
Tema 1 parte 1 - Lenguaje Kotlin I
Descargar estos apuntes pdf o html

Índice
Introducción
Creando nuestro "Hola Mundo" en Kotlin

Usando Gradle
Usando Android Studio

El lenguaje Kotlin
Enlaces de interés
Control de Nulos
Variables

Interpolación de cadenas
Literales de cadena multilínea

Control de flujo
Condicionales como expresión
Bucles con for y while
Condicional múltiple con when

Funciones
Retornando una tupla 'Pair<A, B>', 'Triple<A, B, C>'
Número de argumentos indefinido con 'varargs'
Funciones de extensión

Excepciones
Clases e Interfaces

Constructores
Definir métodos y propiedades estáticas
Herencia
Interfaces
Definiendo ValueObjects o DTO's con data class
Clases y métodos parametrizados
Scope functions
Clases enumeradas con enum class
Clases Selladas (Sum Type Pattern)
Delegación de propiedades con by

1/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_1_kotlin.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/Tema_1_1_kotlin.html

Introducción
Kotlin es un lenguaje de programación fuertemente tipado desarrollado por JetBrains en 2010 y
que está influenciado por lenguajes como C#, Scala, Groovy y Java.

A partir de la actualización Kotlin 1.3.30, se incluyeron las mejoras para Kotlin/Native que permite
compilar el código fuente de Kotlin en datos binarios independientes para diferentes sistemas
operativos y arquitecturas de CPU, incluido IOS, Linux, Windows y Mac.

La mayoría de desarrollos con Kotlin, tienen cómo destino Android o la máquina virtual de java
(JVM) y puedes encontrar 'ports' al lenguaje de Frameworks y librerías cómo:

Desarrollo Nativo a Android NDK
Multiplataforma.
Desarrollo web con interactividad y transpilación a JavaScript con JS IR Compiler.
Desarrollo Backend de acceso a datos y Microservicios con Frameworks como Spring boot,
Quarkus, Micronaut, Ktor
Videojuegos con Frameworks como LibKTX o KorGE
Ciencia de datos con plataformas como Jupyter Notebooks o Datalore

📌 Nota: Nosotros vamos a ver la sintaxis de Kotlin 1.9.0. Sin embargo, podríamos usar la
versión versión 2.0.20, el cuya característica más importante es usar el nuevo compilador
K2 que mejora la velocidad de compilación y la calidad del código generado.

2/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/multiplatform-get-started.html
https://kotlinlang.org/docs/js-overview.html
https://kotlinlang.org/docs/js-ir-compiler.html
https://kotlinlang.org/docs/server-overview.html
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://quarkus.io/guides/kotlin
https://guides.micronaut.io/latest/creating-your-first-micronaut-app-maven-kotlin.html
https://ktor.io/
https://libktx.github.io/
https://korge.org/
https://github.com/Kotlin/kotlin-jupyter
https://blog.jetbrains.com/datalore/
https://kotlinlang.org/docs/whatsnew2020.html
https://kotlinlang.org/docs/k2-compiler-migration-guide.html
https://kotlinlang.org/docs/k2-compiler-migration-guide.html

Creando nuestro "Hola Mundo" en Kotlin

Usando Gradle
Aquí puedes encontrar los pasos en el web oficial :
https://docs.gradle.org/current/samples/sample_building_kotlin_applications.html

Aunque podemos resumirlos aquí:

1. Creamos la carpeta o wrkspace, por ejemplo, _proyecto_consola_kotlin .
2. Abrimos una consola de comandos cmd en la carpeta creada.
3. Ejecutamos el comando gradle init y seguimos los pasos introduciendo las opciones del

ejemplo a continuación.

3/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://docs.gradle.org/current/samples/sample_building_kotlin_applications.html

~\proyecto_consola_kotlin>gradle init
Starting a Gradle Daemon, 2 stopped Daemons could not be reused, use --status for details

Select type of build to generate:
1: Application
2: Library
...
Enter selection (default: Application) [1..4] 1

Select implementation language:
1: Java
2: Kotlin
...
Enter selection (default: Java) [1..6] 2

Enter target Java version (min: 7, default: 21): 17

Project name (default: consola):

Select application structure:
1: Single application project
2: Application and library project
Enter selection (default: Single application project) [1..2] 1

Select build script DSL:
1: Kotlin
2: Groovy
Enter selection (default: Kotlin) [1..2] 1

Generate build using new APIs and behavior (some features may change in
the next minor release)? (default: no) [yes, no]
...
BUILD SUCCESSFUL in 2m 36s
1 actionable task: 1 executed

4. Para compilar y ejecutar nuestro proyecto ejecutaremos gradlew run

~\proyecto_consola_kotlin>gradlew run

> Task :app:run
Hello World!

BUILD SUCCESSFUL in 8s
2 actionable tasks: 2 executed

5. Si quieres ver el resto de tareas predefinidas para nuestru proyecto, puedes ejecutar
 gradlew tasks . Si quieres indagar un poco más sobre la ejecución de tareas puedes ver la
documentación oficial del proyecto.

6. Por último podremos abrir el proyecto con cualquier IDE que permita importar proyectos de
Gradle como Android Studio.

4/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://docs.gradle.org/current/userguide/command_line_interface.html

Usando Android Studio
Aunque no es lo recomendado porque añade dependencias de Android que no necesitamos.
Podemos usar la platilla 'No Activity' para hacerlo de una forma asistida.:

1. Arrancaremos Android Studio y seleccionaremos New Proyect -> No Activity

2. Indicaremos la ubicación y el nombre de paquete, esto se explica mejor en el siguiente tema.

5/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

1. Una vez se ha creado el proyecto, dentro del paquete de la carpeta Java (vista Android)
seleccionaremos New -> Kotlin Class/File

4. Seleccionaremos File y le indicaremos el nombre del fichero a crear.

5. De esta manera se habrá creado un fichero con extensión .kt (Kotlin), vacío.

6. Ahora solo quedará añadir las funciones que necesitemos, por ejemplo si queremos crear el
Hola Mundo básico.

fun main() {
 println("Hola Mundo")
}

6/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

El lenguaje Kotlin

Enlaces de interés
Página oficial del lenguaje.
Learn Kotlin by Example
Curso guiado de iniciación
Curso guiado de profundización
Capacitación oficial de Kotlin para programadores (profundización)
Curso de Kotlin (Lista de reproducción de DevExperto en Castellano)
Kotlin Desde Cero: Primeros Pasos en una hora (MoureDev)
Curso de Kotlin Básico (Lista de reproducción oficial de MoureDev)
Kotlin desde cero
PlayGround Kotlin. (Probar Kotlin On-line)

Control de Nulos
Null safety

Kotlin ha aportado una serie de elementos que permiten realizar un mayor control de los tipos que
pueden ser nulos Null safety, y que pretende evitar la tan conocida excepción
NullPointerException.

Como ocurre con otros lenguajes, Kotlin permite definir un tipo no nulo como anulable. Esto lo
hace mediante el elemento ? , por ejemplo una variable de tipo entera no podría almacenar un
valor nulo, pero se puede cambiar esta condición de la siguiente manera.

fun main() {
 var numero: Int
 numero = null // 💀 ERROR de compilación, los tipos valor no son anulables

 var numeroAnulable: Int?
 numeroAnulable = null // OK
}

Para comprobar si las variables son nulas, siempre se puede usar el condicional if/else, aunque
Kotlin nos permite otras opciones. El operador llamada segura ?. que solo realizará la llamada
en caso que el valor sea distinto de nulo y devolverá null en otro caso.

7/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/
https://play.kotlinlang.org/byExample/overview
https://developer.android.com/courses/pathways/android-basics-compose-unit-1-pathway-1?hl=es-419
https://developer.android.com/courses/pathways/android-basics-compose-unit-2-pathway-1?hl=es-419
https://developer.android.com/courses/kotlin-bootcamp/overview?hl=es-419
https://www.youtube.com/watch?v=Y0tcdQ7Nfqk&list=PLrn69hTK5FBz7meApXjpGnvBVZjec-FCr
https://www.youtube.com/watch?v=T3ugOYTRF7c
https://www.youtube.com/watch?v=hug4TNmhw78&list=PLNdFk2_brsReZeIQ1-2r783GWus0ZZ5io
https://www.youtube.com/playlist?list=PLAzlSdU-KYwVd0mby6H9gLfJ7bkmXNjQJ
https://play.kotlinlang.org/#eyJ2ZXJzaW9uIjoiMS44LjEwIiwicGxhdGZvcm0iOiJqYXZhIiwiYXJncyI6IiIsIm5vbmVNYXJrZXJzIjp0cnVlLCJ0aGVtZSI6ImlkZWEiLCJjb2RlIjoiLyoqXG4gKiBZb3UgY2FuIGVkaXQsIHJ1biwgYW5kIHNoYXJlIHRoaXMgY29kZS5cbiAqIHBsYXkua290bGlubGFuZy5vcmdcbiAqL1xuZnVuIG1haW4oKSB7XG4gICAgcHJpbnRsbihcIkhlbGxvLCB3b3JsZCEhIVwiKVxufSJ9
https://kotlinlang.org/docs/null-safety.html
https://kotlinlang.org/docs/null-safety.html

fun main() {
 var cadenaAnulable: String? = null
 println(cadenaAnulable?.length)
}

En este ejemplo, si no usáramos el operador de llamada segura, el código lanzaría NPE. Pero
ahora mostrará null.

Otro operador, no tan recomendado es el operador de aserción no nula !! . convierte cualquier
valor en un tipo no nulo y lanza una excepción si el valor es null. Podemos decir de este operador,
que vuelve las cosas a la normalidad ya conocida.

Por lo tanto, si deseas un NPE, puedes tenerla solicitándola con este operador.

fun main() {
 var cadenaAnulable: String? = null

 // 💀 ERROR de compilación, no permite posibilidad de producir excepción
 println(cadenaAnulable.length)

 //Solicitamos esta opción con el operador !!
 println(cadenaAnulable!!.length)
}

Y por último tenemos el operador elvis ?: que comprueba que el valor no es nulo, permitiendo la
llamada en ese caso o devolviendo lo que decidamos en caso que sea nulo. Equivaldrá al
operador ?? en C#.

fun main() {
 var cadenaAnulable: String? = null
 println(cadenaAnulable?.length ?: 0)
}

Recuerda que si la expresión a la izquierda de ?: no es null, se realiza la llamada a length, de lo
contrario devuelve la expresión de la derecha, en este caso 0.

Variables
Variables

Igual que en todos los lenguajes de programación, en Kotlin también tendremos el recurso de las
variables para almacenar valores. En Kotlin nos podemos encontrar con variables inmutables y
variables mutables. En el caso de las primeras, una vez se le asigna un valor a la variable no

8/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/basic-syntax.html#variables
https://kotlinlang.org/docs/basic-syntax.html#variables

podrá ser modificado, es decir, se comporta como una constante (lo mismo que utilizar final en
Java o readonly en C#).

Mientras que con la mutables podremos modificar en cualquier momento el valor de la variable.

Para declarar una variable como mutable, la tendremos que preceder de la palabra clave var
mientras que para las inmutables usaremos val.

El concepto de inmutabilidad es muy interesante. Al no poder cambiar los objetos estos son más
robustos y eficientes. Siempre que podamos hemos de usar objetos inmutables.

// Variables mutables
var mutable: Int = 5
mutable += 7

var numeroDecimales = 3.14F
numeroDecimales += 5.5F

// Variables inmutables
val inmutable: Char = 'C'
inmutable = 'A' // 💀 ERROR compilación!! no se puede modificar una variable inmutable

Como se puede ver en el ejemplo, cuando declaramos una variable, podemos indicar el tipo de
esta o esperar a que el compilador lo infiera.

Para definir el tipo, tendremos que indicarlo con :tipo después del nombre:
 (var|val) nombreVariable [:tipo][=valor]

Los tipos básicos de variables en Kotlin son:

Tipo Valor Tamaño

Byte 5.toByte() 8 bits

Short 5.toShort() 16 bits

Int 5 32 bits

Long 5L 64 bits

Float 1.45F 32 bits

Double 1.45 64 bits

Boolean true

9/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Tipo Valor Tamaño

Char 'H' 16 bits

Unit Unit 0 bits

10/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

✋ Importante: El tipo Unit corresponde a void en Java y C#

Cuando una variable mutable declarada en el cuerpo de una clase, no se quiere inicializar en el
momento de la declaración, existe el concepto de Inicialización tardía , añadiendo el
modificador lateinit delante de la declaración de la variable.

public class Ejemplo {

lateinit var cadena: String

fun miFuncion() {
 cadena = "Hola Mundo"
 println(cadena)
}

✋ Importante: Como en otros lenguajes de programación, se debe controlar las operaciones
con variables de distintos tipos, para evitar resultados inesperados o incluso excepciones.
Kotlin tiene varios métodos v.to<Type>() para cambiar los valores al tipo que necesites:

fun main(args: Array<String>) {
 var a: Int
 var b = 3.5f
 a = b + 2 //💀 ERROR error: type mismatch: inferred type is Float but Int was exp
 a = b.toInt() + 2 //👍 CORRECTO
 println(a)
}

📌 Nota: Mientras que a = b.toInt() + 2 , evitaría el error, aunque la función redondearía a
3.

Interpolación de cadenas

Strings Templates

El tipo String representa el literal de cadena ya conocido, podemos ver un ejemplo del uso de
interpolación con $ para la salida por pantalla.

fun main (args: Array <String>) {
 val cadena = "El resultado de:"
 val a = 2
 val b = 5
 println("$cadena $a + $b es: ${a + b}")
}

11/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/strings.html#string-templates
https://kotlinlang.org/docs/basic-types.html#strings

El resultado de: 2 + 5 es: 7

Literales de cadena multilínea

Multiline Strings

Al igual que sucede en las versiones actuales de lenguajes como C# podré definir cadenas
multilínea con el carácter """ .

fun main() {
 val estudianteJson = """
 {
 "nombre": "Juan",
 "edad": 23,
 "cursos": ["Kotlin", "Java", "C#"]
 }
 """.trimIndent() // Elimina los espacios en blanco iniciales
 println(estudianteJson)
}

12/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/strings.html#multiline-strings

Control de flujo
El control de flujo en kotlin tiene algunas diferencias interesantes a otros lenguajes más conocidos.
Las instrucciones if/else, for y while se pueden considerar similares, así que vamos a explicar
solamente los elementos que las diferencian:

Condicionales como expresión

Conditional expressions

En Kotlin no existe el operador ternario para expresar condiciones simples como por ejemplo
hacíamos en C# con string t = exp ? "true" : "false" en su lugar usaremos if - else como
hace Python para realizar este tipo de expresiones. Por tanto, el Kotlin tendremos ...

val t = if (exp) "true" else "false"

Bucles con for y while

for and while loops

Se diferencia sobre todo en que se tienen que usar rangos en la sentencia for y se pueden usar en
la while:

fun repeticionConForV1(v: Int) {
 // Fíjate que Kotlin me permite definir rangos de forma similar a C#
 for (i in (0..v).reversed()) {
 println("$i")
 }
}

fun repeticionConForV2(v: Int) {
 // Otra forma de expresar lo anterior sería...
 for (i in v downTo 0 step 1) {
 println("$i")
 }
}

// El operador igual me permite definir 'cuerpos de expresión'
// al igual que hacíamos en C#
fun main() = repeticionConForV1(10)

13/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/coding-conventions.html#control-flow-statements
https://kotlinlang.org/docs/control-flow.html#if-expression
https://kotlinlang.org/docs/control-flow.html#for-loops

En ambos casos anteriores i tomara valores de 0 a v incluido este último. Si queremos hacer que
llegue hasta v - 1 usaremos until ...

fun repeticionConIndiceArray(v: Int) {
 // i irá de 0 a v - 1
 for (i in 0 until v) {
 println("$i")
 }
}

Nota: En la últimas versiones de Kotlin podemos usar el operador ..< en lugar de until .

También podemos usare un bucle while ...

fun repeticionConWhile(tope: Int) {
 var contador: Int = 0
 do {
 print("Introduce numero: ")
 var numero = readLine()!!.toInt()
 contador++;
 println(contador)
 } while (contador < tope && numero !in 50..100)
}

fun main() = repeticionConWhile(10)

14/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/whatsnew19.html#stable-operator-for-open-ended-ranges

Condicional múltiple con when

When expression

Equivalente a los swich de expresión de C#. Sin embargo no dispondremos del swich como
instrucción.
En el siguiente ejemplo podemos deducir la sintaxis fácilmente, teniendo en cuenta que el
operador 'arrow' en Kolin es -> y en C# o JavaScript es => :

fun getEstacion(entrada: Int): String {
 return when (entrada) {
 1 -> "primavera"
 2 -> "verano"
 3 -> "otoño"
 4 -> "invierno"
 else -> "Estación incorrecta"
 }
}

fun main() = println(getEstacion(2))

En este caso usamos when con patrones que se aplican a la variable x como hacíamos en C#.

fun main() {
 val x = 12
 val validNumbers = 1..15
 when (x) {
 in 1..10 -> print("$x is in the range")
 in validNumbers -> print("$x is valid")
 !in 10..20 -> print("$x is outside the range")
 else -> print("none of the above")
 }
}

Otro ejemplo de la gran funcionalidad que nos permite la sentencia when podría ser el siguiente.
Observa que en este caso el when es sin argumentos y tenemos diferentes expresiones que
iremos comprobando en orden:

15/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/control-flow.html#when-expression
https://kotlinlang.org/docs/control-flow.html#when-expression

fun noHagoNada(x: Int, s: String, v: Float): String {
 val res = when {
 x in 1..10 -> "entero positivo menor de 10"
 s.contains("cadena") -> "incluyo cadena"
 v is Comparable<*> -> "Soy Comparable"
 else -> ""
 }
 return res
}
fun main() = println(noHagoNada(2, "Hola", 3.5f))

16/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Funciones
Functions

Como ya hemos podido deducir de los ejemplos del tema, si queremos crear una función en kotlin
tendremos que precederla de la palabra reservada fun. Por tanto, una función constará de la
palabra fun seguida por el nombre de la función y entre paréntesis los parámetros, siempre y
cuando los tenga. Si la función retorna un valor se definirá al final de la signatura (esto último se
puede omitir siempre que la función no devuelva nada).

 fun idFuncion([p1 : T1, p2 : T2, ...]) : Tr

fun sumaDatos(datoUno: Int, datoDos: Char) {
 println("${datoUno + datoDos.code}")
}

fun main() {
 var mutable = 5;
 mutable += 7;
 val inmutable = 'C';
 sumaDatos(mutable, inmutable)
}

Con valor de retorno:

fun mayor(numeroUno: Int, numeroDos: Int): Int {
 return if (numeroUno > numeroDos) numeroUno else numeroDos
}

Aunque ya lo hemos usado en algunos ejemplos, si la función tiene una única instrucción o
expresión. Se pueden omitir las llaves usando el operador =

fun mayor(numeroUno: Int, numeroDos: Int): Int =
 if (numeroUno > numeroDos) numeroUno else numeroDos

fun main() = println(mayor(5, 7))

17/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/functions.html
https://kotlinlang.org/docs/basic-syntax.html#functions
https://kotlinlang.org/docs/functions.html#single-expression-functions
https://kotlinlang.org/docs/functions.html#single-expression-functions

Retornando una tupla 'Pair<A, B>', 'Triple<A, B, C>'

Aunque no tenemos la sintaxis de tipo tupla tan avanzada como en Python o C# podemos usar el
tipo Pair<A, B> para retornar dos valores a la vez.

fun angulo(grados: Int): Pair<Double, Double> {
 val radianes = grados * 3.1416 / 180
 return Pair(kotlin.math.cos(radianes), kotlin.math.sin(radianes))
}
fun main() {
 val (seno, coseno) = angulo(grados = 45)
}

Número de argumentos indefinido con 'varargs'

Variable number of arguments (Varargs)

Para pasar un número variable de argumentos a una función, debemos declarar esa función con
un parámetro vararg :

// Esto significa que la función suma() puede aceptar cero o más enteros.
fun suma(vararg xs: Int): Int = xs.sum()

fun main() {
 println(suma()) // Muestra 0
 println(suma(2)) // Muestra 2
 println(suma(2, 4, 6)) // Muestra 12
}

18/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/functions.html#variable-number-of-arguments-varargs

Funciones de extensión

Extension Functions

Idénticos a los métodos de extensión en C#. Me permiten ampliar la funcionalidad de una clase
cumpliendo el principio OCP (Abierto para extensión. Cerrado para modificación) de SOLID. No
debemos abusar de ellas. Aunque en algunos casos nos van a ayudar a reducir dependencias.

✋ Importante: Su ámbito de aplicación se restringirá al paquete donde se definen y si
quisiéramos usarlas en otros paquetes deberíamos hacer un import de las mismas.

En el siguiente ejemplo extendemos la funcionalidad de la clase String para añadir dos
operaciones más sobre los objetos de este tipo.

// Función de extensión que dado un objeto de tipo String, convierte
// la primera letra de cada palabra a mayúsculas.
fun String.capitaliza(): String {
 var sCapitalizada: String
 if (!this.isNullOrEmpty()) {

 // El objeto sobre el que realizamos la operación lo podemos
 // referenciar mediante la palabra reservada this.
 val sb = StringBuilder(this)

 sb[0] = sb[0].uppercaseChar()
 for (i in 1 until this.length)
 sb[i] = if (sb[i - 1].isWhitespace()) sb[i].uppercaseChar() else sb[i]
 sCapitalizada = sb.toString()
 } else {
 sCapitalizada = this
 }
 return sCapitalizada
}

// También podemos definir propiedades de extensión.
val String.numeroPalabras: Int
 get() = this.split(' ', '.', '?')
 .filter { it.isNotEmpty() }
 .size

fun main() {
 val texto = "esto es una cadena de texto"
 println(texto.capitaliza())
 println(texto.numeroPalabras)
}

19/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/extensions.html

Excepciones
Exceptions

✋ Importante: try es una expresión. Esto es interesante pues va a ser muy común
retornar un try en un método teniendo en cuenta que la última instrucción de cada bloque
debe evaluarse al mismo tipo.

val a: Int? = try { input.toInt() } catch (e: NumberFormatException) { null }

✋ Importante: Podemos definir funciones que lancen una excepción, pero deberemos
indicar que no retorna nada con la palabra reservada Unit que equivaldrá al void de C#.

fun fail(message: String): Unit = throw IllegalArgumentException(message)

fun main() {
 val name = readLine()
 val s = name ?: fail("Name required")
 println(s)
}

20/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/exceptions.html

Clases e Interfaces
Classes and Inheritance

Todos los elementos en Kotlin son públicos por defecto, por lo que también lo serán las clases. Las
clases nos sirven para referenciar objetos del mundo real, y mediante las propiedades podemos
definir las distintas características que nos interese manipular de estos. En Kotlin ya no existen los
atributos, sino que todo pasa a ser propiedades, similares a las que utiliza C#, se les puede dar
funcionalidad si lo necesitamos.

Por tanto, una clase Persona con nombre y edad a las que queremos dar funcionalidad, en C# se
podría definir así:

// C# Example
class EdadException : Exception
{
 public EdadException(string message) : base(message) { }
}

class Persona
{
 private string _nombre = "";
 private int _edad = 0;

 public string Nombre
 {
 get => _nombre.ToUpper();
 private set => _nombre = value
 }

 public int Edad
 {
 get => _edad;
 set
 {
 if (value < 0 || value > 125)
 throw new EdadException("Edad Invalida");
 _edad = value;
 }
 }

 public Persona(string nombre, int edad) {
 Nombre = nombre;
 Edad = edad;
 }
}

21/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/classes.html
https://kotlinlang.org/docs/visibility-modifiers.html#classes-and-interfaces

Su equivalente en Kotlin sería ...

class EdadException(cadena: String) : Exception(cadena)

class Persona(nombre: String, edad: Int = 0) {
 var nombre: String = ""
 // get() y set() deben ir indentados justo después de
 // definir la propiedad.
 get() = field.uppercase()
 private set

 var edad: Int = 0 // Si no es lateinit debe ir inicializado.
 set(value) {
 if (value < 0 || value > 125)
 throw EdadException("Edad Invalida")
 field = value
 }

 init {
 this.nombre = nombre
 this.edad = edad
 }
}

Si te fijas, además de la palabra reservada value que ya teníamos en C#. Kotlin utiliza la palabra
preservada field para referirse al 'campo anónimo' asociado a la propiedad, por lo que no tiene
que crear un campo asociado como ocurre con C#. Además, los identificadores de las propiedades
en Kolin irán en camel-casing.

📣 Resumen: Podemos deducir pues que en Kotlin no podemos definir campos en las
clases sino solo propiedades.

22/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Constructores

Las clases pueden tener un constructor principal y uno o más constructores secundarios. El
constructor principal es parte del encabezado de la clase, como vimos en el anterior ejemplo.
Esto nos permite construir un objeto sin tener que definir el constructor. Por ejemplo, en otra
versión de la clase Persona anterior, pero sin funcionalidad en las propiedades y estas de solo
lectura, solo bastaría con haber hecho lo siguiente:

// Fíjate que al usar val nombre es una propiedad de solo lectura.
class Persona(val nombre: String, val edad: Int = 0)

val persona = Persona("Pepe", 23)

En la definición equivalente en C# sí que tendríamos que definir las propiedades y el constructor.
Mientras que en Kotlin lo hemos hecho de forma muy simplificada:

// C# Example
class Persona
{
 public string Nombre { get; }
 public int Edad { get; }

 public Persona(string nombre, int edad) {
 Nombre = nombre;
 Edad = edad;
 }
}
Persona persona = new("Pepe", 23);

Si necesitamos que ocurra algo en el momento de crear el objeto, se puede usar la clausula init
que será ejecutada al llamar al constructor principal. Si te fijas en el siguiente código, la propiedad
 edad está declarada en el constructor, mientras que el nombre se ha declarado en el cuerpo de la
clase.

23/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

// En esta definición nombre no lleva la palabra reservada val
// porque lo vamos a definir dentro del cuerpo de la clase.
class Persona(nombre: String, var edad: Int = 0) {
 // Podemos no asignarle un valor a la propiedad
 // ya que lo asignamos en el init.
 val nombre: String
 get() = field.uppercase()

 init {
 this.nombre = nombre
 if (edad < 0 || edad > 125)
 throw ExcepcionEdad("Edad Invalida")
 this.edad = edad
 }
}

Si lo que queremos es crear más de un constructor, tendremos que recurrir a la clausula
 constructor indicando los parámetros necesarios y llamando al constructor por defecto con this
para enviarle sus propiedades. Ahora hemos añadido una propiedad más a la clase Persona , el
dni que será asignado con el segundo constructor

class Persona(nombre: String, var edad: Int = 0) {
 var dni: String = "NINGUNO"
 val nombre: String
 get() = field.uppercase()

 init {
 this.nombre = nombre
 if (edad < 0 || edad > 125) throw ExcepcionEdad("Edad Invalida")
 else this.edad = edad
 }

 // Fíjate que un constructor llama al otro.
 constructor(nombre: String, edad: Int = 0, dni: String)
 : this(nombre, edad) {
 this.dni = dni
 }
}

24/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

📣 Resumen: Fíjate en este otro ejemplo en el que a través de la definición de una clase
 Cuenta vemos las características de sintaxis descritas.

// Definición de la clase y del constructor principal.
// Además, hemos definido implícitamente dos propiedades titular.
class Cuenta(val titular: String, val número: Int) {

 // Propiedad mutable privada solo para modificación e inicialización.
 // Define un get y set auto-implementado como C#.
 var saldo: Double = 0.0
 private set

 // Propiedad pública mutable y anulable
 // en la que definimos nosotros el get y el set
 // field: palabra reservada para hacer referencia al campo asociado a la propiedad.
 // value: palabra reservada para hacer referencia al valor recibido en el setter.
 var banco: String? = null
 get() = field ?: "Desconocido"
 set(value) {
 field = value!!.toString()
 }

 // Propiedad pública de solo lectura calculada y por tanto (inmutable)
 // También se puede declarar así -> val hayDescubierto: Boolean = saldo < 0
 val hayDescubierto: Boolean
 get() = saldo < 0 // Definimos el getter para la propiedad

 // Constructor secundario apoyándose en el principal.
 constructor(titular: String, número: Int, saldo: Double) : this(titular, número) {
 this.saldo = saldo
 }

 // Método público normal
 fun ingreso(cantidad: Double) {
 saldo += cantidad
 }

 // Invalidación ToString con cuerpo de expresión
 override fun toString(): String = "Cuenta $número titular $titular saldo ${saldo}€"

 // Método público que lanza una excepción
 // La anotación @Throws es opcional y se usaría para interoperabilidad con Java.
 @Throws(IllegalArgumentException::class)
 fun reintegro(cantidad: Double) {
 if (cantidad > saldo) throw IllegalArgumentException("Saldo insuficiente")
 saldo -= cantidad
 }
}

25/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Definir métodos y propiedades estáticas

En Kotlin no existen los métodos y propiedades estáticas como en Java o C#. Pero podemos
definirlos de forma similar a como lo hacemos en C# con las clases estáticas .

Declaración de 'clases estáticas'

Object Declarations

Creamos un objeto global anónimo denominado por ejemplo Datos . En otras palabras, no
estamos definiendo una clase sino un objeto instanciado, referenciado por el id Datos y de tipo
anónimo.

object Datos {
 // La anotación @JvmStatic es opcional y se usaría para interoperabilidad con Java.
 @JvmStatic
 val empleados = listOf(
 Empleado("Xusa", 45, Empleado.Ciudad.Alicante),
 Empleado("Pepe", 54, Empleado.Ciudad.Alicante),
 Empleado("Juanjo", 52, Empleado.Ciudad.Elche),
 Empleado("Vicente", 45, Empleado.Ciudad.Elche))
}

// Para acceder a la propiedad estática empleados
Datos.empleados

Métodos y propiedades estáticas en una clase

Companion Objects

Si queremos hacerlo en otra clase, marcaremos el objeto creado con el modificador companion

✋ Importante: Fíjate que no hace falta que le pongamos un identificador de tipo al
 companion object ya que solo podemos definir uno por clase y dentro del mismo definiremos
los métodos o propiedades 'estáticas' de la misma.

26/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/object-declarations.html#object-declarations-overview
https://kotlinlang.org/docs/object-declarations.html#companion-objects

class MiClasse
{
 companion object {
 val empleados = listOf(
 Empleado("Xusa", 45, Empleado.Ciudad.Alicante),
 Empleado("Pepe", 54, Empleado.Ciudad.Alicante),
 Empleado("Juanjo", 52, Empleado.Ciudad.Elche),
 Empleado("Vicente", 45, Empleado.Ciudad.Elche))
 }
}

// Para acceder a la propiedad estática empleados.
MiClasse.empleados

Objetos anónimos

Object Expressions

Son equivalentes a las clases anónimas de C# o Java y como sucede en C# las propiedades que
definen no son accesible fuera del ámbito donde se define el objeto anónimo a no ser que este
implemente algún tipo de abstracción que queramos retornar sin definir un tipo específico para la
misma. El tipo de retorno de un objeto anónimo es Any y si implementa alguna interfaz, esta será
la que se devuelva.

interface A {
 fun funcionDeA() {}
}

class B {
 // El tipo de retorno es Any y la propiedad x no es accesible
 fun getObject() = object {
 val x: String = "x"
 }

 // El tipo de retorno es A y la propiedad x no es accesible
 fun getObjectA() = object: A {
 override fun funcionDeA() {}
 val x: String = "x"
 }
}

27/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/object-declarations.html#object-expressions

Herencia

Inheritance

En Kotlin, la clase Any es la raíz de la jerarquía de clases. Cada clase del lenguaje derivará de
ella si no especificas una superclase. Sería similar a la clase Object de C# y Java.

Por otro lado en Kotlin, tanto las clases como los miembros de estas son cerrados, esto significa
que no se puede heredar de una clase y tampoco se pueden sobreescribir sus miembros si no lo
indicamos explícitamente.

Para que de una clase se pueda heredar habrá que añadirle el modificador open . Por ejemplo, si
la clase Persona queremos hacerla abierta sería:

open class Persona(nombre: String, var edad: Int = 0) {
 ...
}

y ahora podríamos crear una clase hija de Persona , como por ejemplo:

class Estudiante(nombre: String, edad: Int = 0, var estudios: String)
: Persona(nombre, edad)

Suponiendo que la propiedad dni queremos hacerla invalidable y que tiene un nuevo método
también invalidable llamado imprimir y uno normal esMayor, ahora la clase quedaría:

open class Persona(nombre: String, var edad: Int = 0) {
 open var dni: String = "NINGUNO"
 ...
 open fun imprimir() = println("Nombre: $nombre Edad: $edad")
 fun esMayor() = edad >= 18
}

y con los elementos que queremos invalidar en la clase Estudiante usaremos la palabra
reservada override como en otros lenguajes. Así mismo usaremos la palabra reservada super
para referenciar la la 'superclase' como en Java.

28/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/inheritance.html

class Estudiante(nombre: String, edad: Int = 0, var estudios: String)
: Persona(nombre, edad) {
 override var dni: String = "ESTUDIANTE SIN DNI"
 override fun imprimir() {
 super.imprimir();
 println("Soy estudiante de $estudios")
 }
}

Interfaces

Interfaces

En Kotlin podemos implementar clases abstractas, que son iguales a las que ya conocemos de
otros lenguajes, salvo los cambios concretos para la herencia. Por esta razón, no vamos a
comentar nada sobre ellas.

También se pueden crear interfaces, que permiten definir tipos cuyos comportamientos pueden ser
compartidos por varias clases que no están relacionadas. Usa la palabra reservada interface y
su implementación es similar a los lenguajes que conocemos con algunas pequeñas diferencias.
Como ya sabemos permiten la herencia múltiple, y además:

Pueden contener métodos abstractos (sin implementación) y métodos regulares (con
implementación).
Puede contener propiedades abstractas y regulares.
No permite declaración de constructores.
Las propiedades y métodos regulares de una interfaz pueden ser invalidados con el
modificador override sin tener que marcarlos con open , a diferencia de en las clases
abstractas.

interface Estudios {
 var curso: Int // Propiedad abstracta
 val ultimoCurso: Boolean // Propiedad regular
 get() = curso == 2
 fun estudios(): String // Método abstracto
 fun soyEstudiante() = // Método regular
 println("Soy Estudiante de " + estudios())
}

y ahora hacemos que la clase Estudiante además de heredar de Persona , implemente la
interface Estudios , quedando:

29/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/interfaces.html

class Estudiante(nombre: String, edad: Int = 0, var estudios: String)
 : Persona(nombre, edad), Estudios {
 override var curso: Int = 0
 set(value) {
 field = curso
 }
 override var dni: String = "ESTUDIANTE SIN DNI"
 override fun estudios() = estudios
}

30/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Definiendo ValueObjects o DTO's con data class

Data Classes

✋ Importante: La gran mayoría de objetos que definiremos en nuestros programas serán de
este tipo. Especialmente al recuperar información de las fuentes de datos.

Si queremos definir objetos con tipos que actúen como 'Value Objects' o DTO's como el tipo
 record en C# 10 o Java 17, tenemos la posibilidad de definirlos como data class en Kotlin. Sus
características son:

// Fíjate que al ser inmutables todos las propiedades del data class
// se definirán con val.

data class Empleado(
 val nombre: String,
 val edad: Int,
 val ciudad: Ciudad) {

 // Aunque definimos un cuerpo por anidar la definición del Enum
 // no haría falta hacerlo en un data class
 enum class Ciudad() { Elche, Alicante }
}

fun main() {
 // La sintaxis recomendada para construir un objeto es la
 // siguiente donde especificamos pares
 // en líneas diferentes. Nos facilitará lla edición, borrado
 // y cambio de orden de las propiedades.
 val e1 = Empleado(
 nombre = "Xusa",
 edad = 45,
 ciudad = Empleado.Ciudad.Alicante
)

 // Como ves la sintaxis proiedad = valor nos permite no seguir
 // el orden de declaración en la inicilización de las propiedades.
 val e2 = Empleado(
 edad = 53,
 nombre = "Pepe",
 ciudad = Empleado.Ciudad.Alicante
)

 // También podremos usar la forma tradicional.
 val e3 = Empleado("Juanjo", 52, Empleado.Ciudad.Elche)
 val e4 = Empleado("Juanjo", 52, Empleado.Ciudad.Elche)
}

31/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/data-classes.html
https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Data_transfer_object

Este tipo de clases:

1. Definen por defecto equals() , hashCode() así como == y !=

println(e3 == e4) // muestra true en lugar de comparar referencias

2. Definen por defecto toString()

println(e3) // muestra "Empleado(nombre=Juanjo, edad=52, ciudad=Elche)"

3. Ya que son inmutables, tenemos la posibilidad de crear fácilmente copias con copy()

val e5 = e4.copy(ciudad = Empleado.Ciudad.Alicante)
println(e4) // Mostrara "Empleado(nombre=Juanjo, edad=52, ciudad=Elche)"
println(e5) // Mostrara "Empleado(nombre=Juanjo, edad=52, ciudad=Alicante)"
println(e3 == e5) // Mostrara false

32/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Clases y métodos parametrizados

Kotlin también permite crear clases y métodos con alguno de sus miembros de tipo genérico. La
lista de parámetros para tipos se incluyen en paréntesis angulares y se separan por coma si son
varios <T, U, V,..>

Para crear una clase con un tipo parametrizado de forma que una de sus propiedades sea de ese
tipo, se hará de la siguiente manera:

class ClaseGenerica<T>(
 private var t: T,
 private val c: String) {

 fun metodo(param: T) {
 t = param
 }
 override fun toString() = "${t} ${c}"
}

y si quisiéramos crear un objeto de esa clase con la propiedad parametrizada a tipo entero, se
podría hacer ...

fun main() {
 val objeto = ClaseGenerica(3, "Hola")
}

Si quisiéramos realizar una restricción del tipo parametrizado a la interfaz Comparable<T> como
hacíamos en C#, se tendría que hacer de la siguiente manera:

class ClaseGenerica<T: Comparable<T>>(
 private var t: T,
 private val c: String) {
 ...
}

33/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Scope functions

Scope Functions

📌 Nota: Para entender esta sección es necesario tener conocimientos de lambda y
 higher-order functions que veremos en el siguiente tema. Por eso, deberemos volver sobre
este punto al ver dicho tema. La idea de las mismas es trabajar de forma funcional y con
expresiones lambda de forma sintácticamente más cómoda.

Kotlin nos permite usar una serie de métodosdenominadas Scope Functions (Funciones de
Ámbito) que nos permiten trabajar con objetos de forma más cómoda y en una única expresión.
Muchas de ellas son aproximaciones para hacer la misma cosa. Pero las principales y más
utilizadas son ...

Función Referencia a objeto Valor de retorno Es funcion de extensión

 let it Expresión Lambda Sí

 run this Expresión Lambda Sí

 run - Expresión Lambda No

 with this Expresión Lambda No

 apply this this Sí

 also it this Sí

 let : Nos permite ...
Hacer algo con un objeto anulable si es distinto de null

val nombre: String? = "Pepe"
nombre?.let { println(it) }

Introducir una expresión como variable en el ámbito local.

val numbers = mutableListOf("one", "two", "three", "four", "five")
numbers.map { it.length }.filter { it > 3 }
 .let { it.joinToString(" - ") }
 .let { println(it) } // Muestra 5 - 4 - 4

 apply : Configuración de un objeto. Todas las operaciones se hacen sobre this .

34/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/scope-functions.html

val persona = Persona().apply {
 nombre = "Pepe"
 edad = 45
}

Podemos considerarlo como una forma hacer un interfaz fluida sobre un objeto que no la
tiene definida.
 run : Para ejecutar instrucciones donde se requiera una expresión.

val hexNumberRegex = run {
 val digits = "0-9"
 val hexDigits = "A-Fa-f"
 val sign = "+-"

 Regex("[$sign]?[$digits$hexDigits]+")
}

35/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Clases enumeradas con enum class

Enum Classes

Igual que en otros lenguajes, Kotlin nos permite crear tipos enumerados, aunque en este caso se
puede ver como un modificador de clase. Una enumeración es un conjunto de valores que usan
como identificador un nombre. Dicho nombre se comporta como una constante en nuestro
lenguaje. Al marcar una clase con el modificador enum , la declara como una de enumeración.

enum class CiclosInformatica { SMR, ASIR, DAM, DAW }

fun nivelCiclo(ciclo: CiclosInformatica): String {
 return when (ciclo) {
 CiclosInformatica.SMR -> "Medio"
 else -> "Superior"
 }
}

fun main() {
 val ciclo = CiclosInformatica.ASIR
 println(nivelCiclo(ciclo)) //Superior
}

Valor en las enumeraciones

Además a las enumeraciones en Kotlin también podemos asignarles uno o más valores. Esto se
hará a través del constructor de la clase, lo podemos ver en el siguiente ejemplo, en el que al
constructor se le ha añadido tanto un valor entero como un grado de tipo cadena.

36/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/enum-classes.html
https://kotlinlang.org/docs/enum-classes.html

enum class CiclosInformatica(
 val valor: Int,
 val grado: String
) {
 SMR (1, "Grado Medio"),
 ASIR(2, "Grado Superior"),
 DAM (3, "Grado Superior"),
 DAW (4, "Grado Superior")
}
fun main() {
 for (v in CiclosInformatica.values()) {
 println(v.name + " " + v.ordinal)
 }
 // Recorrido de secuencia pasando una HOF como Consumer
 CiclosInformatica.values().forEach { ciclo ->
 // Formateo de cadenas similar a Java
 println("%-2d %-4s %s".format(ciclo.valor, ciclo.name, ciclo.grado)))
 }
}

SMR 0
ASIR 1
DAM 2
DAW 3
1 SMR Grado Medio
2 ASIR Grado Superior
3 DAM Grado Superior
4 DAW Grado Superior

Enumeraciones con comportamiento

También se les puede añadir un comportamiento a través de funciones abstractas o no, o incluso
de interfaces. En el siguiente ejemplo podemos ver que al constructor se le ha añadido un
elementos más con el nombre completo del ciclo, y además tenemos el comportamiento añadido
mediante el método informacionCompleta() . De forma que la ejecución del programa nos sacará
las siglas del ciclo, el nombre completo y el grado que le corresponde a cada uno de los elementos
de la enumeración.

37/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

enum class CiclosInformatica(
 val valor: Int,
 val grado: String,
 val nombre: String
) {
 SMR(1,"Grado Medio","Sistemas Microinformáticos y Redes"),
 ASIR(2,"Grado Superior","Administración de Sistemas Informáticos en Red"),
 DAM(3,"Grado Superior","Desarrollo de Aplicaciones Multiplataforma"),
 DAW(4,"Grado Superior","Desarrollo de Aplicaciones Web");

 fun informacionCompleta()= "${name} - ${nombre} - ${grado}"
}
fun main() {
 CiclosInformatica.values().forEach{println("${it.informacionCompleta()}")}
}

38/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Funciones Genéricas

Para las funciones genéricas el parámetro de tipo se añadirá justo después de la palabra
reservada fun y las restricciones se harán de la misma manera que en las clases.

fun <T> funcionGenerica(param: T): T = param

Supongamos que definimos una clase estática con métodos de utilidad sobre tablas dentadas
cuyo contenido sean tipos diferentes y definimos un método flat que las convierte en un array
unidimensional.

object TablaDentada {
 // Una función inline es una función que se expande en el código que la llama.
 // Esto permite que el compilador pueda optimizar el código de la función.
 // reified: Permite acceder al tipo de dato de la función.
 inline fun <reified T> flat(tablaDentada: Array<Array<T>>): Array<T> {
 val d = mutableListOf<T>()
 for (i in tablaDentada.indices) {
 for (j in tablaDentada[i].indices) {
 d.add(tablaDentada[i][j])
 }
 }
 return d.toTypedArray()
 }
}

El programa principal para probarla con tablas dentadas de diferente tipos podría ser ...

fun main() {
 val tablaDentadaInt = arrayOf(
 arrayOf(1, 2, 3, 4),
 arrayOf(4, 5, 6),
 arrayOf(7, 8, 9, 10, 11)
)
 println(TablaDentada.flat(tablaDentadaInt).contentToString())

 val tablaDentadaString = arrayOf(
 arrayOf("a", "b", "c", "d"),
 arrayOf("e", "f", "g"),
 arrayOf("h", "i", "j", "k", "l")
)
 println(TablaDentada.flat(tablaDentadaString).contentToString())
}

39/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

Clases Selladas (Sum Type Pattern)

Sealed Classes

Las clases selladas son un tipo de clase que nos permite definir un tipo de dato que puede ser de
un tipo u otro, pero no de ambos. Es decir, que no se puede crear un objeto de una clase sellada,
sino que se creará un objeto de una de sus clases hijas.

En el fondo podríamos decir que es un tipo enumerado mejorado de hecho es un
superconjunto y cualquier tipo enumerado podríamos representarlo a través de una clase sellada.
La diferencia radica en que en los enumerados sólo tenemos un único objeto por tipo, mientras
que en las sealed classes podemos tener varios objetos de la misma clase y permiten almacenar
estado.

Esto es la forma en que Kotlin y otros lenguajes como C# implementan el patrón funcional Sum
Type Pattern.

📣 Resumen: En resumen podemos decir que una clase sellada permite definir una
enumeración de tipos con propiedades diferentes de los cuales una instancia solo podrá ser
de uno de ellos de forma excluyente.

Veámoslo a través de varios ejemplos comentados:

Supongamos primero el siguiente tipo enumerado...

enum class TipoUsuario(val tipo: String) {
 Admin("Admin"),
 Personal("Personal"),
 Cliente("Cliente")
}

La forma equivalente de representar su funcionalidad a través de una clase sellada sería ...

40/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/sealed-classes.html
https://spencerfarley.com/2021/03/26/unions-in-csharp/
https://en.wikipedia.org/wiki/Tagged_union
https://en.wikipedia.org/wiki/Tagged_union

sealed class TipoUsuario(val tipo: String) {

 // Definimos tres instancias estáticas de objetos
 // de tipo estableciendo la propiedad común tipo
 // a los respectivos valores del enumerado.
 object Admin : TipoUsuario("Admin")
 object Personal : TipoUsuario("Personal")
 object Cliente : TipoUsuario("Cliente")

 companion object {
 // Método estático que me devuelve los valores.
 fun values(): Array<TipoUsuario> {
 return arrayOf(Admin, Personal, Cliente)
 }

 // Método estático para tener la funcionalidad
 // equivalente del valueOf de los enums
 fun valueOf(value: String): TipoUsuario {
 return when (value) {
 "Admin" -> Admin
 "Personal" -> Personal
 "Cliente" -> Cliente
 else -> throw IllegalArgumentException(
 "No object consola.TipoUsuario.$value")
 }
 }
 }
}

Pero en este caso no nos aporta nada frente al enum class que de forma más concisa me
representa dicha funcionalidad. Con lo cual vamos a quedarnos con dicha sintaxis y vamos a
definir dos tipos enumerados más.

enum class TipoCategoria(val tipo: String) {
 Mascotas("Mascotas"),
 Gatos("Gatos"),
 Perros("Perros")
}

enum class TipoArchivo(val tipo: String) {
 Foto("Foto"),
 Video("Video"),
 Audio("Audio")
}

Supongamos ahora una clase AccionesUsuario con diferentes acciones que puede realizar un
usuario. En este caso, el usuario puede hacer login, logout, visualizar un archivo o buscar un
archivo. En el caso de visualizar y buscar, se le pasa el nombre del archivo, el tipo de usuario, el

41/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

tipo de archivo y en el caso de buscar, el tipo de categoría. Cada tipo de acción va a estar
representada por un tipo anidado con sus propiedades específicas y que heredará del propio
 AccionesUsuario .

sealed class AccionesUsuario {
 // Tipos Login y Logout
 data class Login(val tipoUsuario: TipoUsuario) : AccionesUsuario()
 data class Logout(val tipoUsuario: TipoUsuario) : AccionesUsuario()

 // Tipos Visualizar y Buscar ya definen otras propiedades
 // específicas para definir su propio estado.
 data class Visualizar(
 val fileName: String,
 val tipoUsuario: TipoUsuario,
 val mediaType: TipoArchivo
) : AccionesUsuario()

 data class Buscar(
 val terminoBusqueda: String,
 val tipoUsuario: TipoUsuario,
 val tipoArchivo: TipoArchivo,
 val tipocategoria: TipoCategoria
) : AccionesUsuario()

 // Defino un método para pasar a cadena que según el tipo
 // generamos una cadena con las características del estado.
 fun aTexto(): String {
 return when (this) {
 is Login ->
 "El usuario $tipoUsuario ha iniciado sesión"

 is Logout ->
 "El usuario $tipoUsuario ha cerrado sesión"

 is Visualizar ->
 "El usuario de tipo $tipoUsuario ha visto " +
 "el fichero $fileName que es un $mediaType"

 is Buscar ->
 "El usurio de tipo $tipoUsuario ha buscado \"$terminoBusqueda\" " +
 "de tipo $tipoArchivo en la categoría $tipocategoria"
 }
 }
}

42/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

En el siguiente código simulamos que vamos añadiendo acciones del usuario a una lista que hará
de 'Log' cada una con sus propiedades específicas pero de entre un conjunto restringido de
acciones posibles. Todas ellas tienen en común la operación aTexto que según el tipo de acción
nos devolverá una cadena con las características de la acción realizada.

fun registroAcciones() {
 val acciones = mutableListOf<AccionesUsuario>().apply {
 add(AccionesUsuario.Login(tipoUsuario = TipoUsuario.Admin))
 add(
 AccionesUsuario.Visualizar(
 fileName = "gato mirando cosas",
 tipoUsuario = TipoUsuario.Personal,
 mediaType = TipoArchivo.Video
)
)
 add(
 AccionesUsuario.Buscar(
 terminoBusqueda = "perro gracioso",
 tipoUsuario = TipoUsuario.Cliente,
 tipoArchivo = TipoArchivo.Foto,
 tipocategoria = TipoCategoria.Perros
)
)
 add(AccionesUsuario.Logout(tipoUsuario = TipoUsuario.Cliente))
 }

 acciones.forEach { println(it.aTexto()) }
}

Descargar ejemplos de código aquí.

43/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/B1_Kotlin/assets/codigo/ejemplo_clase_sellada_recurso.zip

Delegación de propiedades con by

Delegated Properties

La delegación de propiedades es una característica de Kotlin que nos permite delegar la
implementación de una propiedad a un objeto externo. Por tanto, utilizará otro objeto que es capaz
de devolver un resultado cuando se llame al get y al set (en caso de que se utilice var).

Veamos el siguiente ejemplo comentado:

// Definimos un tipo Dato que guarda un valor
class Dato(var valor : Int){
 override fun toString(): String {
 return valor.toString()
 }
}

// Definimos un tipo delegado encargado de inicializar una propiedad
class MiDelegadoParaDato {

 // EL delegado devuelve una única instancia de Dato
 // o la crea si no existe (patrón creacional Singleton)
 companion object {
 var dato: Dato = Dato(-1)
 }

 // Como solo hemos definido getValue,
 // solo podremos utilizarlo en propiedades de solo lectura 'val'
 operator fun getValue(thisRef: Any?, property: KProperty<*>): Dato {
 return dato
 }
}

fun main() {
 // En ambos casos se inicializa la propiedad
 // a la misma instancia del objeto dato.
 val dato1: Dato by MiDelegadoParaDato()
 val dato2: Dato by MiDelegadoParaDato()

 println("dato1 = ${dato1} y dato2 = ${dato2}")
 // mostrará dato1 = -1 y dato2 = -1

 dato1.valor = 6
 println("dato1 = ${dato1} y dato2 = ${dato2}")
 // mostrará dato1 = 6 y dato2 = 6
}

44/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/delegated-properties.html
https://kotlinlang.org/docs/delegated-properties.html

✋ Importante: Fíjate que hemos usado la palabra reservada by para indicar que
inicialización de los datos se va a delegar en una intáncia de del tipo MiDelegado .

lazy

Lazy Properties

Existen delegados estándar ya implementados en el lenguaje que nos permiten implementar la
delegación de propiedades de forma sencilla. Por ejemplo, tenemos la interfaz lazy que nos
permite inicializar el valor de una propiedad de forma perezosa. Es decir, que no se inicializa
hasta que no se accede a ella por primera vez.

Por ejemplo:

// Definimos una clase llamada Dato
data class Dato(val valor : Int = 0)

// Definimos una clase llamada A
class A {
 // Definimos una propiedad pública de tipo Dato
 // que se inicializa de forma perezosa.
 val p: Dato by lazy { Dato() }
}

fun main() {
 val a = A()

 // Hasta el momento que accedemos a la propiedad p
 // no se llama al constructor de Dato.
 println(a.p)
}

45/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/delegated-properties.html#lazy-properties

observable

Observable Properties

Existen muchos delegados estándar que nos permiten implementar la delegación de propiedades
usando by . Por ejemplo, la interfaz observable nos permite observar los cambios que se
producen en una propiedad. Es decir, que cada vez que se cambie el valor de la propiedad, se
ejecutará un código que nosotros definamos. Muchos de ellos están definidos en el paquete
 kotlin.properties dentro de la clase Delegates .

data class Dato(val valor : Int = 0)

class A {
 // Definimos una propiedad pública de tipo Dato que se inicializa al
 // valor por defecto y cada vez que se modifica se la función lambda que se le indica
 // que se modifica se la función lambda que se le indica
 var p: Dato by Delegates.observable(Dato()) {
 _, old, new -> println("p cambia de $old a $new")
 }
}

fun main() {
 val a = A()
 a.p = Dato(1)
 a.p = Dato(4)
}

Al ejecutarse este programa principal se mostrará por el terminal...

p cambia de Dato(valor=0) a Dato(valor=1)
p cambia de Dato(valor=1) a Dato(valor=4)

46/46 PMDM 2º DAM Tema 1.1 - Lenguaje Kotlin I Rev. 11/09/2024 IES Doctor Balmis

https://kotlinlang.org/docs/delegated-properties.html#observable-properties

