Firebase (Anexo)

Descargar estos apuntes pdf o html

indice

» [ntroduccién
¥ Modificando la Agenda para usar Firestore
= Creando un proyecto de Firebase
= Activacion del servicio de Firestore
= Anadiendo permisos en el manifest.xml
» Dependencias y Plugins de en Gradle
¥ Modificando el proyecto
» Definiendo el proveedor de Firestore con Dagger-Hilt
= Definiendo las clases para operar con Firestore

1/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

file:///C:/Users/Juanjo/Desktop/Git/pmdm/Anexos/B5_Anexo_Firebase/Tema_5_3_firebase_ANEXO.pdf
file:///C:/Users/Juanjo/Desktop/Git/pmdm/Anexos/B5_Anexo_Firebase/Tema_5_3_firebase_ANEXO.html

Introduccion

¢ Persistencia en la nube con Firebase

Documentacion oficial: Firebase documentation

[e]

o

Video Tutorial (Inglés): Firebase

(o]

Video Tutorial (Castellano): DevExpert

o

Video Tutorial (Castellano): AristiDevs

(o]

Video Tutorial (Castellano): AristiDevs

La plataforma Firebase proporciona multiples herramientas para el almacenamiento, consulta y
gestion de datos, asi como otros servicios en la nube. Algunas de las mas destacadas incluyen:

e Cloud Firestore: Base de datos NoSQL en la nube con sincronizacion en tiempo real.

o Realtime Database: Base de datos en tiempo real que permite actualizaciones instantaneas
entre clientes.

» Firebase Authentication: Servicio para gestionar autenticacién de usuarios con correo,
Google, Facebook, etc.

» Firebase Cloud Storage: Alimacenamiento de archivos en la nube, ideal para imagenes,
videos y otros documentos.

o Firebase Cloud Messaging (FCM): Servicio para enviar notificaciones push y mensajes a
dispositivos.

» Firebase Remote Config: Permite cambiar la configuracion de la app de forma remota sin
necesidad de actualizarla.

o Firebase Crashlytics: Herramienta para la deteccion y analisis de errores en tiempo real.

o Firebase Analytics: Plataforma para el analisis del comportamiento de los usuarios dentro de
la aplicacion.

Firebase proporciona un ecosistema completo para desarrollar aplicaciones escalables sin
necesidad de administrar servidores. %’

2" Nota

Existen otras opciones de terceros como Supabase (alternativa basada en SQL con
PostgreSQL) o Appwrite (un backend ligero y multiplataforma con soporte para Flutter,
Kotlin Multiplatform y mas), pero no estan tan integradas con el ecosistema de Google como
Firebase. Ademas, Firebase ofrece un plan gratuito con ciertas limitaciones, lo que lo
convierte en una opcion atractiva para proyectos pequenos o en fase de prueba.

2/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/reference/kotlin/packages?hl=es
https://www.youtube.com/@Firebase/videos
https://www.youtube.com/watch?v=RLN_tRx766g&pp=ygUYZmlyZWJhc2UgdHV0b3JpYWwga290bGlu
https://www.youtube.com/watch?v=LxABxtwhrDE&t=948s&pp=ygURZmlyZWJhc2UgdHV0b3JpYWw%3D
https://www.youtube.com/watch?v=LxABxtwhrDE
https://supabase.com/
https://appwrite.io/

Nosotros nos vamos a centrar en Firebase, aunque no entraremos en el disefio de bases de datos
NoSQL ni en el uso avanzado de esta tecnologia. Para conocer toda la funcionalidad de Firebase,
se recomienda consultar la documentacion oficial. El problema de trabajar directamente con esta
API es que puede requerir un manejo detallado de la sincronizacion de datos y manejo de la red, lo
que puede llevar a errores si no se gestiona correctamente.

Por este motivo, Firebase ofrece diversas herramientas y servicios como Firebase Authentication,
Firebase Storage y Firebase Cloud Messaging, que funcionan como una capa de abstracciéon y
simplifican el proceso de implementacion, optimizando la gestidn de datos, la autenticacion de
usuarios, el almacenamiento de archivos y las notificaciones push.

3/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Modificando la Agenda para usar Firestore

@ Proyecto

Puedes descargar el proyecto de la agenda con todo el cddigo visto en el tema desde el
siguiente enlace AgendaFirebase

Creando un proyecto de Firebase

Lo primero que debemos hacer, es crear una cuenta de Google e iniciar sesién en la consola de
Firebase. Antes de comenzar a trabajar en el proyecto de Android, es necesario configurar un
proyecto de Firebase en la consola. Una vez que hayas creado y configurado el proyecto en
Firebase, podras ver los proyectos que tienes y empezar a integrarlos con tu aplicacion Android.

Aviso

Firebase impone un limite en la cantidad de proyectos que puedes crear. Si alcanzas este
limite, tendras que enviar una solicitud para pedir una cantidad especifica de proyectos,
indicando el motivo. En caso de que necesites proyectos ilimitados, puedes solicitar la
version Spark, explicando las razones por las que deberia ser concedida.

Los pasos para crear un proyecto en Firebase son los siguientes:

1. Indicamos el nombre del proyecto por ejemplo agenda.
2. Habilitamos Google Analytics en nuestro proyecto.

3. Elegimos la cuenta por defecto de Google Analytics.

4. Hacemos clic en "Crear proyecto".

Ahora, los pasos para configurar un proyecto de Android en Firebase son los siguientes:

1. Registrar la aplicacion Android pulsando sobre el botén con el icono de Android:
e Introduce el nombre del paquete de tu aplicacion Android.
Este se encuentra en El archivo build.gradle.kts del modulo app .

4/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://console.firebase.google.com/
file:///C:/Users/Juanjo/Desktop/Git/pmdm/Anexos/B5_Anexo_Firebase/assets/codigo/0_AgendaFirebase_recurso.zip

android {
namespace = "com.pmdm.agenda"
compileSdk = 34

e Si es necesario, puedes agregar el SHA-1 de la firma de tu app (esto es importante si vas
a usar servicios como Firebase Authentication o Firebase Dynamic Links).
» Haz clic en Registrar la aplicacion.

2. Descargar el archivo google-services.json :
» Una vez registrada la aplicacion, se te pedira descargar el archivo google-services.json .

o Descarga este archivo y sigue las instrucciones proporcionadas en el sitio web.

Aviso

Es importante no cambiar el nombre del archivo google-services.json ya que, silo
haces, podrias tener problemas al conectarte con Firebase. Asegurate de colocarlo
en la carpeta app dentro de tu proyecto. Ademas, cada vez que anadas un nuevo

servicio en tu proyecto de Firebase, deberas revisar este archivo y descargarlo por

si ha cambiado algo en la configuracion.

5/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Activacion del servicio de Firestore

e Documentacion Oficial
e API de Firestore en Kotlin

Es una BD NoSQL flexible y escalable para aplicaciones moéviles, web y servidores, que organiza

los datos en documentos y colecciones. Ofrece sincronizacion en tiempo real y soporte sin
conexion.

’ Firebase e agenda ¥ Descripcion general del proyecto > Produc

A Descripcién gen... Q

Configuracion del proyecto

) Usuarios y permisos
|A generativa

Uso y facturacién

4 Build with Gemini - ;

® Genkit

Cloud Firestore

Accesos diea proyectos Actualizaciones en tiempo real, consultas
poderosas y ajuste de escala automatico

ZX Firestore Database

Una vez hemos accedido a nuestro proyecto:

e Marcamos la opcion Cloud Firestore [EJ.
» Nos aparecera la opcion [BJ de firestore, y al pulsar seleccionamos Agregar base de datos
dejamos la BD por defecto (default) que es la gratuita seleccionando como ubicacién por

ejemplo europe3 . Firebase proveera en ese momento los recursos necesarios para que la BD
funcione correctamente.

« En B vy B podremos acceder a la configuracién de nuestro proyecto y desde la misma
podremos volver el archivo de configuracion google-services.json .

e Una vez creada nos aparecera la BD vacia y deberemos configurar las reglas de acceso en
las pestafa reglas. |

6/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/quickstart?hl=es&authuser=0#create
https://firebase.google.com/docs/reference/kotlin/com/google/firebase/firestore/package-summary?authuser=0

® Firebase agenda v

A Descripcion gen... o Cloud Firestore Agregar base de datos [Z% Preguntarle a Gemini cémo comenzar a usar Firestore

. Datos Reglas indices Recuperacion ante desastres (NUEVO Uso % Extensions
|A generativa

<4 Build with Gemini
® Genkit

Vista del panel Compilador de consultas
Accesos directos a proyectos

A Firestore Database | @ & Maés funciones en Google Cloud Vv

an Authentication

B storage | A (default) l

. + Iniciar coleccién
Categorias de producto

¢ Deberemos pondremos la regla if true; para no tener ningun tipo de restriccion en la BD ya

que no estamos utilizando ningun tipo de autenticacion.

rules_version = '2';

service cloud.firestore {
match /databases/{database}/documents {
match /{document=**} {

allow read, write: if true;

Anadiendo permisos en el manifest.xml

Puesto que Firestore es una BD en la nube, vamos a necesitar permisos de internet. Pare ello, en

el archivo AndroidManifest.xml deberemos afiadir el permiso de acceso a internet para que el

servicio pueda acceder al API.

7/18

<manifest ...>

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.ACCESS WIFI_ STATE"/>
<application ...»>
<!-- Permitir trafico http en lugar de https -->

android:usesCleartextTraffic="true"

</application>

</manifest>

PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Dependencias y Plugins de en Gradle

2" Nota

Puede que todas las dependencias relacionadas con kotlinx-serialization-json las tengas

ya afadidas en tu proyecto porque se usan en la nueva navegacion segura de Jetpack

Compose. Si es asi, fijate bien pues no es necesario anadirlas de nuevo.

En el catalogo de versiones 1ib.versions.toml deberemos comprobar que hemos definido tener:

Recuerda ademdas que las entradas van en una sola linea.

Algunas se han indentado para que se vean mejor.

[versions]
googleServices = "4.4.2"
firebaseFirestoreKtx = "25.1.1"

Solo si no esta ya incluido

kotlinxSerializationJson = "1.7.3"

[libraries]

google-firebase-bom = {

group = "com.google.firebase", name = "firebase-bom", version.ref = "firebase'

}

firebase-firestore-ktx = {

group = "com.google.firebase", name "firebase-firestore-ktx",

version.ref = "firebaseFirestoreKtx"
¥
Solo si no esta ya incluido

kotlinx-serializarion-json = {

group = "org.jetbrains.kotlinx", name = "kotlinx-serialization-json",
version.ref = "kotlinxSerializationJson"

}

[plugins]

google-services
Solo si no esta ya incluido
kotlinx-serialization = {

id = "org.jetbrains.kotlin.plugin.serialization”, version.ref = "kotlin"

8/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

{ id = "com.google.gms.google-services", version.ref = "googleServices" }

En el build.gradle.kts raiz del proyecto afiadiremos el siguiente plugin:

plugins {

alias(libs.plugins.google.services) apply false

alias(libs.plugins.kotlinx.serialization) apply false

En el build.gradle.kts del médulo de la aplicacidon (app) afiadiremos:

plugins {

alias(libs.plugins.google.services)

alias(libs.plugins.kotlinx.serialization)

dependencies {

implementation(platform(libs.google.firebase.bom))

9/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

Modificando el proyecto

Definiendo el proveedor de Firestore con Dagger-Hilt

Definiremos el proveedor de Firestore en el archivo AppModule.kt que me creara una instancia de
Firestore de acuerdo a la configuracién de mi proyecto definida en el archivo

google-services.json y me la inyectara con Dagger-Hilt.

@Module
@InstallIn(SingletonComponent::class)
class AppModule {

@Singleton

@Provides

fun provideFirestore(): FirebaseFirestore = Firebase.firestore

Definiendo las clases para operar con Firestore

Definiremos el paquete data.firestore.contacto en nuestro Android |V

proyecto. El documento a almacenar en Firestore y el servicio que E[cg'[ndptm]dm-agenda]
T mjdata

hara las veces de DAO y me proporcionara las operaciones Li[firestore]

CRUD que usamos en nuestro repositorio. ContactoFSDocument kt

ContactoFSService.kt
ContactoRepository.kt
RepositoryConverters.kt

i:-- [contacto]

Primero definiremos la clase que modelizara el documento a
almacenar en Firestore. En este caso, sera un Contacto y que
definiremos en el fichero ContactoFSDocument.kt .

Para ello, tenemos que entender primero como se almacenan los datos en Firestore.

Nuestro modelo sera la BD (default) con la coleccidon contactos y cada documento dentro de
la misma tendra un id que se tratara como cadena de texto y se recomienda que sea un UUID. En
nuestro caso sera el id que definimos en el 'mock’ por lo que nos deberia quedar algo similar a
esto:

10/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/manage-data/structure-data?hl=es-419&authuser=0

ﬁ:ﬂ » contactos » 3 &Y Mas funciones en Google Cloud v

2 (default) |® contactos =: B3 :
+ Inicia + Agregar + Iniciar coleccion
b 1 + Agregar campo
2 apellides:
> categorias
4 g 'Trabajo’

5 1 'Familia"
6 correo:
foto: "IVBORWOKGQOAAAANSUREUQAAAKAAAACYCAIAAAAEITBOAAAACKBIWXMA

nombre:

telefono: "987987987"

Ala hora de agregar o crear un documento ejecutaremos algo similar a:

Firebase.firestore.collection("contactos").document("3").set(contacto)

Donde el método document nos devolvera una referencia al documento (DocumentReference)
con el id "3" dentro de la coleccidn contactos 0 lo creara si no existe devolviendo la referencia
al nuevo documento. Si no pasamos el id, Firestore lo generara automaticamente y lo podremos
obtener a través del objeto DocumentReference que devuelve document.

Definiendo el documento en Kotlin

Ahora ya podemos definir el objeto personalizado que modelizara el documento a almacenar en
Firestore dentro de cContactoFSDocument.kt siguiendo las siguientes recomendaciones:

1. Al crear objetos para Firestore, es necesario inicializarlos con valores por defecto; de lo
contrario, se generara un error.

2. Si usamos 'Hash Maps', solo podran usar claves de tipo string.

3. Si usas un campo en inglés, como por ejemplo isBlocked , es recomendable usar blocked en

su lugar, ya que obtendrmos errores si no usamos la anotacién @field:JvmField sobre el
campo.

11/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/manage-data/add-data?hl=es-419&authuser=0#add_a_document
https://firebase.google.com/docs/reference/kotlin/com/google/firebase/firestore/DocumentReference?authuser=0
https://firebase.google.com/docs/firestore/manage-data/add-data?hl=es-419&authuser=0#custom_objects

data class ContactoFSDocument(
// Excluimos el id pues se almacenara a parte de los datos del documento.
@get:Exclude
val id: Int = 0,
val nombre: String = "",
val apellidos: String = "",
val foto: String? = null,

val correo: String = "",

val telefono: String = "",
val categorias: List<String> = emptylList()

Fijate que podemos guardar las categorias como una lista de cadenas de texto. Esto nos permitira
realizar consultas mas avanzadas en Firestore, como buscar todos los contactos que pertenecen a

una categoria especifica.
Definiendo los 'mapeos’ al modelo

Una vez tenemos modelado el documento en RepositoryConverters.kt definiremos el mapeo del
documento a nuestro modelo contacto Y viceversa.

12/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

private fun List<String>.toEnumSetCategorias(): EnumSet<Contacto.Categorias> =
this.mapNotNull { categoria ->
runCatching { Contacto.Categorias.valueOf(categoria) }.getOrNull()

}
.takeIf { it.isNotEmpty() }

?.let { EnumSet.copyOf(it) }

?: EnumSet.noneOf(Contacto.Categorias::class.java)

fun ContactoFSDocument.toContacto() = Contacto(
id = id,
nombre = nombre,
apellidos = apellidos,
foto = foto,
correo = correo,
telefono = telefono,

categorias = categorias.toEnumSetCategorias()

fun Contacto.toContactoFSDocument() = ContactoFSDocument(
id = id,
nombre = nombre,
apellidos = apellidos,
foto = foto,
correo = correo,
telefono = telefono,

categorias = categorias.map { ¢ -> c.name }

Definiendo el servicio de Firestore con el CRUD

Una vez tenemos los 'mapeos’ entre ContactoFSDocumento Yy Contacto definiremos
ContactoFsservice.kt donde definiremos las operaciones CRUD que necesitamos para interactuar
con Firestore.

Definiremos una excepcion personalizada FirestoreException que nos permitira lanzar
excepciones hacia el ViewModel.

class FirestoreException(message: String) : Exception(message)

Posteriormente inyectaremos la la instancia de Firestore creada a través de Dagger-Hilt en el
servicio contactoFsService Y lo definiremos como un singleton para no tener que definir un

13/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

provider para ContactoFSService en el AppModule.kt .

@Singleton
class ContactoFSService @Inject constructor(

private val firestore: FirebaseFirestore

)

// Definicidén de constantes a nivel de clase
private companion object {
const val COLLECTION = "contactos"

const val TAG = "Firestore"

// Método de extension privado para centralizar la gestiodn de errores.
private fun Exception.gestionaError(mensaje: String) {
Log.e(TAG, "$mensaje: ${this.localizedMessage}", this)

throw FirestoreException(mensaje)

Definimos las diferentes operaciones como métodos de suspension siguiendo un esquema
similar. Por ejemplo, para recuperar todos los contactos de la coleccion.

14/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

suspend fun get(): List<ContactoFSDocument> {

return firestore

// Recuperamos la coleccion de contactos CollectionReference
.collection(COLLECTION)
// Lanzamos la query que hayamos definido a firestore
// en nuestro caso no hay ningun filtro obteniendo una
// tarea de tipo Task<QuerySnapshot>
.get()
// Ante cualquier error lanzamos nuestra excepcidn personalizada
.addOnFailureListener { e ->
e.gestionaError("Error al obtener los contactos")
}
// Funcioén de suspensidén que bloquea la corrutina hasta que
// se resuelva la tarea con la consulta devolviendo un QuerySnapshot
.await()
// Una fez obtenido los datos mapeamos cada DocumentSnapshot
// a un objeto ContactoFSDocument con toObject
.documents.map { document ->
document.toObject(ContactoFSDocument: :class.java)!!.copy(
// Como al recuperar el documento no obtenemos un id por el Exclude
// lo anadimos tras el mapeo obteniéndolo del documento
id = document.id.toInt()

El resto de consultas para completar el API del repositorio seran similares a la anterior.

15/18

PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

suspend fun get(id: Int): ContactoFSDocument? {
return firestore
.collection(COLLECTION)
.document(id.toString())
.get()
.addOnFailurelListener { e ->
e.gestionaError("Error al obtener el contacto $id")
}
.await()
?.let { document ->

document.toObject(ContactoFSDocument::class.java)?.copy(id = document.id.toIr

suspend fun insert(contacto: ContactoFSDocument) {
firestore
.collection(COLLECTION)
.document(contacto.id.toString())
.set(contacto)
.addOnFailurelListener { e ->
e.gestionaError("Error al insertar el contacto ${contacto.id}")

}

.await()

suspend fun update(contacto: ContactoFSDocument) {
firestore
.collection(COLLECTION)
.document(contacto.id.toString())
.set(contacto, SetOptions.merge())
.addOnFailurelListener { e ->
e.gestionaError("Error al actualizar el contacto ${contacto.id}")

}

.await()

suspend fun delete(id: Int) {
firestore
.collection(COLLECTION)
.document(id.toString())
.delete()
.addOnFailurelListener { e ->

e.gestionakrror("Error al borrar el contacto $id")

16/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

.await()

suspend fun count(): Int {
val querySnapshot = firestore
.collection(COLLECTION)
.get()
.addOnFailureListener { e ->

e.gestionakrror("Error al obtener el nidmero de contactos")

}

.await()

return querySnapshot.size()

Puedes ver mas informacion sobre como realizar consultas en Firestore en la documentacion

oficial.

Por ejemplo, para obtener los contactos que pertenezcan a un determinado numero de categorias
para cumplir el filtro podriamos hacer una consulta similar a la siguiente...

suspend fun get(
ascendente: Boolean,
categorias: List<String>,
): List<ContactoFSDocument> = firestore
.collection(COLLECTION)
.orderBy(
ContactoFSDocument: :nombre.name,
if (ascendente) Query.Direction.ASCENDING
else Query.Direction.DESCENDING
)
.whereArrayContainsAny(ContactoFSDocument: :categorias.name, categorias)
.get()
.addOnFailurelListener { e ->

e.gestionakrror("Error al obtener contactos por categorias.™)

}

.await()
.documents.map { document ->

document.toObject(ContactoFSDocument::class.java)!!.copy(id = document.id.toInt())

17/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

https://firebase.google.com/docs/firestore/query-data/queries?hl=es&authuser=0#kotlin+ktx
https://firebase.google.com/docs/firestore/query-data/queries?hl=es&authuser=0#kotlin+ktx

Aviso

Si estableces muchas condiciones en una consulta, al ejecutar la aplicacion podrias
encontrarte con un error. En el g Logcat, revisa el mensaje de error, ya que te indicara que
necesitas generar indices para optimizar las consultas. Haz clic en el enlace proporcionado
en el Logcat y seras dirigido a la consola, donde se generara automaticamente el indice
necesario.

Usando el servicio de Firestore en el repositorio

Dentro del paquete data , crearemos el archivo ContactoRepository.kt como en casos anteriores.
Esta clase implementara las operaciones CRUD (Create, Read, Update, Delete) sobre los objetos
del modelo contacto Y se encargara de gestionarlos en la fuente de datos, en este caso,
Firestore, de forma transparente.

@Singleton
class ContactoRepository @Inject constructor(
private val dao: ContactoFSService
) A
suspend fun get(): List<Contacto> = withContext(Dispatchers.IO0) {
dao.get().map { it.toContacto() }.toList()

18/18 PMDM 2° DAM Firebase Rev. 31/01/2025 IES Doctor Balmis

