no lo

indicamos explicitamente.

Para que de una clase se pueda heredar habra que anadirle el modificador open . Por ejemplo, si
la clase Persona queremos hacerla abierta seria:

open class Persona(nombre: String, var edad: Int = 0) {

y ahora podriamos crear una clase hija de Persona , como por ejemplo:

class Estudiante(nombre: String, edad: Int = @, var estudios: String)
Persona(nombre, edad)

Suponiendo que la propiedad dni queremos hacerla invalidable y que tiene un nuevo método
también invalidable llamado imprimir y uno normal esMayor, ahora la clase quedaria:

open class Persona(nombre: String, var edad: Int = 0) {
open var dni: String = "NINGUNO"

open fun imprimir() = println("Nombre: $nombre Edad: $edad")
fun esMayor() = edad >= 18

y con los elementos que queremos invalidar en la clase Estudiante usaremos la palabra
reservada override como en otros lenguajes. Asi mismo usaremos la palabra reservada super
para referenciar la la 'superclase' como en Java.

28/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/inheritance.html

class Estudiante(nombre: String, edad: Int = @, var estudios: String)
Persona(nombre, edad) {
override var dni: String = "ESTUDIANTE SIN DNI"
override fun imprimir() {
super.imprimir();
println("Soy estudiante de $estudios")

Interfaces

o Interfaces

En Kotlin podemos implementar clases abstractas, que son iguales a las que ya conocemos de
otros lenguajes, salvo los cambios concretos para la herencia. Por esta razén, no vamos a
comentar nada sobre ellas.

También se pueden crear interfaces, que permiten definir tipos cuyos comportamientos pueden ser
compartidos por varias clases que no estan relacionadas. Usa la palabra reservada interface y
su implementacion es similar a los lenguajes que conocemos con algunas pequefias diferencias.
Como ya sabemos permiten la herencia multiple, y ademas:

e Pueden contener métodos abstractos (sin implementacién) y métodos regulares (con
implementacion).

e Puede contener propiedades abstractas y regulares.

» No permite declaracién de constructores.

o Las propiedades y métodos regulares de una interfaz pueden ser invalidados con el
modificador override sin tener que marcarlos con open , a diferencia de en las clases
abstractas.

interface Estudios {

var curso: Int // Propiedad abstracta

val ultimoCurso: Boolean // Propiedad regular
get() = curso ==

fun estudios(): String // Método abstracto

fun soyEstudiante() = // Método regular

println("Soy Estudiante de " + estudios())

y ahora hacemos que la clase Estudiante ademas de heredar de Persona , implemente la
interface Estudios , quedando:

29/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/interfaces.html

class Estudiante(nombre: String, edad: Int = @, var estudios: String)
Persona(nombre, edad), Estudios {
override var curso: Int = @
set(value) {
field = curso
}
override var dni: String = "ESTUDIANTE SIN DNI"
override fun estudios() = estudios

30/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Definiendo ValueObjects o DTO's con data class

o Data Classes

% Importante: La gran mayoria de objetos que definiremos en nuestros programas seran de

este tipo. Especialmente al recuperar informacién de las fuentes de datos.

Si queremos definir objetos con tipos que actuen como 'Value Objects’o DTO's como el tipo
record €n C# 10 o Java 17, tenemos la posibilidad de definirlos como data class en Kotlin. Sus
caracteristicas son:

// Fijate que al ser inmutables todos las propiedades del data class
// se definiran con val.

data class Empleado(
val nombre: String,
val edad: Int,
val ciudad: Ciudad) {

// Aunque definimos un cuerpo por anidar la definicidén del Enum
// no haria falta hacerlo en un data class
enum class Ciudad() { Elche, Alicante }

fun main() {
// La sintaxis recomendada para construir un objeto es la
// siguiente donde especificamos pares
// en lineas diferentes. Nos facilitara 1la edicidén, borrado
// y cambio de orden de las propiedades.
val el = Empleado(
nombre = "Xusa",
edad = 45,
ciudad = Empleado.Ciudad.Alicante

// Como ves la sintaxis proiedad = valor nos permite no seguir
// el orden de declaracion en la inicilizacion de las propiedades.
val e2 = Empleado(

edad = 53,
nombre = "Pepe",
ciudad = Empleado.Ciudad.Alicante

// También podremos usar la forma tradicional.
val e3 = Empleado("Juanjo", 52, Empleado.Ciudad.Elche)
val e4 = Empleado("Juanjo", 52, Empleado.Ciudad.Elche)

31/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/data-classes.html
https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Data_transfer_object

Este tipo de clases:

1. Definen por defecto equals() , hashCode() asicomo == 1=

println(e3 == e4) // muestra true en lugar de comparar referencias

2. Definen por defecto toString()

println(e3) // muestra "Empleado(nombre=Juanjo, edad=52, ciudad=Elche)"

3. Ya que son inmutables, tenemos la posibilidad de crear facilmente copias con copy()

val e5 = e4.copy(ciudad = Empleado.Ciudad.Alicante)

println(e4d) // Mostrara "Empleado(nombre=Juanjo, edad=52, ciudad=Elche)"
println(e5) // Mostrara "Empleado(nombre=Juanjo, edad=52, ciudad=Alicante)"
println(e3 == e5) // Mostrara false

32/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Clases y métodos parametrizados

Kotlin también permite crear clases y métodos con alguno de sus miembros de tipo genérico. La
lista de parametros para tipos se incluyen en paréntesis angulares y se separan por coma si son
varios <T, U, V,..>

Para crear una clase con un tipo parametrizado de forma que una de sus propiedades sea de ese
tipo, se hara de la siguiente manera:

class ClaseGenerica<T>(
private var t: T,
private val c: String) {

fun metodo(param: T) {
t = param

}
override fun toString() = "${t} ${c}"

y si quisiéramos crear un objeto de esa clase con la propiedad parametrizada a tipo entero, se
podria hacer ...

fun main() {
val objeto = ClaseGenerica(3, "Hola")

Si quisiéramos realizar una restriccion del tipo parametrizado a la interfaz Comparable<T> como
haciamos en C#, se tendria que hacer de la siguiente manera:

class ClaseGenerica<T: Comparable<T>>(
private var t: T,
private val c: String) {

33/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Scope functions

e Scope Functions

€ Nota: Para entender esta seccion es necesario tener conocimientos de lambda y
higher-order functions que veremos en el siguiente tema. Por eso, deberemos volver sobre
este punto al ver dicho tema. La idea de las mismas es trabajar de forma funcional y con
expresiones lambda de forma sintacticamente mas comoda.

Kotlin nos permite usar una serie de métodosdenominadas Scope Functions (Funciones de
Ambito) que nos permiten trabajar con objetos de forma mas cémoda y en una Gnica expresion.
Muchas de ellas son aproximaciones para hacer la misma cosa. Pero las principales y mas
utilizadas son ...

Funcién Referencia a objeto Valor de retorno Es funcion de extension
let it Expresion Lambda Si
run this Expresion Lambda Si
run - Expresién Lambda No
with this Expresion Lambda No
apply this this Si
also it this Si

e let : Nos permite ...
Hacer algo con un objeto anulable si es distinto de null
val nombre: String? = "Pepe"

nombre?.let { println(it) }

Introducir una expresién como variable en el ambito local.

val numbers = mutablelListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }

.let { it.joinToString(" - ") }

.let { println(it) } // Muestra 5 - 4 - 4

e apply : Configuracién de un objeto. Todas las operaciones se hacen sobre this .

34/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/scope-functions.html

val persona = Persona().apply {
nombre = "Pepe"
edad = 45

Podemos considerarlo como una forma hacer un interfaz fluida sobre un objeto que no la

tiene definida.
e run : Para ejecutar instrucciones donde se requiera una expresion.
val hexNumberRegex = run {
val digits = "@-9"
val hexDigits = "A-Fa-f"

val sign = "+-"

Regex("[$sign]?[$digits$hexDigits]+")

35/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Clases enumeradas con enum class

e Enum Classes

Igual que en otros lenguajes, Kotlin nos permite crear tipos enumerados, aunque en este caso se
puede ver como un modificador de clase. Una enumeracién es un conjunto de valores que usan
como identificador un nombre. Dicho nombre se comporta como una constante en nuestro
lenguaje. Al marcar una clase con el modificador enum , la declara como una de enumeracion.

enum class CiclosInformatica { SMR, ASIR, DAM, DAW }

fun nivelCiclo(ciclo: CiclosInformatica): String {
return when (ciclo) {
CiclosInformatica.SMR -> "Medio'
else -> "Superior"

fun main() {
val ciclo = CiclosInformatica.ASIR
println(nivelCiclo(ciclo)) //Superior

Valor en las enumeraciones

Ademas a las enumeraciones en Kotlin también podemos asignarles uno o mas valores. Esto se
hara a través del constructor de la clase, o podemos ver en el siguiente ejemplo, en el que al
constructor se le ha afiadido tanto un valor entero como un grado de tipo cadena.

36/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/enum-classes.html
https://kotlinlang.org/docs/enum-classes.html

enum class CiclosInformatica(
val valor: Int,
val grado: String

) {
SMR (1, "Grado Medio"),
ASIR(2, "Grado Superior"),
DAM (3, "Grado Superior"),
DAW (4, "Grado Superior")

fun main() {
for (v in CiclosInformatica.values()) {
println(v.name + " " + v.ordinal)
}
// Recorrido de secuencia pasando una HOF como Consumer
CiclosInformatica.values().forEach { ciclo ->
// Formateo de cadenas similar a Java
println("%-2d %-4s %s".format(ciclo.valor, ciclo.name, ciclo.grado)))

SMR ©

ASIR 1

DAM 2

DAW 3

1 SMR Grado Medio

2 ASIR Grado Superior
3 DAM Grado Superior
4 DAW Grado Superior

Enumeraciones con comportamiento

También se les puede afadir un comportamiento a través de funciones abstractas o no, o incluso
de interfaces. En el siguiente ejemplo podemos ver que al constructor se le ha afadido un
elementos mas con el nombre completo del ciclo, y ademas tenemos el comportamiento afiadido
mediante el método informacionCompleta() . De forma que la ejecucion del programa nos sacara
las siglas del ciclo, el nombre completo y el grado que le corresponde a cada uno de los elementos
de la enumeracion.

37/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

enum class CiclosInformatica(

) A

fun

38/46

val valor: Int,
val grado: String,
val nombre: String

SMR(1,"Grado Medio","Sistemas Microinformaticos y Redes"),

ASIR(2,"Grado Superior","Administracién de Sistemas Informaticos en Red"),
DAM(3,"Grado Superior","Desarrollo de Aplicaciones Multiplataforma"),
DAW(4,"Grado Superior","Desarrollo de Aplicaciones Web");

fun informacionCompleta()= "${name} - ${nombre} - ${grado}"

main() {
CiclosInformatica.values().forEach{println("${it.informacionCompleta()}")}

PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Funciones Genéricas

Para las funciones genéricas el parametro de tipo se afadira justo después de la palabra
reservada fun Yy las restricciones se haran de la misma manera que en las clases.

fun <T> funcionGenerica(param: T): T = param

Supongamos que definimos una clase estatica con métodos de utilidad sobre tablas dentadas

cuyo contenido sean tipos diferentes y definimos un método flat que las convierte en un array
unidimensional.

object TablaDentada {

// Una funcidén inline es una funcidén que se expande en el cédigo que la llama.
// Esto permite que el compilador pueda optimizar el cddigo de la funcion.
// reified: Permite acceder al tipo de dato de la funciodn.
inline fun <reified T> flat(tablaDentada: Array<Array<T>>): Array<T> {

val d = mutableListOf<T>()

for (i in tablaDentada.indices) {

for (j in tablaDentada[i].indices) {
d.add(tablabDentada[i][j])

}
return d.toTypedArray()

El programa principal para probarla con tablas dentadas de diferente tipos podria ser ...

fun main() {
val tablaDentadaInt = arrayOf(
array0of(1, 2, 3, 4),
array0f(4, 5, 6),
arrayof(7, 8, 9, 10, 11)
)
println(TablaDentada.flat(tablaDentadalnt).contentToString())

val tablaDentadaString = arrayOf(

arrayof("a", "b", "c", "d"),

arrayof("e", "f", "g"),

arrayof("ph", "i", "j", "k", "1")
)
println(TablaDentada.flat(tablaDentadaString).contentToString())

39/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

Clases Selladas (Sum Type Pattern)

o Sealed Classes

Las clases selladas son un tipo de clase que nos permite definir un tipo de dato que puede ser de
un tipo u otro, pero no de ambos. Es decir, que no se puede crear un objeto de una clase sellada,
sino que se creara un objeto de una de sus clases hijas.

En el fondo podriamos decir que es un tipo enumerado mejorado de hecho es un
superconjunto y cualquier tipo enumerado podriamos representarlo a través de una clase sellada.
La diferencia radica en que en los enumerados sélo tenemos un unico objeto por tipo, mientras
que en las sealed classes podemos tener varios objetos de la misma clase y permiten almacenar
estado.

Esto es la forma en que Kotlin y otros lenguajes como C# implementan el patron funcional Sum
Type Pattern.

Resumen: En resumen podemos decir que una clase sellada permite definir una
enumeracion de tipos con propiedades diferentes de los cuales una instancia solo podra ser
de uno de ellos de forma excluyente.

Veamoslo a través de varios ejemplos comentados:

Supongamos primero el siguiente tipo enumerado...

enum class TipoUsuario(val tipo: String) {
Admin("Admin"),
Personal("Personal™),
Cliente("Cliente")

La forma equivalente de representar su funcionalidad a través de una clase sellada seria ...

40/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/sealed-classes.html
https://spencerfarley.com/2021/03/26/unions-in-csharp/
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Tagged_union

sealed class TipoUsuario(val tipo: String) {

// Definimos tres instancias estdaticas de objetos
// de tipo estableciendo la propiedad comun tipo
// a los respectivos valores del enumerado.
object Admin : TipoUsuario("Admin")

object Personal : TipoUsuario("Personal")

object Cliente : TipoUsuario("Cliente")

companion object {
// Método estatico que me devuelve los valores.
fun values(): Array<TipoUsuario> {
return arrayOf(Admin, Personal, Cliente)

// Método estatico para tener la funcionalidad
// equivalente del valueOf de los enums
fun valueOf(value: String): TipoUsuario {
return when (value) {

"Admin" -> Admin

"Personal” -> Personal

"Cliente" -> Cliente

else -> throw IllegalArgumentException(

"No object consola.TipoUsuario.$value")

Pero en este caso no nos aporta nada frente al enum class que de forma mas concisa me
representa dicha funcionalidad. Con lo cual vamos a quedarnos con dicha sintaxis y vamos a
definir dos tipos enumerados mas.

enum class TipoCategoria(val tipo: String) {
Mascotas("Mascotas"),
Gatos("Gatos"),
Perros("Perros")

enum class TipoArchivo(val tipo: String) {
Foto("Foto"),
Video("Video"),
Audio("Audio")

Supongamos ahora una clase AccionesUsuario con diferentes acciones que puede realizar un
usuario. En este caso, el usuario puede hacer login, logout, visualizar un archivo o buscar un
archivo. En el caso de visualizar y buscar, se le pasa el nombre del archivo, el tipo de usuario, el

41/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

tipo de archivo y en el caso de buscar, el tipo de categoria. Cada tipo de accién va a estar
representada por un tipo anidado con sus propiedades especificas y que heredara del propio

AccionesUsuario .

sealed class AccionesUsuario {
// Tipos Login y Logout
data class Login(val tipoUsuario: TipoUsuario) : AccionesUsuario()
data class Logout(val tipoUsuario: TipoUsuario) : AccionesUsuario()

// Tipos Visualizar y Buscar ya definen otras propiedades
// especificas para definir su propio estado.
data class Visualizar(
val fileName: String,
val tipoUsuario: TipoUsuario,
val mediaType: TipoArchivo
) : AccionesUsuario()

data class Buscar(
val terminoBusqueda: String,
val tipoUsuario: TipoUsuario,
val tipoArchivo: TipoArchivo,
val tipocategoria: TipoCategoria
) : AccionesUsuario()

// Defino un método para pasar a cadena que segun el tipo
// generamos una cadena con las caracteristicas del estado.
fun aTexto(): String {
return when (this) {
is Login ->
"El usuario $tipoUsuario ha iniciado sesidén"

is Logout ->
"El usuario $tipoUsuario ha cerrado sesioén"

is Visualizar ->

"El usuario de tipo $tipoUsuario ha visto " +
"el fichero $fileName que es un $mediaType"

is Buscar ->

"El usurio de tipo $tipoUsuario ha buscado \"$terminoBusqueda\ +
"de tipo $tipoArchivo en la categoria $tipocategoria”

42/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

En el siguiente cédigo simulamos que vamos afiadiendo acciones del usuario a una lista que hara
de 'Log' cada una con sus propiedades especificas pero de entre un conjunto restringido de
acciones posibles. Todas ellas tienen en comun la operacion aTexto que segun el tipo de accion
nos devolvera una cadena con las caracteristicas de la accion realizada.

fun registroAcciones() {
val acciones = mutablelListOf<AccionesUsuario>().apply {
add(AccionesUsuario.Login(tipoUsuario = TipoUsuario.Admin))
add(
AccionesUsuario.Visualizar(

fileName = "gato mirando cosas",
tipoUsuario = TipoUsuario.Personal,
mediaType = TipoArchivo.Video

)
add(

AccionesUsuario.Buscar(
terminoBusqueda = "perro gracioso",
tipoUsuario = TipoUsuario.Cliente,
tipoArchivo = TipoArchivo.Foto,
tipocategoria = TipoCategoria.Perros

)

add(AccionesUsuario.Logout(tipoUsuario = TipoUsuario.Cliente))

acciones.forkach { println(it.aTexto()) }

Descargar ejemplos de cédigo aqui.

43/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/assets/codigo/ejemplo_clase_sellada_recurso.zip

Delegacion de propiedades con by

o Delegated Properties

La delegacion de propiedades es una caracteristica de Kotlin que nos permite delegar la
implementacion de una propiedad a un objeto externo. Por tanto, utilizara otro objeto que es capaz
de devolver un resultado cuando se llame al get y al set (en caso de que se utilice var).

Veamos el siguiente ejemplo comentado:

// Definimos un tipo Dato que guarda un valor
class Dato(var valor : Int){
override fun toString(): String {
return valor.toString()

// Definimos un tipo delegado encargado de inicializar una propiedad
class MiDelegadoParaDato {

// EL delegado devuelve una unica instancia de Dato
// o la crea si no existe (patrdén creacional Singleton)
companion object {

var dato: Dato = Dato(-1)

// Como solo hemos definido getValue,

// solo podremos utilizarlo en propiedades de solo lectura ‘val’

operator fun getValue(thisRef: Any?, property: KProperty<*>): Dato {
return dato

fun main() {
// En ambos casos se inicializa la propiedad
// a la misma instancia del objeto dato.
val datol: Dato by MiDelegadoParaDato()
val dato2: Dato by MiDelegadoParaDato()

println("datol = ${datol} y dato2 = ${dato2}")
// mostrara datol = -1 y dato2 = -1

datol.valor = 6

println("datol = ${datol} y dato2 = ${dato2}")
// mostrara datol = 6 y dato2 = 6

44/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/delegated-properties.html
https://kotlinlang.org/docs/delegated-properties.html

% Importante: Fijate que hemos usado la palabra reservada by para indicar que
inicializacion de los datos se va a delegar en una intancia de del tipo MiDelegado .

lazy

o Lazy Properties

Existen delegados estandar ya implementados en el lenguaje que nos permiten implementar la
delegacion de propiedades de forma sencilla. Por ejemplo, tenemos la interfaz 1lazy que nos
permite inicializar el valor de una propiedad de forma perezosa. Es decir, que no se inicializa
hasta que no se accede a ella por primera vez.

Por ejemplo:

// Definimos una clase llamada Dato
data class Dato(val valor : Int = @)

// Definimos una clase llamada A

class A {
// Definimos una propiedad publica de tipo Dato
// que se inicializa de forma perezosa.
val p: Dato by lazy { Dato() }

fun main() {
val a = A()

// Hasta el momento que accedemos a la propiedad p

// no se llama al constructor de Dato.
println(a.p)

45/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/delegated-properties.html#lazy-properties

observable

¢ Observable Properties

Existen muchos delegados estandar que nos permiten implementar la delegacion de propiedades
usando by . Por ejemplo, la interfaz observable nos permite observar los cambios que se
producen en una propiedad. Es decir, que cada vez que se cambie el valor de la propiedad, se
ejecutara un codigo que nosotros definamos. Muchos de ellos estan definidos en el paquete
kotlin.properties dentro de la clase Delegates .

data class Dato(val valor : Int = 9)

class A {
// Definimos una propiedad publica de tipo Dato que se inicializa al
// valor por defecto y cada vez que se modifica se la funcidon lambda que se le indica
// que se modifica se la funcion lambda que se le indica
var p: Dato by Delegates.observable(Dato()) {
_, old, new -> println("p cambia de $o0ld a $new")

}
}
fun main() {
val a = A()
.p = Dato(1)
a.p = Dato(4)

Al ejecutarse este programa principal se mostrara por el terminal...

p cambia de Dato(valor=0) a Dato(valor=1)
p cambia de Dato(valor=1) a Dato(valor=4)

46/46 PMDM 2° DAM Tema 1.1 - Lenguaje Kotlin| ~ Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/delegated-properties.html#observable-properties

