
Firebase (Anexo)
Descargar estos apuntes pdf o html

Índice
Introducción
Modificando la Agenda para usar Firestore

Creando un proyecto de Firebase
Activación del servicio de Firestore
Añadiendo permisos en el manifest.xml
Dependencias y Plugins de en Gradle
Modificando el proyecto

Definiendo el proveedor de Firestore con Dagger-Hilt
Definiendo las clases para operar con Firestore

1/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/Anexos/B5_Anexo_Firebase/Tema_5_3_firebase_ANEXO.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/Anexos/B5_Anexo_Firebase/Tema_5_3_firebase_ANEXO.html

Introducción
Persistencia en la nube con Firebase

Documentación oficial: Firebase documentation
Video Tutorial (Inglés): Firebase
Video Tutorial (Castellano): DevExpert
Video Tutorial (Castellano): AristiDevs
Video Tutorial (Castellano): AristiDevs

La plataforma Firebase proporciona múltiples herramientas para el almacenamiento, consulta y
gestión de datos, así como otros servicios en la nube. Algunas de las más destacadas incluyen:

Cloud Firestore: Base de datos NoSQL en la nube con sincronización en tiempo real.
Realtime Database: Base de datos en tiempo real que permite actualizaciones instantáneas
entre clientes.
Firebase Authentication: Servicio para gestionar autenticación de usuarios con correo,
Google, Facebook, etc.
Firebase Cloud Storage: Almacenamiento de archivos en la nube, ideal para imágenes,
videos y otros documentos.
Firebase Cloud Messaging (FCM): Servicio para enviar notificaciones push y mensajes a
dispositivos.
Firebase Remote Config: Permite cambiar la configuración de la app de forma remota sin
necesidad de actualizarla.
Firebase Crashlytics: Herramienta para la detección y análisis de errores en tiempo real.
Firebase Analytics: Plataforma para el análisis del comportamiento de los usuarios dentro de
la aplicación.

Firebase proporciona un ecosistema completo para desarrollar aplicaciones escalables sin
necesidad de administrar servidores. 🚀

Nota

Existen otras opciones de terceros como Supabase (alternativa basada en SQL con
PostgreSQL) o Appwrite (un backend ligero y multiplataforma con soporte para Flutter,
Kotlin Multiplatform y más), pero no están tan integradas con el ecosistema de Google como
Firebase. Además, Firebase ofrece un plan gratuito con ciertas limitaciones, lo que lo
convierte en una opción atractiva para proyectos pequeños o en fase de prueba.



2/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/reference/kotlin/packages?hl=es
https://www.youtube.com/@Firebase/videos
https://www.youtube.com/watch?v=RLN_tRx766g&pp=ygUYZmlyZWJhc2UgdHV0b3JpYWwga290bGlu
https://www.youtube.com/watch?v=LxABxtwhrDE&t=948s&pp=ygURZmlyZWJhc2UgdHV0b3JpYWw%3D
https://www.youtube.com/watch?v=LxABxtwhrDE
https://supabase.com/
https://appwrite.io/

Nosotros nos vamos a centrar en Firebase, aunque no entraremos en el diseño de bases de datos
NoSQL ni en el uso avanzado de esta tecnología. Para conocer toda la funcionalidad de Firebase,
se recomienda consultar la documentación oficial. El problema de trabajar directamente con esta
API es que puede requerir un manejo detallado de la sincronización de datos y manejo de la red, lo
que puede llevar a errores si no se gestiona correctamente.

Por este motivo, Firebase ofrece diversas herramientas y servicios como Firebase Authentication,
Firebase Storage y Firebase Cloud Messaging, que funcionan como una capa de abstracción y
simplifican el proceso de implementación, optimizando la gestión de datos, la autenticación de
usuarios, el almacenamiento de archivos y las notificaciones push.

3/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Modificando la Agenda para usar Firestore

Creando un proyecto de Firebase
Lo primero que debemos hacer, es crear una cuenta de Google e iniciar sesión en la consola de
Firebase. Antes de comenzar a trabajar en el proyecto de Android, es necesario configurar un
proyecto de Firebase en la consola. Una vez que hayas creado y configurado el proyecto en
Firebase, podrás ver los proyectos que tienes y empezar a integrarlos con tu aplicación Android.

Los pasos para crear un proyecto en Firebase son los siguientes:

1. Indicamos el nombre del proyecto por ejemplo agenda.
2. Habilitamos Google Analytics en nuestro proyecto.
3. Elegimos la cuenta por defecto de Google Analytics.
4. Hacemos clic en "Crear proyecto".

Ahora, los pasos para configurar un proyecto de Android en Firebase son los siguientes:

1. Registrar la aplicación Android pulsando sobre el botón con el icono de Android:
Introduce el nombre del paquete de tu aplicación Android.
Este se encuentra en El archivo build.gradle.kts del módulo app .

Proyecto

Puedes descargar el proyecto de la agenda con todo el código visto en el tema desde el
siguiente enlace AgendaFirebase



Aviso

Firebase impone un límite en la cantidad de proyectos que puedes crear. Si alcanzas este
límite, tendrás que enviar una solicitud para pedir una cantidad específica de proyectos,
indicando el motivo. En caso de que necesites proyectos ilimitados, puedes solicitar la
versión Spark, explicando las razones por las que debería ser concedida.



4/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://console.firebase.google.com/
file:///C:/Users/Juanjo/Desktop/Git/pmdm/Anexos/B5_Anexo_Firebase/assets/codigo/0_AgendaFirebase_recurso.zip

Si es necesario, puedes agregar el SHA-1 de la firma de tu app (esto es importante si vas
a usar servicios como Firebase Authentication o Firebase Dynamic Links).
Haz clic en Registrar la aplicación.

2. Descargar el archivo google-services.json :
Una vez registrada la aplicación, se te pedirá descargar el archivo google-services.json .
Descarga este archivo y sigue las instrucciones proporcionadas en el sitio web.

android {

 namespace = "com.pmdm.agenda"

 compileSdk = 34

 ...

}

2

Aviso

Es importante no cambiar el nombre del archivo google-services.json ya que, si lo
haces, podrías tener problemas al conectarte con Firebase. Asegúrate de colocarlo
en la carpeta app dentro de tu proyecto. Además, cada vez que añadas un nuevo
servicio en tu proyecto de Firebase, deberás revisar este archivo y descargarlo por
si ha cambiado algo en la configuración.



5/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Activación del servicio de Firestore
Documentación Oficial
API de Firestore en Kotlin

Es una BD NoSQL flexible y escalable para aplicaciones móviles, web y servidores, que organiza
los datos en documentos y colecciones. Ofrece sincronización en tiempo real y soporte sin
conexión.

Una vez hemos accedido a nuestro proyecto:

Marcamos la opción Cloud Firestore 1️⃣.
Nos aparecerá la opción 2️⃣ de firestore, y al pulsar seleccionamos Agregar base de datos
dejamos la BD por defecto (default) que es la gratuita seleccionando como ubicación por
ejemplo europe3 . Firebase proveerá en ese momento los recursos necesarios para que la BD
funcione correctamente.
En 3️⃣ y 4️⃣ podremos acceder a la configuración de nuestro proyecto y desde la misma
podremos volver el archivo de configuración google-services.json .
Una vez creada nos aparecerá la BD vacía y deberemos configurar las reglas de acceso en
las pestaña reglas. l

6/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/quickstart?hl=es&authuser=0#create
https://firebase.google.com/docs/reference/kotlin/com/google/firebase/firestore/package-summary?authuser=0

Deberemos pondremos la regla if true; para no tener ningún tipo de restricción en la BD ya
que no estamos utilizando ningún tipo de autenticación.

Añadiendo permisos en el manifest.xml
Puesto que Firestore es una BD en la nube, vamos a necesitar permisos de internet. Pare ello, en
el archivo AndroidManifest.xml deberemos añadir el permiso de acceso a internet para que el
servicio pueda acceder al API.

rules_version = '2';

service cloud.firestore {

 match /databases/{database}/documents {

 match /{document=**} {

 allow read, write: if true;

 }

 }

}

6

<manifest ...>

 ...

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>

 ...

 <application ...>

 <!-- Permitir tráfico http en lugar de https -->

 android:usesCleartextTraffic="true"

 ...

 </application>

</manifest>

3

5

9

7/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Dependencias y Plugins de en Gradle

En el catálogo de versiones lib.versions.toml deberemos comprobar que hemos definido tener:

Recuerda además que las entradas van en una sola línea.

Algunas se han indentado para que se vean mejor.

[versions]

googleServices = "4.4.2"

firebaseFirestoreKtx = "25.1.1"

Solo si no está ya incluido

kotlinxSerializationJson = "1.7.3"

[libraries]

google-firebase-bom = {

 group = "com.google.firebase", name = "firebase-bom", version.ref = "firebase"

}

firebase-firestore-ktx = {

 group = "com.google.firebase", name = "firebase-firestore-ktx",

 version.ref = "firebaseFirestoreKtx"

}

Solo si no está ya incluido

kotlinx-serializarion-json = {

 group = "org.jetbrains.kotlinx", name = "kotlinx-serialization-json",

 version.ref = "kotlinxSerializationJson"

}

[plugins]

google-services = { id = "com.google.gms.google-services", version.ref = "googleServices" }

Solo si no está ya incluido

kotlinx-serialization = {

 id = "org.jetbrains.kotlin.plugin.serialization", version.ref = "kotlin"

}

Nota

Puede que todas las dependencias relacionadas con kotlinx-serialization-json las tengas
ya añadidas en tu proyecto porque se usan en la nueva navegación segura de Jetpack
Compose. Si es así, fíjate bien pues no es necesario añadirlas de nuevo.



8/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

En el build.gradle.kts raíz del proyecto añadiremos el siguiente plugin:

plugins {

 alias(libs.plugins.google.services) apply false

 // Solo si no está ya incluido

 alias(libs.plugins.kotlinx.serialization) apply false

}

En el build.gradle.kts del módulo de la aplicación (app) añadiremos:

plugins {

 alias(libs.plugins.google.services)

 // Solo si no está ya incluido

 alias(libs.plugins.kotlinx.serialization)

}

...

dependencies {

 implementation(platform(libs.google.firebase.bom))

}

9/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Modificando el proyecto

Definiendo el proveedor de Firestore con Dagger-Hilt

Definiremos el proveedor de Firestore en el archivo AppModule.kt que me creará una instancia de
Firestore de acuerdo a la configuración de mi proyecto definida en el archivo
 google-services.json y me la inyectará con Dagger-Hilt.

@Module

@InstallIn(SingletonComponent::class)

class AppModule {

 ...

 @Singleton

 @Provides

 fun provideFirestore(): FirebaseFirestore = Firebase.firestore

}

Definiendo las clases para operar con Firestore

Definiremos el paquete data.firestore.contacto en nuestro
proyecto. El documento a almacenar en Firestore y el servicio que
hara las veces de DAO y me proporcionará las operaciones
CRUD que usamos en nuestro repositorio.

Primero definiremos la clase que modelizará el documento a
almacenar en Firestore. En este caso, será un Contacto y que
definiremos en el fichero ContactoFSDocument.kt .

Android
[com.pmdm.agenda]

[data]
[firestore]
[contacto]
ContactoFSDocument.kt
ContactoFSService.kt

ContactoRepository.kt
RepositoryConverters.kt

Para ello, tenemos que entender primero cómo se almacenan los datos en Firestore.

Nuestro modelo será la BD (default) con la colección contactos y cada documento dentro de
la misma tendrá un id que se tratará como cadena de texto y se recomienda que sea un UUID. En
nuestro caso será el id que definimos en el 'mock' por lo que nos debería quedar algo similar a
esto:

10/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/manage-data/structure-data?hl=es-419&authuser=0

A la hora de agregar o crear un documento ejecutaremos algo similar a:

Firebase.firestore.collection("contactos").document("3").set(contacto)

Donde el método document nos devolverá una referencia al documento (DocumentReference)
con el id "3" dentro de la colección contactos o lo creará si no existe devolviendo la referencia
al nuevo documento. Si no pasamos el id, Firestore lo generará automáticamente y lo podremos
obtener a través del objeto DocumentReference que devuelve document.

Definiendo el documento en Kotlin

Ahora ya podemos definir el objeto personalizado que modelizará el documento a almacenar en
Firestore dentro de ContactoFSDocument.kt siguiendo las siguientes recomendaciones:

1. Al crear objetos para Firestore, es necesario inicializarlos con valores por defecto; de lo
contrario, se generará un error.

2. Si usamos 'Hash Maps', solo podrán usar claves de tipo string.
3. Si usas un campo en inglés, como por ejemplo isBlocked , es recomendable usar blocked en

su lugar, ya que obtendrmos errores si no usamos la anotación @field:JvmField sobre el
campo.

11/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/manage-data/add-data?hl=es-419&authuser=0#add_a_document
https://firebase.google.com/docs/reference/kotlin/com/google/firebase/firestore/DocumentReference?authuser=0
https://firebase.google.com/docs/firestore/manage-data/add-data?hl=es-419&authuser=0#custom_objects

data class ContactoFSDocument(

 // Excluimos el id pues se almacenará a parte de los datos del documento.

 @get:Exclude

 val id: Int = 0,

 val nombre: String = "",

 val apellidos: String = "",

 val foto: String? = null,

 val correo: String = "",

 val telefono: String = "",

 val categorias: List<String> = emptyList()

)

Fíjate que podemos guardar las categorías como una lista de cadenas de texto. Esto nos permitirá
realizar consultas más avanzadas en Firestore, como buscar todos los contactos que pertenecen a
una categoría específica.

Definiendo los 'mapeos' al modelo

Una vez tenemos modelado el documento en RepositoryConverters.kt definiremos el mapeo del
documento a nuestro modelo Contacto y viceversa.

12/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

private fun List<String>.toEnumSetCategorias(): EnumSet<Contacto.Categorias> =

 this.mapNotNull { categoria ->

 runCatching { Contacto.Categorias.valueOf(categoria) }.getOrNull()

 }

 .takeIf { it.isNotEmpty() }

 ?.let { EnumSet.copyOf(it) }

 ?: EnumSet.noneOf(Contacto.Categorias::class.java)

fun ContactoFSDocument.toContacto() = Contacto(

 id = id,

 nombre = nombre,

 apellidos = apellidos,

 foto = foto,

 correo = correo,

 telefono = telefono,

 categorias = categorias.toEnumSetCategorias()

)

fun Contacto.toContactoFSDocument() = ContactoFSDocument(

 id = id,

 nombre = nombre,

 apellidos = apellidos,

 foto = foto,

 correo = correo,

 telefono = telefono,

 categorias = categorias.map { c -> c.name }

)

Definiendo el servicio de Firestore con el CRUD

Una vez tenemos los 'mapeos' entre ContactoFSDocumento y Contacto definiremos
 ContactoFSService.kt donde definiremos las operaciones CRUD que necesitamos para interactuar
con Firestore.

Definiremos una excepción personalizada FirestoreException que nos permitirá lanzar
excepciones hacia el ViewModel.

class FirestoreException(message: String) : Exception(message)

Posteriormente inyectaremos la la instancia de Firestore creada a través de Dagger-Hilt en el
servicio ContactoFSService y lo definiremos como un singleton para no tener que definir un

13/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

provider para ContactoFSService en el AppModule.kt .

@Singleton

class ContactoFSService @Inject constructor(

 private val firestore: FirebaseFirestore

) {

 // Definición de constantes a nivel de clase

 private companion object {

 const val COLLECTION = "contactos"

 const val TAG = "Firestore"

 }

 // Método de extensión privado para centralizar la gestión de errores.

 private fun Exception.gestionaError(mensaje: String) {

 Log.e(TAG, "$mensaje: ${this.localizedMessage}", this)

 throw FirestoreException(mensaje)

 }

 ...

}

Definimos las diferentes operaciones como métodos de suspensión siguiendo un esquema
similar. Por ejemplo, para recuperar todos los contactos de la colección.

14/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

suspend fun get(): List<ContactoFSDocument> {

 return firestore

 // Recuperamos la colección de contactos CollectionReference

 .collection(COLLECTION)

 // Lanzamos la query que hayamos definido a firestore

 // en nuestro caso no hay ningún filtro obteniendo una

 // tarea de tipo Task<QuerySnapshot>

 .get()

 // Ante cualquier error lanzamos nuestra excepción personalizada

 .addOnFailureListener { e ->

 e.gestionaError("Error al obtener los contactos")

 }

 // Función de suspensión que bloquea la corrutina hasta que

 // se resuelva la tarea con la consulta devolviendo un QuerySnapshot

 .await()

 // Una fez obtenido los datos mapeamos cada DocumentSnapshot

 // a un objeto ContactoFSDocument con toObject

 .documents.map { document ->

 document.toObject(ContactoFSDocument::class.java)!!.copy(

 // Como al recuperar el documento no obtenemos un id por el Exclude

 // lo añadimos tras el mapeo obteniéndolo del documento

 id = document.id.toInt()

)

 }

}

El resto de consultas para completar el API del repositorio serán similares a la anterior.

15/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

 suspend fun get(id: Int): ContactoFSDocument? {

 return firestore

 .collection(COLLECTION)

 .document(id.toString())

 .get()

 .addOnFailureListener { e ->

 e.gestionaError("Error al obtener el contacto $id")

 }

 .await()

 ?.let { document ->

 document.toObject(ContactoFSDocument::class.java)?.copy(id = document.id.toIn

 }

 }

 suspend fun insert(contacto: ContactoFSDocument) {

 firestore

 .collection(COLLECTION)

 .document(contacto.id.toString())

 .set(contacto)

 .addOnFailureListener { e ->

 e.gestionaError("Error al insertar el contacto ${contacto.id}")

 }

 .await()

 }

 suspend fun update(contacto: ContactoFSDocument) {

 firestore

 .collection(COLLECTION)

 .document(contacto.id.toString())

 .set(contacto, SetOptions.merge())

 .addOnFailureListener { e ->

 e.gestionaError("Error al actualizar el contacto ${contacto.id}")

 }

 .await()

 }

 suspend fun delete(id: Int) {

 firestore

 .collection(COLLECTION)

 .document(id.toString())

 .delete()

 .addOnFailureListener { e ->

 e.gestionaError("Error al borrar el contacto $id")

16/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

 }

 .await()

 }

 suspend fun count(): Int {

 val querySnapshot = firestore

 .collection(COLLECTION)

 .get()

 .addOnFailureListener { e ->

 e.gestionaError("Error al obtener el número de contactos")

 }

 .await()

 return querySnapshot.size()

 }

Puedes ver más información sobre cómo realizar consultas en Firestore en la documentación
oficial.

Por ejemplo, para obtener los contactos que pertenezcan a un determinado número de categorías
para cumplir el filtro podríamos hacer una consulta similar a la siguiente...

suspend fun get(

 ascendente: Boolean,

 categorias: List<String>,

): List<ContactoFSDocument> = firestore

 .collection(COLLECTION)

 .orderBy(

 ContactoFSDocument::nombre.name,

 if (ascendente) Query.Direction.ASCENDING

 else Query.Direction.DESCENDING

)

 .whereArrayContainsAny(ContactoFSDocument::categorias.name, categorias)

 .get()

 .addOnFailureListener { e ->

 e.gestionaError("Error al obtener contactos por categorías.")

 }

 .await()

 .documents.map { document ->

 document.toObject(ContactoFSDocument::class.java)!!.copy(id = document.id.toInt())

 }

17/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/query-data/queries?hl=es&authuser=0#kotlin+ktx
https://firebase.google.com/docs/firestore/query-data/queries?hl=es&authuser=0#kotlin+ktx

Usando el servicio de Firestore en el repositorio

Dentro del paquete data , crearemos el archivo ContactoRepository.kt como en casos anteriores.
Esta clase implementará las operaciones CRUD (Create, Read, Update, Delete) sobre los objetos
del modelo Contacto y se encargará de gestionarlos en la fuente de datos, en este caso,
Firestore, de forma transparente.

@Singleton

class ContactoRepository @Inject constructor(

 private val dao: ContactoFSService

) {

 suspend fun get(): List<Contacto> = withContext(Dispatchers.IO) {

 dao.get().map { it.toContacto() }.toList()

 }

 ...

}

Aviso

Si estableces muchas condiciones en una consulta, al ejecutar la aplicación podrías
encontrarte con un error. En el 🐱 Logcat, revisa el mensaje de error, ya que te indicará que
necesitas generar índices para optimizar las consultas. Haz clic en el enlace proporcionado
en el Logcat y serás dirigido a la consola, donde se generará automáticamente el índice
necesario.



18/18 PMDM 2º DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

